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Abstract: This paper proposes an estimation method of the innovations model in closed loop
environment by using the estimate of the innovations process. The estimate of the innovations
process from the finite interval of data has a bias, so are the estimate of the proposed method.
However, it is analyzed that the bias can be reduced. The Kalman gain and the covariance of
the innovations process are estimated by using a semi-definite programming problem previously
proposed by the authors. Numerical simulation illustrates the proposed method gives better
performance than Closed-Loop MOESP and PBSID when the data length is large and the past
horizon is selected low.
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1. INTRODUCTION

Closed loop identification is important or required for pro-
duction, economic, or safety reasons (Forssell and Ljung
(1999)). In the literature on closed-loop subspace iden-
tification, utilization of the estimate of the innovations
process has become major and common (Chiuso and Picci
(2005); van der Veen et al. (2013); Mercère et al. (2016)).
Because the estimate of the innovations process from a
finite interval of data instead of an infinite interval of
data has a bias, the method based on the estimate of
the innovations process inevitably results in asymptoti-
cally consistent estimate (Knudsen (2001)), i.e., not only
the horizontal size (data length minus past and future
horizons) but also the vertical size (determined by the
past and future horizons) of the data matrix must go to
infinity in order for the estimate to converge in probability
to the true value. Increase of the horizons requires more
computational cost. Thus the lower horizons is preferable
from a viewpoint of computational cost.

An interesting method called Closed-Loop MOESP was
proposed by van der Veen et al. (2010). It is based on
the estimate of the innovations process, so the estimate
has an asymptotic bias. However, it can be seen from our
numerical simulations that the estimate of (A,C) has a
small bias compared to the one in PBSID (Chiuso and
Picci (2005)) when the data length is large and lower
horizons are adopted. Unfortunately, the asymptotic bias
of the estimate of (B,D,K) in Closed-Loop MOESP is not
so small as the one of the estimate of (A,C). We will see
this in Sec. 5.

The authors proposed a consistent estimate of the inno-
vations model in open-loop environment which is based
on a semi-definite programming problem on the squared

residuals (Ikeda and Tanaka (2017, 2019)). It has been
shown that the Kalman gain K and the covariance of the
innovations process Ωe can be estimated consistently when
the consistent estimate of (A,B,C,D) is obtained by, e.g.,
PO-MOESP method (Verhaegen (1994); Verhaegen and
Verdult (2007)). As described above, an accurate estimate
of (A,C) can be obtained in the closed-loop environ-
ment by using Closed-Loop MOESP. This suggests that
a more accurate estimate of the innovations model can
be obtained in the closed-loop environment, when a more
accurate estimate of (B,D) can be obtained.

In this paper, an estimation method of the innovations
model in closed-loop environment with low horizons is
developed. First, we analyze the estimation error of the
estimate of (A,C) in Closed-Loop MOESP and consider
why it gives accurate estimate. In order to take advantage
of the mechanism of this accuracy, an estimation method
of (B,D) is proposed in which an idea is borrowed from
ordinaryMOESP (Verhaegen and Dewilde (1992)). For the
estimation ofK and Ωe, the method proposed in Ikeda and
Tanaka (2017, 2019) is extended and applied to the closed-
loop identification. Tanaka and Ikeda (2018) applied the
estimation method of K and Ωe above to the joint-
input-output approach in the closed-loop identification.
However, the method has not yet been applied to the
direct approach. The performance of the proposed method
is illustrated by using numerical simulations, in which the
bias of the proposed method is considereably reduced even
when the past horizon is low and the data length is large.

This paper is organized as follows: Section 2 provides
an innovations model as the system to be identified and
some assumptions are made. Section 3 summarizes some
preliminaries for the subspace identification. Section 4
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introduces a proposed method with some analysis on
the estimation error in Closed-Loop MOESP. Section 5
shows some numerical simulations in order to illustrate the
performance of the proposed method compared to Closed-
Loop MOESP and PBSID. Finally, Section 6 concludes
the paper.

Notations: Let X† be a pseudo inverse (Moore-Penrose
generalized inverse) of X(Golub and van Loan (1989)).

Let λi(A) be an eigenvalue of A.

Let E{·} denote a mathematical expectation.

Let Of (A,C) denote an extended observability matrix
composed of the system matrices (A,C) for a given index
f > n where n is an order of the system. Namely,

Of (A,C) := [C�, (CA)�, . . . , (CAf−1)�]�. (1)

Let Cf (A,B) denote an extended reachability matrix in
the reversed order as

Cf (A,B) := [Af−1B, . . . , AB,B]. (2)

Let T f (A,B,C,D) be a block Toeplitz matrix composed
of the Markov parameters of the system (A,B,C,D) as

T f (A,B,C,D)

:=

⎡
⎢⎢⎣

D 0
CB D
...

. . .

CAf−2B CAf−3B · · · D

⎤
⎥⎥⎦ . (3)

Block Hankel matrix composed of a time-series data {uk}
is denoted by

U i|j :=

⎡
⎢⎢⎣

ui ui+1 · · · ui+N−1

ui+1 ui+2 · · · ui+N

...
...

...
uj uj+1 · · · uj+N−1

⎤
⎥⎥⎦ . (4)

We define Y i|j , Ei|j , Gi|j , and Z i|j , in the same way with

U i|j , respectively by using {yk}, {ek}, {gk = (e�k , f
�
k )�},

and {zk = (u�
k , y

�
k )

�}.

2. INNOVATIONS MODEL

Consider the following innovations model (Anderson and
Moore (2005)):

xk+1 =Axk +Buk +Kek, (5)

yk =Cxk +Duk + ek, (6)

where uk ∈ R
m, yk ∈ R

�, ek ∈ R
�, and xk ∈ R

n are the
input, the output, the noise, and the state, respectively,
and A ∈ R

n×n, B ∈ R
n×m, C ∈ R

�×n, D ∈ R
�×m, and

K ∈ R
n×� are the system matrices to be estimated.

The control input uk is defined as an output of a linear
feedback controller as follows:

xc,k+1 =Acxc,k +Bcyk +Kcfk, (7)

uk =Ccxc,k + fk, (8)

where xc ∈ R
nc and fk ∈ R

m are the state of the
controller and the innovations process, respectively, and
Ac ∈ R

nc×nc , Bc ∈ R
nc×�, Cc ∈ R

m×nc , and Kc ∈ R
nc×m

are the system matrices of the controller. The following
assumptions are made for this system:

(A1) Feedback system is stable, |λi(A − KC)| < 1, i =
1, . . . , n, and |λi(Ac −KcCc)| < 1, i = 1, . . . , nc.

(A2) The innovations processes {ek} and {fk} are white
Gaussian processes with means E{ek} = 0 and E{fk} =
0 and covariance matrices E{eke�l } = Ωeδkl and
E{fkf�

l } = Ωfδkl, respectively.
(A3) The processes {fk} and {ek} are mutually indepen-
dent.

(A4) The processes {fk} and {ek} are ergodic and sta-
tionary (Anderson and Moore (2005)).

Note that the pair (K,Ωe) is not arbitrary but defined
by using a solution of some Riccati equation. From As-
sumptions above, the system is identifiable (Anderson and
Gevers (1982)).

3. PRELIMINARIES

3.1 I/O data Equation

I/O data equation derived from the innovations model (5)
and (6) plays an important roles in the analysis and the
implementation of subspace identification methods:

Yf = OfX0 + TfUf +HfEf , (9)

where Of , Tf , Hf , Xi, Uf , Yf , Ef , and Ff are given by

Of :=Of (A,C), (10)

Tf := T f (A,B,C,D), (11)

Hf := T f (A,K,C, I), (12)

Xi := [xi xi+1 · · · xi+N−1] , (13)

Uf :=U0|f−1. (14)

We define Yf , Ef , and Ff as in the same way with Uf .

Most of the subspace methods based on the innovations
model (5) and (6), e.g. PO-MOESP (Verhaegen (1994))
or N4SID (Van Overschee and De Moor (1994)), adopt
the following instrumental variable matrix Z−

p in order
to reduce the asymptotic bias of the estimate where
Z−

p = Z−p|−1 is a block Hankel matrix composed of past

zk = [u�
k , y

�
k ]

�. The state matrix is represented by using
the instrumental variable matrix as:

X0 = ĀpX−p +KpZ−
p = ĀpX−p + X (p)

0 , (15)

where Kp := Cp(Ā, [B̄,K]), Ā = A −KC, B̄ = B −KD,

and X (p)
0 = KpZ−

p .

The I/O data equation (9) is rewritten as

Yf =OfX (p)
0 + TfUf +HfEf +Of Ā

pX−p, (16)

=OfKpZ−
p + TfUf +HfEf +Of Ā

pX−p. (17)

3.2 Estimation of the Innovations Process

From (5) and (6), the following is derived.

xk+1 = Āxk + B̄uk +Kyk. (18)

From this and (6), another I/O date equation is obtained.

yi = CĀi−1KpZ−
p +CKiZi+Dui+ei+CĀp+iX−p, (19)

where yi, ei, Zi and Ki are given by
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yi = Y i|i, ei = E i|i, (20)

Zi = Z0|i−1, (21)

Ki := Ci(Ā, [B̄,K]). (22)

Define Πi and Π⊥
i as

Πi =ΠZ(i)
= Z�

(i)(Z(i)Z�
(i))

−1Z(i), (23)

Π⊥
i =Π⊥

Z(i)
= I −Πi, (24)

where Z(i) = [(Z−
p )�,Z�

i ,u�
i ]

� and ui = U i|i.

From the above, the estimate of the innovations process is
defined as

êi = yiΠ
⊥
i (25)

= ei − eiΠi + CĀi+pX−pΠ
⊥
i . (26)

The second term in the r.h.s. of (26) is of order 1/
√
N

because innovations process does not correlate with the
past input and output. The third term in the r.h.s. of
(26) might cause an asymptotic bias. An estimate of Ef
is defined as

Êf = [ê�0 , . . . , ê
�
f−1]

� ∈ R
f�×N . (27)

Decompose Êf as Êf = Ef + Ẽf , then, Ẽf is given by

Ẽf =

⎡
⎢⎣ e0Π0

...
ef−1Πf−1

⎤
⎥⎦

︸ ︷︷ ︸
Ẽf1

+

⎡
⎢⎣ CĀpX−pΠ

⊥
0

...
CĀf−1+pX−pΠ

⊥
f−1

⎤
⎥⎦

︸ ︷︷ ︸
Ẽf2

. (28)

Remark 1. The estimate Êf above can be obtained numer-
ically as follows. Compute the LQ decomposition as[

Z−
p

Zf

]
= LaQ

�
a ,

where Zf = Z0|f−1, La is a lower triangle matrix, and

Q�
a Qa = I(p+f)(m+�). Let Ga = G−p|f−1 be a block Hankel

matrix composed of gk = [f�
k , e�k ]

�. Then, its estimate is
given as

Ĝa = MaQ
�
a ,

where Ma = block-diag(La,0, . . . , La,p+f), and La,i =
La(i(m+�)+1 : (i+1)(m+�), i(m+�)+1 : (i+1)(m+�))

using Matlab notation. Thus, Êf is given as

Êf = [0f(m+�)×p(m+�), If ⊗ [0�×m, I�]]MaQ
�
a . (29)

4. PROPOSED METHOD

In this section, an estimation method of the innovations
model is proposed. The estimates of A and C matrices
are the same as Closed-Loop MOESP (van der Veen et al.
(2010, 2013)). Borrowing an idea from ordinary MOESP
(Verhaegen and Dewilde (1992)), an estimation method of
B and D is proposed. It is also analyzed why the estimates
above reduces the asymptotic bias. Finally, the Kalman
gain K and the covariance of the innovations process Ωe

are estimated by extending and applying the previously
proposed method by Ikeda and Tanaka (2017, 2019) to
the closed loop identification.

4.1 Estimation of A and C

Numerical simulation shows that Closed-Loop MOESP
(van der Veen et al. (2010, 2013)) gives accurate estimate
of (A,C) compared to PBSID (Chiuso and Picci (2005))
when the data length is large and the future horizon f and
past horizon p are not so large; we will show numerical
simulation results in Sec. 5. In Closed-Loop MOESP, the
extended observability matrix Of is first estimated by
projecting Yf onto the complement of the space spanned

by [U�
f , Ê�

f ]� as

YfΠ
⊥[
Êf

Uf

] = OfX0Π
⊥[
Êf

Uf

] −Hf ẼfΠ⊥[
Êf

Uf

], (30)

where Π⊥[
Êf

Uf

] is a projection defined by

Π⊥[
Êf

Uf

] = I −
[
Êf
Uf

]�([Êf
Uf

] [
Êf
Uf

]�)−1 [
Êf
Uf

]
. (31)

Because e0, . . .ef−1 are uncorrelated to X0, Ẽf1 in (28)
will not cause an asymptotic bias. On the other hand,
Êf2 causes an asymptotic bias. However, estimating Of

from the equation above, the bias term will be reduced as
follows. Let

X̄⊥
−p =

1

f

f−1∑
i=0

X−pΠ
⊥
i .

Adding and subtracting X̄⊥
−p to and from X−pΠ

⊥
i , we

obtain

Ẽf2 = Ōf Ā
pX̄⊥

−p +

⎡
⎢⎣

CĀp(X−pΠ
⊥
0 − X̄⊥

−p)
...

CĀf−1+p(X−pΠ
⊥
f−1 − X̄⊥

−p)

⎤
⎥⎦

︸ ︷︷ ︸
Ẽf3

. (32)

From the fact that

Of = Hf Ōf , (33)

the first term in the r.h.s. of (32) pre-multiplied by Hf has
the same range of the first term in the r.h.s. of (30). Thus,
it does not cause an asymptotic bias. The second term in
the r.h.s. of (32), Ẽf3, causes an asymptotic bias. However,
since

f−1∑
i=1

∥∥X−pΠ
⊥
i − X̄⊥

−p

∥∥2
F
≤

f−1∑
i=1

∥∥X−pΠ
⊥
i

∥∥2
F
, (34)

it is expected that the bias caused by Ẽf3 is small compared

to the one caused by Ẽf2. This effect will be seen in the
numerical example in Sec. 5

Remark 2. The projection YfΠ
⊥[
Êf

Uf

] is numerically calcu-

lated as follows. Compute the LQ decomposition as⎡
⎣ÊfUf

Yf

⎤
⎦ =

[
L11

L21 L22

L31 L32 L33

]⎡⎣Q�
1

Q�
2

Q�
3

⎤
⎦ , (35)

then, the projection is given by YfΠ
⊥[
Êf

Uf

] = L33Q
�
3 .

The extended observability matrix Of is estimated by
using the singular value decomposition (SVD) of L33 as
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L33 = [Ûn, Û
⊥
n ]

[
Ŝn

Ŝ⊥
n

] [
V̂ �
n

(V̂ ⊥
n )�

]
∼ ÛnŜnV̂

�
n . (36)

The estimate of Of is defined as Ôf = Ûn. The system
matrices A and C are estimated from the shift invariance
property as

Ĉ = Ôf (1 : �, :), (37)

Â= Ôf (1 : (f − 1)�, :)†Ôf (�+ 1 : f�, :). (38)

using Matlab notation.

4.2 Estimation of B and D

In Closed-Loop MOESP, B, D, K and the initial state x0

are estimated by solving a least squares problem. However,
Ẽf2 instead of the second term of the r.h.s. of (32) will
cause an asymptotic bias. To reduce this asymptotic bias,
(Ô⊥

f )
� = (Û⊥

n )� and Π⊥
Êf

= I − Ê�
f (Êf Ê�

f )−1Êf are pre-

and post-multiplied to the I/O data equation (9) and
regressed to UfΠ

⊥
Êf

as

(Ô⊥
f )

�YfΠ
⊥
Êf
(UfΠ

⊥
Êf
)† = (Ô⊥

f )
�Tf

+(Ô⊥
f )

�(OfX0 +HfEf )Π⊥
Êf
(UfΠ

⊥
Êf
)† (39)

The second term in the r.h.s. of (39) is an error term
containing some bias. However, it is expected that the
magnitude of the bias is reduced as in the bias of Ôf .

In practice,B andD are estimated by solving the following
least squares problem:

minimize
(B̂,D̂)

∥∥∥∥(Ô⊥
f )

�L32L
−1
22 − (Ô⊥

f )
�Ŝf (If ⊗

[
B̂

D̂

]
)

∥∥∥∥
F

,

(40)

where Ŝf = T f (Â, [In, 0n×�], Ĉ, [0�×n, I�]).

4.3 Estimation of K and Ωe

Estimate of Yf is defined as Ŷf = T̂fUf where T̂f =

T f (Â, B̂, Ĉ, D̂). Squared sum of the residuals is defined

Γ̂ =
1

N
(Yf − Ŷf )(Yf − Ŷf )

� (41)

=
1

N
HfEfE�

f H�
f +

1

N
OfX0X�

0 O�
f + δ, (42)

where δ is given by

δ =
1

N

{
OfX0E�

f H�
f +HfEfX�

0 O�
f + T̃fUfU�

f T̃ �
f

+T̃fUfE�
f H�

f +HfEfU�
f T̃ �

f

+T̃fUfX�
0 O�

f +OfX0U�
f T̃ �

f

}
, (43)

T̃f = Tf − T̂f . (44)

The first term of the r.h.s. of (42) converges in probability
to the following Γ as N → ∞:

Γ = Sf (If ⊗ Ξ)S�
f , (45)

where Sf and Ξ are given by

Sf = T f (A, [In, 0n×�], C, [0�×n, I�]), (46)

Ξ =

[
KΩeK

� KΩe

ΩeK
� Ωe

]
. (47)

Pre- and post-multiplying (Ô⊥
f )

� and Ô⊥
f , respectively,

to Γ̂, terms multiplied by Of in (42) will be reduced.

For simplicity, we assume that [Ôf , Ô⊥
f ] is an orthogonal

matrix [Ûn, Û
⊥
n ]. Thus, the estimate of Ξ is obtained by

solving the following semi-definite programming problem.

minimize
Ξ̂=Ξ̂�≥0

∥∥∥(Ô⊥
f )

�(Ŝf (If ⊗ Ξ̂)Ŝ�
f − Γ̂)Ô⊥

f

∥∥∥
F
, (48)

subject to Θ̂ = Ô�
f (Γ̂− Ŝf (If ⊗ Ξ̂)Ŝ�

f )Ôf ≥ 0. (49)

Note that Θ̂ is an estimate of the covariance matrix of the
state which must be positive semi-definite.

The solution Ξ̂ is not an estimate of Ξ but an estimate of[
Q S
S� R

]
, where Q ∈ Rn×n is a covariance of the process

noise, R ∈ R�×� is a covariance of the measurement noise,
and S ∈ Rn×� is a cross covariance of the process noise
and the measurement noise. To obtain the estimates of
the Kalman gain K and the covariance of the innovations
process Ωe, we have to solve a Kalman filter problem.

Divide Ξ̂ =

[
Q̂ Ŝ

Ŝ� R̂

]
, where Q̂, Ŝ, and R̂ have the same

dimension as Q, S, and R, respectively. Calculate the
stabilizing solution X̂ of the following Riccati equation:

X̂ = ÂX̂Â� + Q̂− (ÂX̂Ĉ� + Ŝ)

·(ĈX̂Ĉ� + R̂)−1(ÂX̂Ĉ� + Ŝ)�. (50)

Then, the estimates of K and Ωe are defined as

K̂ = (ÂX̂Ĉ� + Ŝ)(ĈX̂Ĉ� + R̂)−1, (51)

Ω̂e = ĈX̂Ĉ� + R̂. (52)

Remark 3. Ikeda and Tanaka (2019) analyzed a condition
for the problem above to be solved. If the future horizon

f is selected such that f ≥ 2
n/�� + 1, K̂ and Ω̂e are
uniquely determined for almost all [C�, A�] ∈ R(�+n)×n.

It is also shown that in the open loop environment, K̂ and
Ω̂e are consistently estimated by solving the SDP problem
and the Kalman filter problem above when the system
matrices (A,B,C,D) are consistently estimated by using
PO-MOESP method.

5. NUMERICAL EXAMPLE

Consider the following 4-th order system:

xk+1 =

⎡
⎢⎣

1.0135 0.0033 0.6026 0.1179
0.4154 1.1336 0.3614 0.3942
−0.4166 −0.4398 0.3449 0.2093
0.0237 −0.1478 −0.2212 0.8222

⎤
⎥⎦xk

+

⎡
⎢⎣
−0.5345
−1.1675
0.6770
1.7008

⎤
⎥⎦uk +

⎡
⎢⎣
−0.4442 −0.3588
0.3814 −0.5855
−0.2308 0.1455
0.0633 −0.0680

⎤
⎥⎦ ek,

yk =

[
−0.8018 0.5371 −0.1816 0.1890
−0.2673 −0.5838 −0.7430 −0.1890

]
xk + ek,
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Fig. 1. Eigenvalue of Â− K̂Ĉ for f = p = 8. ×: Proposed
method, +: Closed-Loop MOESP, ◦: PBSID

where the innovations process ek is given by a Gaussian

random process as ek ∼ N(

[
0
0

]
,

[
8.7745 0.2255
0.2255 6.6895

]
. The

system above is controlled by the following controller:

xc,k+1 =

⎡
⎢⎣

0.5721 −0.0059 0.2571 0.1908
0.5878 0.5033 −0.0004 0.3356
−0.5762 −0.1825 0.4088 0.2084
0.0226 −0.0996 −0.2660 0.6166

⎤
⎥⎦xc,k

−

⎡
⎢⎣
−0.4442 −0.3588
0.3814 −0.5855
−0.2308 0.1455
0.0633 −0.0680

⎤
⎥⎦ yk +

⎡
⎢⎣

0.0001121
−0.0000917
0.0002494
0.0002080

⎤
⎥⎦ fk,

uk = [0.0198 −0.0716 0.0034 0.1063]xc,k + fk,

where fk ∼ N(0, 4.0003) is a Gaussian random pro-
cess. The proposed method is compared with Closed-Loop
MOESP (van der Veen et al. (2010, 2013)) and PBSID
(Chiuso and Picci (2005)). Hundred times trials of estima-
tion are performed for the data length N = 210 ∼ 220 and
the future and past horizons f = p = 8. Fig. 1 shows the
estimated λ(Â− K̂Ĉ). For larger N , the proposed method
gives estimates closer to the true value than other two
methods.

Fig. 2 shows MSE (mean squared error) and variance of

λ(Â). The estimate Â of the proposed method, which is
the same as the one of Closed-Loop MOESP, gives better
performance than the one of PBSID when N = 218 and
N = 220.

MSE and variance of Markov parameters (Â, B̂, Ĉ, D̂) is
plotted in Fig. 3. MSE and variance of the proposed
estimate are almost the same while those of Closed-Loop
MOESP and PBSID are apart from each other. This means
that the proposed estimate goes to the true value asN goes
to large, while the estimates of Closed-Loop MOESP and
PBSID converge to some value apart from the true value.

Figs. 4 and 5 show MSE’s and variances of λ(Â−K̂Ĉ) and

Ω̂, respectively. Similar tendency as in Fig. 3 can be seen.

49

Figs. 6 and 7 show the MSE’s and variances of Markov
parameters of the system (Â, B̂, Ĉ, D̂) and of λ(Â − K̂Ĉ)
when f = p = 12, respectively. This result means that
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Fig. 2. MSE’s (—) and Var’s (· · · ) of λ(Â) for f = p =
8. ×: Proposed method, +: Closed-Loop MOESP,
◦: PBSID
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Fig. 3. MSE’s (—) and Var’s (· · · ) of Markov parameters

of the system (Â, B̂, Ĉ, D̂) for f = p = 8. ×: Proposed
method, +: Closed-Loop MOESP, ◦: PBSID
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Fig. 4. MSE’s (—) and Var’s (· · · ) of λ(Â − K̂Ĉ) for
f = p = 8. ×: Proposed method, +: Closed-Loop
MOESP, ◦: PBSID

taking large f and p, Closed-Loop MOESP and PBSID
give better performance. However, the proposed method
achieves better performance with lower f and p.
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Fig. 5. MSE’s (—) and Var’s (· · · ) of Ω̂e for f = p =
8. ×: Proposed method, +: Closed-Loop MOESP,
◦: PBSID
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Fig. 6. MSE’s (—) and Var’s (· · · ) of Markov parameters of

the system (Â, B̂, Ĉ, D̂) for f = p = 12. ×: Proposed
method, +: Closed-Loop MOESP, ◦: PBSID
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Fig. 7. MSE’s (—) and Var’s (· · · ) of λ(Â − K̂Ĉ) for
f = p = 12. ×: Proposed method, +: Closed-Loop
MOESP, ◦: PBSID

6. CONCLUSION

Modifying the Closed-Loop MOESP (van der Veen et al.
(2010, 2013)), a new estimation method of the innovations
model is proposed for the closed loop environment. It is
based on the innovations estimate Êf which is estimated

from the finite interval of data. instead of the infinite
interval of data. Thus, Êf has an asymptotic bias. In spite

of this asymptotic bias, an asymptotic bias of (Â, Ĉ) in
Closed-Loop MOESP is shown to be small from the error
analysis. In order to take advantage of the accuracy of
(Â, Ĉ) in Closed-Loop MOESP, B and D matrices are
estimated by applying ordinary MOESP (Verhaegen and
Dewilde (1992)) to YfΠ

⊥
Êf
. For the estimation of K and

Ωe, an SDP problem formulation is introduced which is
originally proposed by Ikeda and Tanaka (2017, 2019) for
open loop environment. Numerical simulations illustrate
that the proposed method gives better performance when
N is large and f and p are selected low.

It is not presented in this paper that MSE’s and variances
of the estimates in the proposed method become large
when the plant is unstable, though they become small as
N goes to large as in the case of stable plant. This problem
is left to the future research.
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