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Abstract: We devise a model predictive control algorithm for impulsive linear systems with
autonomous flow dynamics and controlled jumps. Thereby the moments of jumps are not fixed,
but rather considered as decision variables. To this end, the complete system dynamics is
formulated as a mixed-logical dynamical system after an appropriate discretization step. The
resulting optimization problem contains both discrete and continuous decision variables, giving
rise to a mixed-integer programming problem. The objective of the optimization is to steer
the states into a target set. The stability is addressed through an appropriate cost function
together with invariance conditions, as well as by introducing terminal constraints which are
only enforced within a certain distance to the target set, thus, providing a trade-off between
guaranteed convergence to the target set and computational complexity.
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1. INTRODUCTION

Impulsive systems are a class of hybrid systems, which
present continuous-time states (flow) that are exposed to
discrete changeovers in time (jumps). The literature on
model predictive control (MPC) formulations for impulsive
systems is still scarce, among which we can highlight
the measure-driven framework in Pereira et al. (2015).
In particular, publications of MPC for impulsive systems
were formalized mainly for impulsive linear systems (ILS),
in which Sopasakis et al. (2015) stands out as stated in
the survey of Sanfelice (2019). In this context, most works
related to ILS have the presence of periodic state jumps in
common, meaning that the period between two successive
jumps is constant and fixed a priori. However, ILS with
non-fixed jump times are important due to their ability to
model i. a. cyber-physical systems, as for instance multi-
agent communication systems (Duz et al., 2018). In this
work, we propose an MPC that also schedules the optimal
jumps at arbitrary discrete times, generating non-periodic
jumps. To this end, the considered impulsive system is
reformulated as a mixed-logical dynamic (MLD) system,
which was proposed by Bemporad and Morari (1999),
to deal with the nonlinear constraints arising from the
relation of the two types of decision variables, the input in
the jump and the impulse time. Therefore, the MPC solves
a mixed-integer quadratic programming (MIQP) problem
in each iteration. Prior to the reformulation, due to a
considered minimum dwell time constraint, the system is
augmented by a new clock variable.
In Sopasakis et al. (2015), the stabilization of the states’

trajectories into a reference set is formulated by an impul-
sive controlled invariant (ICI) set. However, Rivadeneira
et al. (2015) point out that the calculation of this ICI set
could be difficult to implement due to the high compu-
tational effort as the prediction horizon should be chosen
large enough. The authors propose a reference set based
on equilibrium points that leads the states to describe an
orbit.
In this paper, as the moments of jumps are arbitrary,
the construction of an ICI set is strenuous. Therefore,
the invariance related to the reference set is considered
through conditions over the reference set and the MPC
objective function.
This paper is organized as follows. In Section 2, the ILS
is formulated and the invariance approach used for the
reference set is given. Section 3 proposes a reformulation
of the ILS in terms of an MLD system, presenting the
MPC as an MIQP problem to minimize the distance of
the trajectories to the reference set. A novel activation
condition for a terminal constraint is also presented. In
Section 4, an application in pharmacokinetics is shown and
compared to results from the literature.

2. PRELIMINARIES

In this paper, we consider hybrid dynamical systems in the
form of the following linear time-invariant (LTI) impulsive
first-order differential equation,

ẋ(t) = Ax(t), ∀t 6= τi,

x(τ+
i ) = Ex(τi) + Fu(τi), ∀i ∈ N,

τi+1 − τi ≥ C, ∀i ∈ N,
(1)
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where the first differential equation describes the au-
tonomous flow of the system, while the second equation
represents the jumps. The variable t ∈ R+ denotes time,
x ∈ X ⊆ Rnx is the state vector, u ∈ U ⊆ Rnu is the
impulsive input vector and the matrices A,E ∈ Rnx×nx

and F ∈ Rnx×nu are time-invariant. At time τi ∈ R+, the
ith jump occurs. Furthermore, a time threshold C ∈ R+

has to elapse between two consecutive jumps. The sets X
and U are defined as convex polyhedral sets. The initial
state at time t = t0, x(t0) = x0, is given. We define
x(τ+

i ) := lim
t↘τi

x(t).

Differently from the benchmark literature, where the jump
times are periodic or at least given (see Sopasakis et al.
(2015); Rivadeneira et al. (2015); Altın et al. (2018);
Pereira et al. (2015)), our configuration is more flexible,
as the set of time instants

T := {τi | i ∈ N} (2)

at which jumps occur constitutes a degree of freedom in
the formulation of the MPC, presented in the next section.

As the system is autonomous in the flow and the moments
of jumps are constrained by the time threshold, it might
not be possible to stabilize the system around a fixed set-
point, apart from the origin. Therefore, the states of the
system are desired to remain inside a non-empty convex
polyhedral reference set R ⊂ X which does not necessarily
contain the origin. Then, in order to keep the trajectories
of (1) inside the reference set R, we compute a controlled
invariant subspace X f ⊆ R ⊂ X through a geometric
approach of polyhedral sets inclusion (Dórea and Hennet,
1999), where

X f = {x ∈ X | xf
j ≤ xj ≤ xf

j , j = 1, . . . , nx}
is the target set and j-subscription denotes the jth element
of the underlying vector.

For dynamical systems, a set is said to be positively invari-
ant with respect to a dynamical system if the trajectory,
once inside the invariant set, never leaves it. When a
control input is present, a set is controlled invariant if
a control action keeps the trajectory inside the set for
any initial condition belonging to the set. When we have
this condition for the ILS, the set is said to be impulsive
controlled invariant.
For the system (1), we denominate a nonempty set V ⊆ X
as (A)-invariant if it is positively invariant with respect to
the flow dynamics, i. e. if

x(τi) ∈ V =⇒ eA(t−τi)x(τi) ∈ V, ∀t ∈ (τi, τi+1], ∀i ∈ N
and as (E,F )-invariant if it is controlled invariant with
respect to the jump dynamics, that is if for any

x(τi) ∈ V, ∃u(τi) ∈ U =⇒ x(τ+
i ) ∈ V, ∀i ∈ N.

A sufficient geometric condition for a set to be the impul-
sive controlled invariant, i. e. invariant for the system (1),
can be established by interleaving results for continuous-
time and discrete-time LTI systems (Lawrence, 2014), in
terms of the following lemma:

Lemma 1. A subspace V ⊆ X is impulsive controlled
invariant for the system (1) if it is both (A)-invariant and
(E,F )-invariant.

In this paper, we do not specify any upper bound for the
time between consecutive jumps is unbounded, rendering

the construction of an invariant set that does not neces-
sarily contain the origin, regarding the flow, challenging.
However, once the moments of jump are controlled, the
MPC can set the (A)-invariance property by choosing the
impulse times such that the trajectory does not leave X f.
However, this set should be controlled invariant for the
jumps. Then, it is defined as

X f := supremal (E,F)-invariant set cointained in R (3)

and calculated through the classical algorithm given by
Dórea and Hennet (1999), configured to include a rectan-
gular cone into a polyhedral set. For this setting, we will
consider that a suitable value of the clock constraint C is
given together with a chosen cost function that coerces the
trajectory to respect the (A)-invariance. These conditions
will be outlined in Section 3.

3. PROPOSED MIXED-INTEGER MPC

In the following, the reformulation of the ILS (1) into a
mixed-logical dynamic system is presented. This system
representation forms the basis for the employed MPC
algorithm, in which an MIQP problem is solved in each
iteration. The system states are augmented by a clock
variable in order to directly incorporate the time threshold
between jumps in the MPC problem. Special consideration
is given to the convergence of the system to the invariant
target set, directly addressing the stability of the proposed
approach.

3.1 Problem setting

In this paper, the moments of jumps are free decision
variables in the proposed system class (1), albeit con-
strained by the time threshold between consecutive jumps.
In order to adequately account for this additional degrees
of freedom and constraints, they should be incorporated
in the optimization problem of the MPC algorithm. To
this end, system (1) is augmented by an additional clock
variable c(t) as follows:

ẋ(t) = Ax(t), ∀t 6= τi,

ċ(t) = 1, ∀t 6= τi,

x(τ+
i ) = Ex(τi) + Fu(τi), ∀i ∈ N,

c(τ+
i ) = 0, ∀i ∈ N,

τi+1 − τi ≥ C, ∀i ∈ N.

(4)

The new state c(t) ∈ R+ represents a clock that increases
with a constant rate during the flow and resets to 0
after each jump. By defining an augmented state vector
x̂(t) := [xT (t), c(t)]T , the system can be rewritten as

˙̂x(t) = Âx̂(t) + ξ, ∀t 6= τi,

x̂(τ+
i ) = Ẽx̂(τi) + F̃ u(τi), ∀i ∈ N,

τi+1 − τi ≥ C, ∀i ∈ N,
(5)

with

Â :=

[
A 0
0 0

]
∈ R(nx+1)×(nx+1), ξ :=

[
0
1

]
∈ Rnx+1,

Ẽ :=

[
E 0
0 0

]
∈ R(nx+1)×(nx+1), F̃ :=

[
F
0

]
∈ R(nx+1)×nu .

As the time between two consecutive jumps is not upper
bounded, also no upper bound is defined for the last state
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in x̂, i. e. the clock variable. MPC algorithms usually rely
on a discrete-time representation of the system. Time is
discretized with a fixed sample period ∆ ∈ R+\{0} and
{tk≥0} denotes the sequence of synchronous time points,
such that tk = t0+k∆, where t0 stands for the initial time.
In the following, x(tk) and u(tk) will be abbreviated by xk
and uk respectively. Using the sample time, the continuous
dynamics of the system given by ˙̂x(t) = Âx̂(t) + ξ can
be discretized by integrating the first order differential
equation between two consecutive time points as

x̂k+1 = Φ̂x̂k + ξ̂, (6)

with Φ̂ :=

[
Φ 0
0 1

]
, Φ := eA∆ and ξ̂ :=

[
0
∆

]
. The discrete

dynamics of the hybrid system (5), i. e. the jumps, must
also be formulated as a linear difference equation, similar
to (6). As time is discretized for the application of MPC,
control actions, and therefore jumps, as τ is considered to
be a decision variable, can only occur at the discrete time
points, i. e. T ⊆ {tk≥0}.
Assume that a jump takes place at time tk, i.e.

x̂(t+k ) = Ẽx̂k + F̃ uk. (7)

Now, note that x̂(t+k ) 6= x̂(tk+1), cf. Fig. 1. Between
the jump at time tk and the next discrete time point
tk+1 = tk + ∆, an additional flow takes place. The jump
can therefore be written as a difference equation in the
form:

x̂k+1 = Φ̂(Ẽx̂k + F̃ uk) + ξ̂

= Êx̂k + F̂ uk + ξ̂,
(8)

with Ê := Φ̂Ẽ and F̂ := Φ̂F̃ .
The discretization according to equations (6) and (8) is
illustrated in Fig. 1. The system now consists of two

tk tk+1

x̂(tk)

x̂(t+k )

x̂(tk+1)

t

x̂

Fig. 1. Illustration of the discretization of the jump dy-
namics.

difference equations, one for the flow (6) and one for the
jumps (8). In order to decide which part of the dynamics is
valid at any point in time, the binary variable δk ∈ {0, 1}
is introduced, which is equal to one if a jump occurs at
time tk. This binary decision variable is considered as a
degree of freedom in the optimization in order to schedule
the moments of jump. Using the binary variable, the two
difference equations can be combined into a single one,

x̂k+1 = (1− δk)(Φ̂x̂k + ξ̂) + δk(Êx̂k + F̂ uk + ξ̂). (9)

Rearranging equation (9) yields

x̂k+1 = Φ̂x̂k + (Ê − Φ̂)δkx̂k + F̂ δkuk + ξ̂. (10)

However, the derived difference equation now contains two
bilinear terms, which are computationally unfavorable in

the optimization, as they would result in nonlinearities
in the constraints. In order to avoid these terms in the
optimization, they can be replaced by a set of linear
constraints, as proposed by Bemporad and Morari (1999),
resulting in an MLD system. In this approach, the bilinear
terms are replaced by a set of linear constraints. Therefore,
we define auxiliary decision variables zk := δkx̂k and wk :=
δkuk and model them through linear (componentwise)
inequalities,

zj,k ≤ δkxj , (11a)

zj,k ≥ δkxj , (11b)

zj,k ≤ xj,k − (1− δk)xj , (11c)

zj,k ≥ xj,k − (1− δk)xj (11d)

and

wj,k ≤ δkuj , (12a)

wj,k ≥ δkuj , (12b)

wj,k ≤ uj,k − (1− δk)uj , (12c)

wj,k ≥ uj,k − (1− δk)uj , (12d)

where xj,k, zj,k and wj,k denotes the jth element of its
corresponding vector at time tk and x, x, u and u are the
vectors of upper and lower bounds of the states and inputs
respectively, which can be derived from the polyhedral
sets X and U by solving a simple optimization problem a
priori. The first two constraints in (11) and (12) force the
auxiliary variables to zero if no jump occurs, i. e. δk = 0.
Otherwise, they are trivially satisfied. On the other hand,
the last two constraints force the auxiliary variables to
take the values of the states and inputs accordingly if a
jump occurs. If no jump takes place, they are trivially
satisfied. The final linear difference equation used in the
MPC optimization, including the auxiliary variables, reads
as

x̂k+1 = Φ̂x̂k + (Ê − Φ̂)zk + F̂wk + ξ̂. (13)

Equation (13) combined with constraints (11) and (12)
model the continuous and discrete dynamics of system (1).
The remaining constraint on the moments of jumps can be
easily formulated by the introduced clock variable ck (in
discrete time) and the binary variable δk,

ck ≥ δkC. (14)

The binary variable δk can only be set equal to one,
indicating the occurrence of a jump, if the value of the
clock variable ck exceeds the time threshold C between
consecutive jumps.
Fig. 1, additionally, illustrates a drawback of the dis-
cretization of the jump dynamics according to eq. (8). If a
jump occurs at time tk, the difference equation is used to
compute the value of the states at time tk+1, i. e. x̂(tk+1).
However, the value of the states after the jump, x(t+k ),
is not computed in the prediction. Therefore, undesirable
effects, e. g. constraint violations, can occur after a jump,
as long as the states reach a feasible point until the next
sampling point. In order to avoid this situation and further
consider the state values after a jump in the objective of
the optimization, a new variable x+k is introduced, corre-
sponding to the value of the states if a jump occurs at time
tk. This variable can be computed by

x+k = δk(Exk + Fuk) = Ezk + Fwk. (15)

Because of the definitions for the variables zk and wk, the
variable x+k takes the value zero if no jump occurs at time
tk. In order to avoid jumps into infeasible regions of the
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state space, the value of the states after a jump have to lie
within the feasible subset of states,

x+k ∈ X ∪ {0}. (16)

3.2 Cost function

The goal of the optimization is to steer the states x of the
system into a given target set X f. A natural objective for
this purpose is the minimization of the weighted squared
distance of the predicted states to the target set,

distQ(xk,X f) = min
χ∈X f

‖xk − χ‖2Q , (17)

where ‖·‖Q represents the weighted euclidean vector norm
and Q ∈ Rnx×nx denotes the positive definite weight
matrix. In order to include this distance metric in the
optimization of the MPC, further auxiliary variables x̂f

are defined and constrained to lie within the target set,
i. e.

xf ∈ X f. (18)

So, the weighted sum of the distance of the states to the
target set over the prediction horizon N can then take the
form

J1(xk,X f) =

N−1∑
l=0

∥∥xk+l − xf
k+l

∥∥2

Q
. (19)

In order to penalize the states leaving the target set, a
penalty term including the variables x+k is considered,

J2(x+k,X f) =

N−1∑
l=0

∥∥∥x+k+l − x
f,+
k+l

∥∥∥2

Q+
, (20)

where the auxiliary variables xf,+
k is constrained by

δkx
f ≤ xf,+

k ≤ δkx
f. (21)

All terms in (20) vanish for the time points at which no
jump occurs. It, therefore, only penalizes jumps that move
the states away from the target set. Additionally to the
penalization of the states, the control inputs uk are also
penalized in the objective function according to

J3(uk,U f) =

N−1∑
l=0

∥∥uk+l − uf
k+l

∥∥2

R
, (22)

where uf denotes auxiliary variables such that

uf ∈ U f := {u ∈ U | Ex+ Fu ∈ X f, ∀x ∈ X f}. (23)

The input target set can be approximated by computing
lower and upper bounds on the inputs through a mini-
mization and maximization of u ∈ U subject to x ∈ X f

and Ex + Fu ∈ X f, respectively. As the state target set
is a polyhedron and the jump dynamics are linear, the
computation requires the solution of linear programs.

As the flow is an autonomous system, it is important to
state the following sufficient clock condition C considered
in this paper:

Remark 2. We can assume C as suitable to allow a jump
to happen before the flow leaves the target set, i.e.,

∃u ∈ U f : eAt(Ex+Fu) ∈ X f, ∀x ∈ X f, ∀t ≤
⌈
C
∆

⌉
∆. (24)

However, if the states might leave the target set, without
violating the constraints, the algorithm would steer them
back at the next possible moment of jump. Note as well,
that the MPC sampling time ∆ has to be small enough to
capture all relevant dynamic effects during the flow.

3.3 Convergence to the target set

A common approach to guarantee the convergence of the
states to the target set upon convergence of the MPC
optimization problem is to apply terminal constraints, i. e.
xk+N−1 ∈ X f. This typically requires a long prediction
horizon N in order to give the system enough time to reach
the set, since no feasible solution might be found otherwise.
An increased prediction horizon however increases the size
of the underlying optimization problem. As the proposed
MPC approach involves the solution of an MIQP problem
in each iteration, whose complexity can grow exponentially
with its size in the worst case, a long prediction horizon
might lead to major computational drawbacks. As a trade-
off between computational performance and reachability of
the target set, a region close to the target set is defined
and the following condition is implemented:

|xj,k − xf
j,k| ≤ εj , ∀j =⇒ xk+N−1 ∈ X f, (25)

with εj ≥ 0. Condition (25) states that only if all states xj
lie within a distance εj of the target set at time tk (initial
time point of the current iteration), then the terminal
constraint, demanding convergence to the target set at the
end of the prediction horizon, is applied. The condition
(25) can be modeled through linear constraints as follows.

Modeling |xj,k − xfj,k|: The norm expression can be mod-
elled considering

|xj,k − xf
j,k| = αj + ωj ,

with αj , ωj ≥ 0, which is equivalent to the transformation

xj,k − xf
j,k = αj − ωj , (26a)

αj ≤Mµj , (26b)

ωj ≤M(1− µj), (26c)

for all j, where µj is a binary variable and M ≥ ‖x−xf‖∞
for x ∈ X , xf ∈ X f. The binary variable µj has to be equal
to one if the term xj,k − xf

j,k is positive, setting the value

of ωj to zero through constraint (26c). Otherwise, µj , and
consequently αj , are set to zero.
Conditional statement : The inequality αj + ωj ≤ εj
can be modeled through the following linear constraints
(Bemporad and Morari, 1999):

αj + ωj − εj ≥ η − (εj + η)γj , (27a)

αj + ωj − εj ≤M(1− γj), (27b)

for all j, with η > 0 and γj being a binary variable,
indicating if state xj is close to the target set. Finally,
the condition (25), i.e. activating the terminal constraints
if the above inequalities are satisfied for all elements j, can
be modeled jointly with (26) and (27) through

ζ ≤ γj , (28a)
nx∑
j=1

γj − ζ ≤ nx − 1, (28b)

xf
j − xj,k+N−1 ≤M(1− ζ), (28c)

xf
j − xj,k+N−1 ≥ −M(1− ζ). (28d)

for all j, where a binary variable ζ is defined. If any
state is not close to their respective target set, constraint
(28a) sets ζ to zero and if all states are close to the
target set, constraint (28b) sets it to one. If ζ is equal
to one, constraints (28c) and (28d) enforce the terminal
constraints, otherwise they are relaxed.
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Note that we are not considering the augmented states in
the constraints (26) and (28), since it is meaningless to
have convergence in the clock variable c(t).
Choosing small values of ε allows for shorter prediction
horizons in order to assure feasibility and enhanced compu-
tational performance. However, more MPC iterations may
have to elapse until the terminal constraints are enforced,
guaranteeing convergence to the target set, if the values are
chosen too small. The choice of ε therefore poses a trade-off
between computational performance and convergence to
the target set. Despite of not having a theoretical conver-
gence guarantee to the ε-zone, the objective function steers
the trajectory towards the target set and, consequently,
leads it to reach this region. If the states do not reach a
distance ε to X f, it can be argued that the system can not
reach the target set anyway.

Remark 3. If a stability assurance from the initial state is
required, instead of setting εj = M, ∀j, one can substitute
(28) to simply xk+N−1 ∈ X f with a larger prediction
horizon.

3.4 MPC Problem

Consider a given x0. Then, the MPC will solve, for each
iteration time k, the optimization problem below:

minimize
uk+l,δk+l

J(xk)

subject to x ∈ X ,
u ∈ U ,
(11)–(16), (18), (21), (23), (26)–(28),

∀l = 0, 1, . . . , N − 1, where the objective function is

J(xk) = J1(xk,X f) + J2(x+k,X f) + J3(uk,U f), (30)

from equations (19), (20) and (22). Note that, as we have
the condition (3) and the assumption (24),

xk ∈ X f =⇒ J∗(xk) = 0 ⇐⇒


xk+l ∈ X f,

x+k+l ∈ X f ∪ {0},
uk+l ∈ U f,

for all l = 0, 1, . . . , N − 1. The optimization problem is an
MIQP, for which a global minimum can be found through
the branch-&-cut algorithm. Thus, this global minimum
will be found by the optimizer, assuring the invariance of
X f.

4. EXAMPLE

The approach described above can be validated by the
following benchmark example, used in Sopasakis et al.
(2015) and Rivadeneira et al. (2015). A physiological
pharmacokinetic model describing the distribution of
lithium ions upon oral administration, was introduced
in Ehrlich et al. (1980). In this model, the state vector

x(t) := [xP (t) xR(t) xM (t)]
T

represents the concentra-
tions in plasma (P), in red blood cells (R) and in muscle
cells (M). This example was used in both Sopasakis et al.
(2015) and Rivadeneira et al. (2015) with fixed jump times
of 3 h. The impulsive system is described by the following
matrices

20 40 60 80

0.2

0.4

0.6

0.8

x
P

(t
)

20 40 60 80

0.2
0.4
0.6
0.8

1

x
R

(t
)

20 40 60 80

0.2

0.4

0.6

0.8

x
M

(t
)

20 40 60 80

2

4

6
c(
t)

20 40 60 80

2
4
6
·10−2

u
(t

)

constraints target bounds
convergence zone clock threshold

Fig. 2. Augmented states, input and jumps evolution.

A =

[−0.6137 0.1835 0.2406
1.2644 −0.8 0
0.2054 0 −0.19

]
, E =

[
1 0 0
0 1 0
0 0 1

]
,

F =

[
10.9

0
0

]
, C = 3.

In this particular case, the set X is a rectangular cuboid
with lower and upper bounds

x = [0 0 0]
T
, x = [2 1.2 1.2]

T
,

u = 0, u = 0.0595.

The computed target set is equal to the full reference set,
i. e. X f = R. Thereby, the target set X f and U f are defined
by the following boundaries

xf = [0.4 0.6 0.5]
T
, xf = [0.6 0.9 0.8]

T
,

uf = 0, uf = 0.01835.

The MPC parameters were chosen as follows:

Q = Q+ =

[
1 0 0
0 1 0
0 0 1

]
, R = 1, ε =

[
0.05
0.05
0.05

]
,

N = 35, η = 10−4.
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The system was discretized with a sampling time of ∆ =

0.1, and its initial value was x0 = [0.2 0 0]
T

.

Figure 2 shows the evolution of the augmented states, in-
put and jumps, i. e. x̂(t), u(t) and δ(t), respectively. At the
beginning until t = 15 h, the jumps occur more frequently
prior to all the states reaching the target set. For this
period of time, when the clock threshold is reached, a jump
occurs and the clock is reset to 0. Once the states reach the
target set, they remain inside of it respecting the target
bounds, while the optimized times of jumps occur only
every 4.7 h after a steady state is attained. The results
show that, compared to the ones with periodic jumps of 3
h, the optimized jump times lead to less frequent impulses.
Without concerning about practical/physical viability, but
rather exploring the flexibility of the MPC, one perturba-
tion was added in xR(35) and a second one in xM (55).
These states are interesting as the input is present only
for xP (t). In both cases, the system could steer the states
back to the target set, while appropriately scheduling the
moments of jump.
The code was implemented in Julia version 1.1.1 (Bezan-
son et al., 2017) and solved on a Windows 10 machine
with 3.40 GHz Intel Core i5 CPU, 32 GB RAM. On 800
iterations, the average computation time was 0.1079 s
(st.dev.: 0.3046 s, max.: 2.6576 s).

5. CONCLUSION AND OUTLOOK

An MPC problem in the form of an MIQP for a class
of MLD formulated discretized impulsive linear systems
with non-fixed moments of jumps has been discussed. A
suitable cost function has been chosen together with a
terminal constraint to deal with the stabilization through
a reference set, while a minimum dwell time condition is
additionally considered. The results show that the MPC
has been capable to confine the set into the target set,
respecting its boundaries, with less jumps as compared
to a numerical example taken from the literature. Also,
disturbance rejection of the compiled algorithm has been
numerically demonstrated.
The synthesis of an impulsive controlled invariant target
set for the adopted class of systems, possibly with the
inclusion of inputs in the flow or a maximal dwell time
condition, is a challenge for future works. A robustness for-
mulation can also be addressed. Lastly, the approach used
in this paper can be extended to general nonlinear and/or
unstable systems as well, where e. g. the real-time solution
of mixed-integer nonlinear programming (MINLP) prob-
lems and a potential finite escape times between consecu-
tive jumps have to be specifically addressed.
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