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∗ Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Llorens i
Artigas 4-6, 08028 Barcelona, Spain (e-mail: {andreu.cecilia;

maria.serra; ramon.costa}@upc.edu)

Abstract:
This work presents the design of an adaptive observer to estimate the cathode catalytic layer’s
water content of a polymer electrolyte membrane fuel cell and some of the parameters related to
its water dynamics. However, in general, existing adaptive observer algorithms require a certain
relative degree condition which is not satisfied in the concerned fuel cell system. This conflict is
solved by modifying the adaptive observer strategy with an auxiliary signal that does satisfy the
relative degree condition. This signal is estimated through a high-gain observer. The viability
of the presented observer is validated through numerical simulations.
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1. INTRODUCTION

A fuel cell is an electrochemical device which transforms
the chemical energy of its fuel (usually hydrogen) to elec-
trical energy without generating hazardous pollutants as
CO2, NOx or SOx. From all the different types of fuel
cells, the polymer electrolyte membrane fuel cell (PEMFC)
stands out for its high energy density and low operating
temperature. By virtue of these properties, PEMFCs have
proved to be a potential substitute for some classical
sources of energy as the internal combustion engines in
the transport sector. However, due to its low working
temperature, there is a generation and transport of liquid
water during the operation of the PEMFC. This water
is not just a sub-product that has to be evacuated, but
a variable that plays an important role for an efficient
fuel cell management (Ijaodola et al. (2019)). However,
one of the conflicts related to developing adequate water
control algorithms is the non-existence of sensors that
can measure online the fuel cell’s water content. For this
reason, some researchers have focused on developing ob-
server techniques that can estimate this quantity through
common measured variables as the stack voltage or the
stack temperature (Görgün et al. (2006)). These observer
algorithms present adequate performance, nonetheless, its
accuracy relies on a proper identification of a model,
which is not always a feasible task. Specifically, the es-
timation of parameters related to the cathode catalytic
layer’s (CCL) water dynamics is still an open problem
(Strahl et al. (2011)). As the water content cannot be
measured online, the estimation of these parameters re-
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quires an algorithm that can estimate simultaneously the
water content in the CCL and the parameters related to
its dynamics. In order to achieve such algorithm, this work
proposes an adaptive observer scheme based on the mea-
surements of the stack temperature. Some authors have
shown that the unknown parameters of the CCL’s water
dynamics can be linearly parametrized without inducing
a too harsh over-parametrization (Strahl et al. (2014)).
In the literature, there exists multiple adaptive observer
strategies to solve linear parametrized problems (Zhang
(2002)), (Besançon (2000)), (Cho and Rajamani (1997)).
However, these strategies require a certain relative degree
condition between the measured output and the unknown
parameters, which is not satisfied between the measured
stack temperature and the unknown water dynamics pa-
rameters. This restrictive relative degree condition can be
relaxed by applying the existing adaptive algorithms with
an auxiliary signal which fulfils the required relative degree
condition. As this auxiliary signal will generally be based
on unmeasured states, it has to be estimated through an
observer algorithm. This work proposes achieving such
estimation by the design of a high gain observer.

This paper is organized as follows, section 2 presents the
concerned PEMFC model, section 3 presents an adaptive
observer scheme and the relative degree conflict, in sec-
tion 4 an auxiliary signal with adequate relative degree
is presented, section 5 introduces the high-gain observer
concept, in section 6 it is presented the proposed adaptive
observer with high-gain estimation, in section 7 the ob-
server is validated numerically and some conclusions are
drawn in section 8.

2. PEM FUEL CELL MODEL

This work is based on an existing open-cathode PEMFC
model (Strahl et al. (2014)) that depicts the behaviour
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of the fuel cell through two dynamical states: the stack
temperature Tfc and the cathode catalyst layer’s (CCL)
liquid water saturation s. Specifically, the model can be
presented in the following state space form:

Ṫfc = K1(IV + I2) +K2vair(Tamb − Tfc) (1)

ṡ =
1

Ks
(K3I −K4sfp(Tfc))−

Kdiff

Ks
fd(s) (2)

In relation to the model variables, the open circuit voltage,
V , the stack temperature, Tfc, and the stack current, I,
are assumed to be measurable. Moreover, the cathode air
velocity, vair, and the ambient temperature, Tamb, are
assumed to be locally constant and known.

In addition, the model includes an algebraic relation
between the states and the PEMFC’s stack voltage:

V = K5fa(Tfc, s, I)Tfc

The factors K1, K2, K3, K4, K5, Ks and Kdiff are model
constants and fp(Tfc), fd(s) and fa(Tfc, s, I) are nonlinear
functions.

One of the main concerns working with this model is the
identification of its parameters. Some parameters, as the
fuel cell’s stack mass or the cross-sectional area of the
inlet manifold, which appear in the computation of K1,K2

and K3, can be directly measured. Other parameters, as
the fuel cell’s specific heat capacity, have already been
estimated experimentally (Strahl et al. (2011)). However,
the estimation of parameters in equation (2) is still an open
problem. Specifically, the liquid water sorption/desorption
time constant (Ks) and the liquid water diffusion constant
(Kdiff ) cannot be directly measured by any sensor and
to the author’s knowledge, the problem of developing
algorithms that can estimate online these parameters has
not been addressed before.

3. AN ADAPTIVE OBSERVER

The adaptive observer’s objective is to generate an esti-

mation of the states, x̂, and the unknown parameters, θ̂,

such that, ‖x̂ − x‖ → 0 and ‖θ̂ − θ‖ → 0 as t → ∞.
Specifically, let a nonlinear system be depicted by the
following expression:

ẋ = Ax + f(x,u) + Bφ(x,u)θ + g(y,u) (3)

y = Cx (4)

where x ∈ Rn, u ∈ Rq, y ∈ R. Moreover, θ ∈ Rm is a
vector of unknown constant parameters.

A system depicted by (3)-(4) is in the adaptive observer
form iff the following conditions are satisfied (Besançon
(2000)), (Cho and Rajamani (1997)):

• Condition 1: The concerned system is minimum-
phase and the pair (A,C) is observable.
• Condition 2: The following output-parameter rela-

tive degree condition is satisfied

Rank(CB) = Rank(B).

which roughly means that the parameters, θ, appear
in the first derivative of the output function, y.
• Condition 3: The norm of the unknown parameter

vector is bounded

‖θ‖ < γθ
where ‖ · ‖ denotes the 2-norm.

• Condition 4: The nonlinear functions f and φ are
Lipschitz with γf and γφ as the Lipschitz constant

‖φ(x,u)− φ(z,u)‖ ≤ γφ‖x− z‖, (5)

‖f(x,u)− f(z,u)‖ ≤ γf‖x− z‖. (6)

Provided that a system is in adaptive observer form,
then, there exists some vector L ∈ Rn×1, some symmetric
matrices Q > 0, P > 0 and a matrix M > 0 such that

(A− LC)TP + P(A− LC) = −Q (7)

BTP = MC (8)

(γf + γφγθ‖B‖) <
λmin(Q)

2λmax(P)
. (9)

where λmax and λmin are the maximum and minimum
eigenvalue, respectively.

If one can find these matrices, then the following system

˙̂x = Ax̂ + f(x̂,u) + Bφ(x̂,u)θ̂ + g(y,u)

+ L(y −Cx̂) (10)

˙̂
θ = γφ(x̂,u)TM(y −Cx̂); γ > 0 (11)

is an adaptive observer for (3)-(4) provided that the
vector function Bφ(x,u) is persistently exciting (Cho and
Rajamani (1997)).

Definition 1. A vector field φ is said to be persistently
exciting if there exist some constants α1, α2 and T0 such
that (Narendra and Annaswamy (1987)):

α1I ≥
∫ t+T0

t

φ(τ)Tφ(τ)dτ ≥ α2I ∀t > t0

2

Taking into account the presented adaptive observer form,
there is a natural parametrization of the concerned fuel cell
model:

x = [Tfc, s], u = [I, vair], y = Tfc (12)

f(x,u) =

[
0
0

]
;

φ(x,u) = [K3I −K4sfp(Tfc), −fd(s)]

g(y,u) =

[
K2vairTamb +K1(IV + I2)

0

]

θ =

[
θ1
θ2

]
=


1

Ks
Kdiff

Ks


A =

[
−K2vair 0

0 0

]
; B =

[
0
1

]
; C = [1 0] (13)

Notice that, if the measured output is the fuel cell temper-
ature, Tfc, then, Condition 2 is not satisfied, as CB = 0.
However, it may be possible to compute an auxiliary signal
z that does satisfy Condition 2. In such case, the adaptive
observer (3)-(4) may be implemented with z as the new
measured output.

4. AUXILIARY SIGNAL

Condition 2 implies that the concerned system is relative
degree 1 from the unknown parameters, θ to the output,
y.
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Definition 4.1. Let a θ-affine single-output system be de-
picted by:

ẋ = f(x,u) + φ(x,u)θ (14)

y = h(x) (15)

A system depicted by (14)-(15) has relative degree p from
the unknown parameters, θ, to the output, y, if

LφL
k
fh(x) = 0 ∀k < p− 1 (16)

LφL
p−1
f h(x) 6= 0 (17)

where Lfh(x) operation denotes the Lie derivative of
the function h(x) along the vector field f(x,u), and is

computed as Lfh(x) = ∂h(x)
∂x f(x,u). Lφ depicts the Lie

derivative along φ(x,u). 2

In the concerned fuel cell model, parametrized as (12)-
(13), the relative degree of the system is higher than one,
as it can be seen by the following computation.

Lφh(x) = CBφ(x,u)θ = 0

The idea is to design an auxiliary function z = h2(x)
such that the system is relative degree 1 from this new
function, z, to the parameters, i.e. Lφh2(x) 6= 0. Moreover,
it is of interest that this auxiliary function is linear, i.e.
h2(x) = Hx, otherwise, the presented adaptive strategy
cannot be implemented.

The problem of designing a relative degree 1 auxiliary
signal for system (3)-(4) can be converted to the problem
of finding a matrix H such that

rank(HB) = rank(B)

Moreover, the auxiliary signal should be designed such
that the pair (A,H) is observable.

A candidate for the presented fuel cell model could be

H =

[
1
1

]T
The main concern of this auxiliary signal is that the

state s is unknown, thus, the signal has to be estimated,
ẑ = Hx̂ = T̂fc + ŝ. This work proposes achieving such
estimation through a high-gain observer. The general
scheme of this adaptive observer structure is depicted in
Fig. 1

Fig. 1. Scheme of the adaptive observer with high gain
estimation

5. HIGH-GAIN OBSERVER

Let a nonlinear MISO system be depicted by the following
triangular structure:

ξ̇ = Aξ + Ψ(ξ,u) + ϕ(ξ, θ), (18)

y = Cξ (19)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

... 0
. . .

...
0 0 · · · 1
0 0 0 · · · 0

 ; C =


1
0
...
0


T

Ψ(ξ,u) =


ψ1(ξ1,u)

ψ2(ξ1, ξ2,u)
...

ψn(ξ,u)

 , ϕ(ξ, θ) =


0
...
0

φ2(ξ)θ

 (20)

where θ is a vector of unknown parameters and ψi, φ2 are
known Lipschitz functions with Li and Lφ as the Lipschitz
constants.

‖ψi(ξ1, . . . , ξi,u)− ψi(z1, . . . , zi,u))‖

≤ Li
i∑

k=1

‖ξk − zk‖ (21)

‖φ2(ξ)− φ2(z)‖ ≤ Lφ‖ξ − z‖. (22)

Moreover, the solutions of (18) are assumed to be bounded
and the function φ2(ξ) is assumed to have a maximal

‖φ2(ξ)‖ ≤ φ2,max. (23)

In such form, a high-gain observer is a copy of this triangu-
lar structure with a high-gain feedback term proportional

to the output estimation error, αi

εi (y− ξ̂1), (Khalil (2017)):

˙̂
ξ1 = ξ̂2 + ψ1(ξ̂1,u) +

α1

ε
(y − ξ̂1)

...
˙̂
ξi = ξ̂i+1 + ψi(ξ̂1, . . . , ξ̂i,u) +

αi
εi

(y − ξ̂1)

...
˙̂
ξn = ψn(ξ̂,u) + φ2(ξ̂)θ̄ +

αn
εn

(y − ξ̂1)

(24)

This observer presents three elements that require a proper
tuning: the parameters αi, ε and the factor θ̄.

First, the factors αi have to be chosen so the polynomial

sn + α1s
n−1 + · · ·+ αn−1s+ αn (25)

has all the roots in the left half plane. The roots will
determine the behaviour of the estimation’s error transient
response. In general, there is no direct method to find
the roots with the ”best” transient response performance,
nevertheless, they can be optimised by applying loop-
shaping criteria (Khalil (2017)).

Second, the vector θ̄ is a nominal value of the unknown
parameters. By means of this factor, the HGO will be

independent from the estimated parameters, θ̂. Moreover,
as the vector fields ψn and φ2 are Lipschitz and the
function φ2 presents a maximal, the following bound can
be defined:

‖ψn(ξ,u) + φ2(ξ)θ − ψn(ξ̂,u)− φ2(ξ̂)θ̄‖
≤ Ln2‖ξ − ξ̂‖+M (26)

where Ln2 = Ln + Lφγθ and M = φ2,max‖θ − θ̄‖.
Finally, the parameter ε is a positive constant in R<1,
that has to be chosen sufficiently small in order to ensure
the convergence of the state estimation error. If a system
presents the triangular structure (18) and the parameters
α are designed so the polynomial (25) is Hurwitz, there
exists a positive constant ε∗ < 1 such that for 0 <
ε < ε∗, the estimation error of the high gain observer
(24) converges to a bounded error proportional to ε with
a convergence rate proportional to ε−1 (Khalil (2017)).
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Specifically, the estimation error converges to a bounded
region of the form:

‖ξ − ξ̂‖ ≤ β (27)

This bound can be reduced by decreasing the value of ε.
However, the parameter ε cannot be designed arbitrarily
small, as excessively low values of ε will enhance the well-
known peaking phenomena (Esfandiari and Khalil (1992))
and increase the observer’s noise sensibility (Astolfi et al.
(2016)). Nevertheless, the noise sensibility could be re-
duced by applying a dynamic dead-zone modification (Ce-
cilia and Costa-Castelló (2020)).

5.1 Model Transformation

The concerned fuel cell model (1)-(2) does not present the
triangular structure (18). For this reason, it is necessary
to define a θ-independent diffeomorphism that relates both
structures. The second order fuel cell model presents the
following properties

• The model is θ affine.
• The model is uniformly observable, in the sense of

being observable for all the control actions (Bornard
et al. (1995)).
• The autonomous model, i.e. u = 0, is strong differ-

ential observable of order 2 (Gauthier and Kupka
(2001)).
• The model is relative degree 2 between the output,
y = Tfc, and the unknown parameters, θ (see defini-
tion 4.1).

under such properties, the following map

Φ(x) =

[
Tfc

K1(IV + I2)

]
(28)

is a θ-independent diffeomorphism between the fuel cell
model and the presented triangular structure. In conse-
quence, the high gain observer can be depicted in the
original coordinates, x. Specifically,

˙̂x = g(x̂,u) +

(
∂Φ

∂x
(x̂)

)−1 [
(α1/ε)(y − T̂fc)
(α2/ε

2)(y − T̂fc)

]
(29)

where the function g is the following one

g(x̂,u) =

 K1(IV + I2) +K2vair(Tamb − Tfc)
1

K̄s
(K3I −K4sfp(Tfc))−

K̄diff

K̄s
fd(s)


and the factors K̄s and K̄diff depict the nominal value of
the unknown parameters.

Notice that the bounded error (27) can only ensure the
bound ‖Φ(x) − Φ(x̂)‖ ≤ β. However, as the map Φ is a
diffeomorphism, therefore, has a differentiable inverse, and
there exists a constant δ such that

‖Φ(x)− Φ(x̂)‖ ≤ β =⇒ ‖x− x̂‖ ≤ δ. (30)

6. HIGH-GAIN BASED ADAPTIVE OBSERVER

Taking into account the details presented in past sections,
the proposed adaptive observer takes the following form:

˙̂x = Ax̂ + f(x̂,u) + Bφ(x̂,u)θ̂ + g(y,u)

+ L(ẑ −Hx̂) (31)

˙̂
θ = γφ(x̂,u)TM(ẑ −Hx̂) (32)

ẑ = Hx̂hgo (33)

˙̂xhgo = g(x̂hgo,u)

+

(
∂Φ

∂x
(x̂hgo)

)−1 [
(α1/ε)(y − ŷhgo)
(α2/ε

2)(y − ŷhgo)

]
(34)

Theorem 2. If the parameters L, γ and M are designed as
presented in section 3, the parameters αi and ε are tuned
as in section 5 and the vector field Bφ(x̂,u) is persistently
exciting (see definition 1) and has a maximal φmax, then,

the estimation errors ‖x− x̂‖ and ‖θ− θ̂‖ of the proposed
adaptive observer (31)-(34) will converge to a bounded
region.

Proof. The state estimation error dynamics between the
observer (31) and the system (3), ex = x− x̂, are depicted
by the following expression

ėx =(A− LH)ex + f(x,u)− f(x̂,u)

+ Bφ(x,u)θ −Bφ(x̂,u)θ̂ + LH(x− x̂hgo) (35)

Similarly, the parameter estimation error dynamics, eθ =

θ − θ̂ is described by

ėθ = −γφ(x̂,u)TMHex + γφ(x̂,u)TMH(x− x̂hgo)

Consider the Lyapunov function candidate V = eTxPex +
1

γ
eTθ eθ. Then

V̇ =eTx ((A− LH)TP + P(A− LH))ex

+ 2eTxP(f(x,u)− f(x̂,u))

+ 2(Bφ(x,u)θ −Bφ(x̂,u)θ̂)TPex

+ 2eTxPLH(x− x̂hgo) +
2

γ
eTθ ėθ

≤ eTx ((A− LH)TP + P(A− LH))ex

+ 2γf‖eTxP‖‖ex‖+ 2γφγθ‖B‖‖ex‖‖Pex‖
+ 2eθ(Bφ(x̂,u))TPex

+ 2eTxPLH(x− x̂hgo) +
2

γ
eTθ ėθ (36)

If the parameter adaptive dynamics, ėθ, depicted by (32),
is implemented in the stated Lyapunov function and the
unknown parameters are assumed to be constant, i.e.
θ̇ = 0, the following result is obtained

V̇ ≤ eTx ((A− LH)TP + P(A− LH))ex

+ 2(γf + γφγθ‖B‖)‖P‖‖ex‖2

+ 2eTxPLH(x− x̂hgo)

+ 2eTθ φ(x̂,u)TMH(x− x̂hgo) (37)

If the matrices M, L and P satisfy the conditions (7)-(9),
with C = H, then, there is a positive constant d such that
(Besançon (2000)):

V̇ ≤ −eTx dex + 2eTxPLH(x− x̂hgo)

+ 2eTθ φ(x̂, u)TMH(x− x̂hgo)

≤ −d‖ex‖2 + 2‖ex‖‖PLH‖δ
+ 2‖eθ‖‖φ(x̂,u)‖‖MH‖δ (38)

where δ is defined in (30).
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If the vector field φ(x̂,u) presents a maximal φmax, then,
the Lyapunov function is bounded as follows

V̇ ≤ −d‖ex‖2 + 2‖ex‖‖PLH‖δ + 4γθφmax‖MH‖δ. (39)

Moreover, if the following constants are defined

k1 = d (40)

k2 = 2‖PLH‖δ (41)

k3 = 4γθφmax‖MH‖δ, (42)

it can be shown that the Lyapunov function’s derivative
(39) is strictly negative outside the region defined by

k2 −
√
k22 + 4k1k3
2k1

≤ ‖ex‖ ≤
k2 +

√
k22 + 4k1k3
2k1

. (43)

Notice that no conclusion has been drawn about the pa-

rameter estimation error, ‖θ− θ̂‖. As the state estimation
error converges to a bounded region, only the following
bound can be deduced from the state error dynamics (35)

‖Bφ(x,u)θ −Bφ(x̂,u)θ̂‖ → δθ
where δθ is some positive constant.

However, since ‖x − x̂‖ converges to a bounded region
and the vector field φ is Lipschitz, it is easy to show that

‖Bφ(x,u)(θ− θ̂)‖ will also converge to a bounded region.
In consequence, if the vector φ is persistently exciting
(see definition 1), then, the parameter estimation error,

‖θ− θ̂‖, will also converge to a bounded region (Narendra
and Annaswamy (1987)). 2

7. NUMERICAL SIMULATIONS

The observer performance has been validated through
a set of simulations. In the simulations, the PEMFC
model is excited with changes in the stack current, Fig.
2. This current signal has been designed in order to
provide sufficient excitation for the parameter estimation
method (see definition 1), and induces a stack temperature
profile which is used by the adaptive observer (31)-(34) to
estimate the fuel cell model states and water dynamics
parameters.

Fig. 2. Current profile used in the simulations.

In the simulation, the proposed adaptive observer is com-
pared with different design values of ε, the other design
parameters are summarized in table 1. Moreover, the state
and parameter estimation values have been properly scaled
in order to avoid computational issues.

Furthermore, these simulations consider the case in which
no information is available about the unknown parameters,

Table 1. Observer parameters

Parameter Value

α1 0.1047
α2 0.0012
l1 −1.074E−6

l2 0.009
M 25
γ 1

in consequence, the nominal values K̄s and K̄diff are
assumed to be 0.

In Fig. 3, it is depicted the fuel cell model’s liquid water
saturation, s, and the high gain observer estimation (34),
ŝHGO, for the design values ε = 0.1 and ε = 0.01. It is
clear, that a small value of ε ensures the convergence of
the state estimation error to a lower bounded region δ,
‖x− x̂hgo‖ ≤ δ, which is a well-known result in high-gain
observers (see section 5).

Fig. 3. Model’s liquid water saturation (blue), HGO esti-
mation with ε = 0.1 (purple) and HGO estimation
with ε = 0.01 (yellow).

In Fig. 4, it is depicted the fuel cell model’s liquid water
saturation, s, and the adaptive observer estimation (31),
ŝ, for the design values ε = 0.1 and ε = 0.01. The smaller
value of ε presents a convergence of the state estimation
error, ‖x − x̂‖, to a smaller bounded region. This result
is coherent with the proof presented in section 6, as a
smaller value of δ (30) induces a lower bound in the state
estimation error (43).

Fig. 4. Model’s liquid water saturation (blue), adaptive ob-
server estimation with ε = 0.1 (purple) and adaptive
observer estimation with ε = 0.01 (yellow).

In Fig. 5 and Fig. 6, it is depicted the parameter estimation
of the proposed adaptive observer and the model’s value of
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said parameters. It can be seen that in the case of ε = 0.1,
the parameter estimation error converges to a bounded
relative error of the order of 5%, and the case ε = 0.01
converges to a relative error of the order of 0.3%.

Fig. 5. Model’s θ1 (blue), adaptive observer estimation
with ε = 0.1 (purple) and adaptive observer estima-
tion with ε = 0.01 (yellow).

Fig. 6. Model’s θ2 (blue), adaptive observer estimation
with ε = 0.1 (purple) and adaptive observer estima-
tion with ε = 0.01 (yellow).

8. CONCLUSION

In this work, the problem of estimating simultaneously
the liquid water saturation of a PEMFC and some of
the parameters related to its water dynamics has been
addressed through an adaptive observer strategy. In the
literature, the available adaptive observers require a cer-
tain relative degree condition, which is not satisfied in the
concerned PEMFC model. In order to solve this problem,
an auxiliary signal which does satisfy the condition has
been designed and its value has been estimated through a
high gain observer.

The proposed observer has been validated in a simula-
tion environment, in which it is shown that the state
and parameter estimation converges to a bounded error.
This estimation error can be reduced by increasing the
gain of the HGO with the drawback of enhancing the
peaking phenomena and the noise sensibility. This draw-
back could be potentially reduced by a feedback of the

estimated parameter, θ̂, to the high high-gain observer.
However, further study is required to improve the tran-
sient behaviour of such adaptive observer. Moreover, the
input signal required in order to satisfy the persistence of

excitation condition may be too harsh for some fuel cell
systems. For this reason, it could be interesting to study
a modification of the presented observer that relaxes the
excitation condition.
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