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Abstract: For linear time-invariant Metzlerian systems this paper proposes an original
approach required to reflect structural system constraints and positiveness in solving the problem
of reduced-order Metzlerian observer design. Three forms of design conditions are proposed, all
of them exploiting a set of common system parameter constraint representation in the form of
linear matrix inequalities, while a systematic H∞ norm performance strategy is focused on to
guarantee the observer asymptotic stability. To serve as a potential estimator of the plant state
vector, the impact of strictness and non strictness Metzler matrix structure in design is clarified
and reflected in adaptation of the design conditions. A numerical example is included to assess
the feasibility of the technique and its applicability.
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1. INTRODUCTION

Positive systems represent one class of dynamical systems
whose states and outputs are positive whenever system
inputs, acting under coincidence with system initial states,
are nonnegative and so they indicate processes whose
variable magnitudes do not have a real meaning unless
they are positive (Nikaido (1968), Smith (1995)). In this
context, theory of Metzler matrices play fundamental role
in description of positive systems and in their analysis
(Berman et al. (1989), Carnicer et al. (1998)) and lin-
ear continuous-time positive systems are therefore often
referred to as Metzlerian. The solved problem of Metzler
linear observers usually deals with positive system state
estimation, external inputs estimation and fault detection
and isolation in positive systems.

Observer synthesis for Metzlerian systems means the con-
struction of a model algorithm, driven in time by a non-
negative difference between real output process of the
system and an estimated output in a such way that the
estimation error is asymptotically stable. Since existence
of Metzlerian observer structures depends on acceptable
limitation in nonnegativity of the system and observer
parameters, constrained design approaches are proposed
to solve the design task. Although Metzlerian estimators
received considerable attention (Härdin and van Schup-
pen (2007)), used design principles have not been studied
as extensively as that of standard linear systems. The
algebraic formulation is introduced in Back and Astolfi
(2008), where using the coordinate transformation, design
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conditions are conditioned by Silvester equation to reflect
suitable transform matrix.

The need for design techniques relying on feasibility of the
set of linear matrix inequalities (LMI) is reflected by Shu
et al. (2008), where LMI design conditions are proposed,
but the considered observer is not of Luenberger type.
Preferring linear programming (LP) approach, a way to
set non-symmetrical bounds in LP constraints, to impose
positiveness in estimated states, is proposed by Ait Rami
and Tadeo (2006). An interconnection of the observer
synthesis methods for linear Metzlerian continuous-time
systems and positive discrete-time systems is investigated
by Liu et al. (2018), specific relations in positive unknown-
input observers design for linear positive systems can find
in (Shafai et al. (2015)), but the first, purely LMI-based
observer synthesis method for linear Metzlerian systems is
proposed by Krokavec and Filasová (2018).

Adapting the authors’ results in full-order Metzlerian ob-
server synthesis to a reduced-order Metzlerian observer
structure, as well as their potential extensions, are the
main issues of this paper. Preferring LMI formulation in
parametric constraints definition together with observer
asymptotic stability, presented theorems use standard ar-
guments based on Lyapunov function combined with H∞
approach to obtain design conditions requiring to solve
only LMIs. Because using diagonal positive matrix vari-
ables, the approach is referred to as the diagonal stabilisa-
tion principle, not more difficult than checking the stability
of a square Metzler matrix.

To the best author’s knowledge, the proposed LMI formu-
lations of the design conditions for reduced-order Metzle-
rian observer structure were not fully addressed yet in the
previous works.
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Following introduction in Sec. 1, the design fundamentals
related to linear Metzlerian observers for strictly linear
Metzlerian systems are briefly described in Sec. 2. Section
Sec. 3 gives the reduced-order observer equations, imparts
the reduced-order observer autonomous dynamics to state
the design conditions by use of LMIs and some practice
adaptations. The design task is illustrated by a numerical
solution in Sec. 4 and Sec. 5 draws some conclusions.

Throughout the paper, the following notations are used:
xT, XT denotes the transpose of the vector x, and the
matrix X, respectively, diag [ · ] marks a (block) diagonal
matrix, ρ(X) indicates eigenvalue spectrum of the square
matrix X, for a square symmetric matrix X ≺ 0 means
thatX is negative definite matrix, the symbol In indicates
the n-th order unit matrix, R (R+) qualifies the set of
(nonnegative) real numbers, Rn×r (Rn×r

+ ) refers to the set

of n× r (nonnegative) real matrices and Mn×n
−+ means the

set of (strictly) Metzler square matrices.

2. LINEAR METZLERIAN OBSERVERS

Continuous-time and time-invariant strictly linear Metzle-
rian SISO systems admit the state-space description

q̇(t) = Aq(t) +Bu(t) (1)

y(t) = Cq(t), v(t) = Cvq(t) = [ Im 0 ] q(t) (2)

where q(t) ∈ Rn
+, u(t) ∈ Rr, v(t) ∈ Rm

+ are system
state vector, control input and measurable output and
y(t) ∈ Rm

+ is the output of the system to be controlled.
In the above model the nonnegative matrix parameters
B ∈ Rn×r

+ , C ∈ Rn
+ imply from the Metzlerian system

structure definition, while a signum indefinite matrix A ∈
Mn×n

−+ is considered as strictly Metzler matrix with nega-
tive diagonal elements and positive non-diagonal elements
(Berman et al. (1989)). Analysis and synthesis of systems
with strictly Metzlerian structures is so confronted with n2

boundaries implying from the Metzler matrix structural
constraints

aii < 0 ∀ i = 1, . . . n, aij,i̸=j > 0 ∀ i, j = 1, . . . n (3)

This just means in consequence that Metzlerian systems
are diagonally stabilizable, while the derived structural
constraints can be implemented through linear matrix in-
equalities (Krokavec and Filasová (2018)). If non-diagonal
elements of a Metzler matrix A are non-negative, the
matrix is non-strictly Metzler matrix.

Considering the Luenberger continuous-time observer to
strictly Metzler system (1), (2) in the form

q̇e(t) = Aqe(t) +Bu(t) + JEC(q(t)− qe(t)) (4)

ye(t) = Cqe(t) (5)

where qe(t) ∈ Rn
+, ye(t) ∈ Rm

+

A =

a11 · · · a1n
...

an1 · · · ann

, C =

cT1
...
cTm

, cTk =[ck1 · · · ckn ] (6)

B = [b1 · · · br ], JE= [jE1 · · · jEm ], jEk=

j1Ek

...
jnEk

 (7)

then it has to be satisfied for elements of strictly positive
observer system matrix AE = A− JEC ∈ Mn×n

−+ and for

a strictly positive matrix JE ∈ Rn×m
+

all −
m∑

k=1

jlEkckl < 0 for all l ∈ ⟨1, . . . , n⟩ (8)

ahl −
m∑

k=1

jhEkckl > 0 for all h, l, h ̸= l,∈ ⟨1, . . . , n⟩ (9)

To design respecting these constraints the following theo-
rem is available.

Theorem 1. (Krokavec and Filasová (2018)) Using ob-
server of Luneberger type (4), (5) in state estimation of
Metzlerian system (1), (2), then observer system matrix
Ae is strictly Metzler and Hurwitz if for given strictly
Metzler matrix A ∈ Mn×n

−+ and non-negative matrix

C ∈ Rm×n
+ there exist positive definite diagonal matri-

ces V ,W k ∈ Rn×n
+ such that for j = 1, 2, . . . n, h =

1, 2, . . . n− 1, k = 1, 2, . . .m,

V ≻ 0, W k ≻ 0 (10)

V A+ATV −
m∑

k=1

(W kl l
TCdk +Cdkl l

TW k) ≺ 0 (11)

V A(j, j)(1↔n)/n −
m∑

k=1

W kCdk ≺ 0 (12)

V T hA(j+h, j)(1↔n)/nT
hT−

m∑
k=1

WkT
hCdk(T

T )h ≻ 0 (13)

where

Cdk = diag [cTk ] = diag [ ck1 ck2 . . . ckn ] (14)

A(j+h, j)(1↔n)/n=diag [a1+h,1· · ·an,n−ha1,n−h+1· · ·ahn]
(15)

l = [ 1 1 · · · 1 ] , T =

[
0T 1
In−1 0

]
(16)

T ∈ Rn×n
+ , l ∈ Rn

+.

When these conditions hold, the positive observer gain
matrix JE ∈ Rn×m

+ is given as

JEdk= V −1W k, jEk= JEdkl, JE= [ jE1 · · · jEm ] (17)

Note, (11) implies from standard Lyapunov matrix in-
equality and guaranties Hurwitz AE if a solution exists.

3. REDUCED ORDER METZLERIAN OBSERVERS

The problem of interest is to design a reduced-order
Metzlerian observer to the Metzlerian system (1), (2).

With the prescribed structure of v(t) then (1), (2) can be
partitioned in the following way

q̇(t) =

[
q̇1(t)
q̇2(t)

]
=

[
A11 A12

A21 A22

][
q1(t)
q2(t)

]
+

[
B1

B2

]
u(t) (18)

v(t) = [ Im 0 ] q(t) = [ Im 0 ]

[
q1(t)
q2(t)

]
(19)

where q1(t) ∈ Rm
+ , q2(t) ∈ Rn−m

+ , v(t) ∈ Rm
+ and

B1 ∈ Rm×r
+ , B2 ∈ R

(n−m)×r
+ , A11 ∈ Mm×m

−+ , A22 ∈
M

(n−m)×(n−m)
−+ , A12 ∈ R

m×(n−m)
+ , A21 ∈ R

(n−m)×m
+ .

Apart of the structure of v(t) = [ Im 0 ] q(t), the system
coordinate transform cannot depend on any factorization
of C which exploits a matrix inversion principle, because
it leads to disruption of Metzlerian description structure.
Only transformation using a permutation matrix is al-
lowed, if it is necessary to create the block structure (18),
(19) for measurable non-first m state variables.
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Definition 1. The reduced-order observer to (1), (2) takes
the strictly Metzler form

ṗ2e(t) = Aep2e(t) +A◦
vv(t) +Beu(t) (20)

q2e(t) = p2e(t) + Jv(t) (21)

where

A◦
v = Av +AeJ , Be = B2 − JB1 (22)

Ae = A22 − JA12, Av = A21 − JA11 (23)

if for positive observer gain matrix J ∈ Rr×n
+ the matrix

Ae ∈ M
(n−m)×(n−m)
−+ is strictly Metzler and the matrix

Av ∈ R
(n−m)×m
+ is a nonnegative matrix, while the vector

q2e(t) ∈ Rn−m
+ is an estimation of the unmeasurable part

of q(t) and p2e(t) ∈ Rn−m
+ is the state vector of the

reduced-order observer.

Proposition 1. Since (18) implies the following partitions

q̇1(t) = A11v(t) +A12q2(t) +B1u(t) (24)

q̇2(t) = A21v(t) +A22q2(t) +B2u(t) (25)

and an immediate consequence of (24) is

A12q2(t) = q̇1(t)−A11v(t)−B1u(t) (26)

the reduced-order Metzlerian observer can be defined as
follows
q̇2e(t) = A21v(t) +A22q2e(t) +B2u(t)+

+ J ((q̇1(t)−A11v(t)−B1u(t))−A12q2e(t))
(27)

where (2) implies
q̇1(t) = v̇(t) (28)

Then (27) can be rewritten as

q̇2e(t)− Jv̇(t) = A21v(t) +B2u(t)− JB1u(t)+

+A22(q2e(t)− Jv(t) + Jv(t))−
− JA11v(t)− JA12q2e(t)

(29)

and writing (21) in the form

p2e(t) = q2e(t)− Jv(t) (30)

then (29), (30) yields the simpler structure

ṗ2e(t) = (A22 − JA12)p2e(t)+

+ (A21 − JA11)v(t)+

+ (A22 − JA12)Jv(t))

+ (B2 − JB1)u(t)

(31)

and with specific choices given in (22), (23) then (31)
reduces to (20). If the problem is solvable, then there exists
an J solving it.

Moreover, formally, (19) can be interpreted as

v(t) = q1(t) = p1e(t) (32)

to construct full order vector pe(t). To obtain positive
qe(t) for positive q(t) also pe(t) has to be positive. This
defines the Metzler structure to the reduced observer for
a Metzler system.

Considering the autonomous regime of (20), the result of
Theorem 1 can be used directly to state the design con-
ditions respecting stability and structural constraints of

Ae ∈ M
(n−m)×(n−m)
−+ as stated below, where by definition,

the matrix A22 ∈ M
(n−m)×(n−m)
−+ plays the role of A and

A12 ∈ M
m×(n−m)
−+ the role of C and the dimensionality of

matrix variables is adjusted accordingly. For this reason,
proof of the theorem is omitted.

Theorem 2. The matrix Ae ∈ M
(n−m)×(n−m)
−+ of reduced-

order observer (20) is strictly Metzler and Hurwitz if there

exist positive diagonal matrices P ,Rk ∈ R
(n−m)×(n−m)
+

such that for j = 1, 2, . . . n−m, h = 1, 2, . . . n−m−1,
k = 1, 2, . . . n−m

P ≻ 0, Rk ≻ 0 (33)

PA22 +AT
22P −

n−m∑
k=1

(Rkl l
TCdk +Cdkl l

TRk) ≺ 0 (34)

PA22(j, j)(△) −
n−m∑
k=1

RkCdk ≺ 0 (35)

PT hA22(j+h, j)(△)T
hT−

m−m∑
k=1

RkT
hCdkT

hT ≻ 0 (36)

(△)=(1↔(n−m))/(n−m), T ∈R
(n−m)×(n−m)
+ , l∈R

(n−m)
+

A12 =

aT
121
...

aT
12m

 , A22 =

 aT
22,1
...

aT
22,n−m

 (37)

Cdk = diag [ a12k1 a12k2 . . . a12k,n−m ] (38)

A22(j+h, j)(△) = diag
[a22,1+h,1 · · ·a22,n−m,n−m−h a22,1,n−m−h+1· · ·a22,h,n−m ]

(39)
lT = [ 1 1 · · · 1 ] , T =

[
0T 1

In−m−1 0

]
(40)

When these conditions hold, the corresponding positive

observer gain matrix J ∈ R
(n−m)×m
+ is given as

Jdk= P−1Rk, jk= Jdkl, J= [ j1 · · · jm ] (41)

It is natural to restrict the H∞ norm of the observer
transfer function. This takes the following formulation.

Theorem 3. The reduced-order Metzler observer (20) to
strictly Metzler system (1), (2) is asymptotically stable
with the quadratic performance γ if there exists diagonal

positive definite matrices P ,Rk ∈ R
(n−m)×(n−m)
+ and a

positive scalar γ ∈ R+ such that for j = 1, 2, . . . n−m,
h = 1, 2, . . . n−m−1, k = 1, 2, . . . n−m

P ≻ 0, Rk ≻ 0, γ > 0 (42)
PA22+A

T
22P−

n−m∑
k=1

(Rkll
TCdk+Cdkll

TRk) ∗ ∗

BT
2 P −BT

1L
TRT −γIr ∗

A12 0 −γIm

≺0

(43)

PA22(j, j)(△) −
n−m∑
k=1

RkCdk ≺ 0 (44)

PT hA22(j+h, j)(△)T
hT−

m−m∑
k=1

RkT
hCdkT

hT ≻ 0 (45)

while

R = [R1 · · · Rm ] , L = diag [ l · · · l ] (46)

where R ∈ R
(n−m)×(n−m)2

+ is structured matrix variable,

L ∈ R
(n−m)2×(n−m)
+ and the remaining design parameter

are defined in (37)-(40).

When the above conditions hold, the positive observer gain

matrix J ∈ R
(n−m)×m
+ is given as in (41).

Hereafter, ∗ denotes the symmetric item in a symmetric
matrix.
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Proof. Defining the Lyapunov function candidate as fol-
lows

v(p2e(t))= pT
2e(t)Pp2e(t)+

+ γ−1

∫ t

0

(yT
p (τ)yp(τ)−γ2uT(τ)u(τ))dτ

(47)

where
yp(t) = A12p2e(t) (48)

γ ∈ IR+ is an upper bound of H∞ norm of the transfer

functions between ŷp(s) and û(s), then the time derivative
of (48) along any trajectory is

v̇(p2e(t)) = pT
2e(t)P ṗ2e(t) + ṗT

2e(t)Pp2e(t)+

+ γ−1pT
2e(t)A

T
12A12p2e(t)− γuT(t)u(t))

< 0

(49)

Considering v(t) = 0 and substituting then (20) into (49)
gives

v̇(p2e(t)) = pT
2e(t)(PAe+AT

e P+γ−1AT
12A12)p2e(t)+

+ pT
2e(t)PBeu(t) + uT(t)BT

e Pp2e(t)−
− γuT(t)u(t)

< 0
(50)

Defining the composed vector

p•T
2e (t) =

[
pT
2e(t) uT(t)

]
(51)

the inequality (50) can be rewritten as

v̇(p•T
2e (t)) = p•T

2e (t)P
•p•

2e(t) < 0 (52)

which corresponds to the condition writable in the linear
matrix inequality form

P • =

[
PAe +AT

eP + γ−1AT
12A12 PBe

BT
e P −γIr

]
≺ 0 (53)

Regrouping terms using the Schur complement property it
yields immediatelyPAe +AT

eP PBe AT
12

BT
e P −γIr 0

A12 0 −γIm

 ≺ 0 (54)

Since the matrix product PBe for given Be is defined by
the relation

PBe = PB2 − PJB1 (55)

it yields using (17) and (46)

PJ = P [ j1 · · · jm ]

= P [ Jd1 · · · Jdm ]L

= [R1 · · · Rm ]L

= RL

(56)

and so, consequently, collecting these results,

PBe = PB2 −RLB1 (57)

Because the relation PAe +AT
eP can be written as (34)

then with (57) the inequality (54) implies (43). Thus any
feasible solution of P and the set of Rk must satisfy (33)-
(36). This completes the proof.

To exploit the affine property of linear Metzlerian models,
a slack matrix variable can be incorporated into the set
of LMIs. The main result is that the observer matrices
are decoupled from the Lyapunov matrix P to reduce
conservatism of such solutions.

Theorem 4. The reduced-order Metzler observer (20) to
strictly Metzler system (1), (2) is asymptotically stable
with the quadratic performance γ if for given positive
δ ∈ R+ there exists diagonal positive definite matrices

P ,S,Rk ∈ R
(n−m)×(n−m)
+ and a positive scalar γ ∈ R+

such that for j = 1, 2, . . . n−m, h = 1, 2, . . . n−m−1,
k = 1, 2, . . . n−m

P ≻ 0, S ≻ 0, γ > 0 (58)
Ψ11 ∗ ∗ ∗
Ψ21 −2δS ∗ ∗

(SB2−RLB1)
T δ(SB2−RLB1)

T −γIr ∗
A12 0 0 −γIm

≺ 0

(59)

SA22(j, j)(△) −
n−m∑
k=1

RkCdk ≺ 0 (60)

ST hA22(j+h, j)(△)T
hT−

m−m∑
k=1

RkT
hCdkT

hT ≻ 0 (61)

where

Ψ11 = SA22+AT
22S−

n−m∑
k=1

(Rkl l
TCdk +Cdkl l

TRk) (62)

Ψ21 = P − S + δSA22 − δ

n−m∑
k=1

Rkl l
TCdk (63)

and the remaining design parameter are defined in (37)-
(40), (46).

When the above conditions hold, the estimator gain matrix
is given by

Jdk= S−1Rk, jk= Jdkl, J= [ j1 · · · jm ] (64)

Proof. Using the relation (20) where v(t) = 0, then with

a positive definite diagonal matrix S ∈ R
(n−m)×(n−m)
+ and

a positive scalar δ ∈ R+ it yields

sT2e(t)(Aep2e(t) +Beu(t)− ṗ2e(t)) = 0 (65)

where

sT2e(t) = pT
2e(t)S + δṗT

2e(t)S (66)

Thus, adding (65) as well as its transpose to (49) gives

v̇(p2e(t)) = pT
2e(t)P ṗ2e(t) + ṗT

2e(t)Pp2e(t)+

+ sT2e(t)(Aep2e(t)+Beu(t)− ṗ2e(t))

+ (Aep2e(t)+Beu(t)− ṗ2e(t))
Ts2e(t)

+ γ−1pT
2e(t)A

T
12A12p2e(t)− γuT(t)u(t)

< 0

(67)

Constructing a new composed representation

p◦T
2e (t) =

[
pT
2e(t) ṗT

2e(t) uT(t)
]

(68)

it can now be found rewritten form of (67)

v̇(p2e(t)) = p◦T
2e (t)P

◦p◦
2e(t) < 0 (69)

where

P ◦=

SAe+AT
eS+γ−1AT

12A12 P−S+δAT
eS SBe

P−S+δSAe −2δS δSBe

BT
e S δBT

e S −γIr

 (70)

and the corresponding negative definite matrix inequality
implying from (70) is
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
SAe+AT

e S P− S + δAT
eS SBe AT

12
P− S+ δSAe −2δS δSBe 0

BT
e S δBT

e S −γIr 0
A12 0 0 −γIm

 < 0 (71)

Since, in analogy with (34), it can consider the following
relation expression

Ψ11=SAe+AT
e S

=SA22+AT
22S−

n−m∑
k=1

(Rkl l
TCdk +Cdkl l

TRk)
(72)

then (62) is obtained from (72), where it has to be
redefined that

Rk = SJdk (73)

Since induced relation implying from (72) is

SAe = SA22 −
n−m∑
k=1

Rkl l
TCdk (74)

and plugging this in the denotation

Ψ21 = P − S + δSAe (75)

then (74), (75) imply (63). Finally, supplanting (57) with
(73) as

SBe = SB2 −RLB1 (76)

then (71) implies (59) and (35), (36) are superseded by
(60), (61), respectively. This concludes the proof.

Note, the above given theorems, which could be potentially
considered as equivalent, give generally different solutions,
while conditions formulated in Theorem 4 are often de-
noted as the enhanced design conditions.

Remark 1. The design objective is to construct a reduced
order observer for strictly Metzlerian linear systems such
that the associated synthesis conditions are formulated
in terms of LMIs. The exploited reduced order observer
structure softens requirement on the strictly Metzler struc-
ture of the complex systems matrix A, because synthesis
principle results, if a solution exists, in a strictly positive
matrix J of the observer gain already when theA22 matrix
is strictly Metzler. This potentially makes it possible to
permutate the system state variables to obtain only a
strictly Metzler matrix A22. If such a structure cannot be
found for a given Metzler system, it is necessary to create
a state description by permutation of the state variables in
which at least some rows of the matrix A22 do not contain
zero elements and look for a solution with nonnegative
matrix J using the methodology given in Krokavec and
Filasová (2019).

Remark 2. Conditions requiring the strictly Metzler struc-
ture are only applied in construction of the Hurwitz matrix
Ae. Therefore, it is not possible to expect that generally
non-square matrices Be, Av, A

◦
v will be positive or non-

negative, although for some cases such solutions may exist
and, consequently, only a stable Metzler structure of the
matrix Ae can be a solution criterion. The exception is
the case when n−m = 1 when zero elements cannot occur
in A22 (A22 is a negative scalar quantity) and the result
is a positive row vector representing observer gain J . In
the last case, this positivity applies to a strictly as well as
non-strictly Metzler structure of the matrix A.

4. ILLUSTRATIVE NUMERICAL EXAMPLE

The considered system is represented by the model (18),
(19) and the system model parameters

A =

−3.3800 2.2080 | 4.7150 2.6760
1.8810 −4.2900 | 2.0500 0.6750
2.0670 4.2730 |−6.6540 2.8930
1.1480 2.2730 | 1.3430 −2.1040



B =

 0.1500 0.1888
0.1679 0.1030
0.1436 0.1146
0.1036 0.1701

 , Cv =

[
1 0 0
0 1 0

]
and it is straightforward to separate matrices in blocks
such that

A11 =

[
−3.3800 2.2080
1.8810 −4.2900

]
, A12 =

[
4.7150 2.6760
2.0500 0.6750

]
A21 =

[
2.0670 4.2730
1.1480 2.2730

]
, A22 =

[
−6.6540 2.8930
1.3430 −2.1040

]
B1 =

[
0.1500 0.1888
0.1679 0.1030

]
, B2 =

[
0.1436 0.1146
0.1036 0.1701

]
One can verify that the matrix A is strictly Metzler but
not Hurwitz, while both sub-matricesA11,A22 are strictly
Metzler and Hurwitz.

To implement in the following, the prescribed design
parameter assumptions dictate

A22(j, j)(1↔2)/2 =

[
−6.6540 0

0 −2.1040

]
A22(j+1, j)(1↔2)/2 =

[
1.3430 0

0 2.8930

]
Cd1 =

[
4.7150 0

0 2.6760

]
, Cd2 =

[
2.0500 0

0 0.6750

]

T =

[
0 1
1 0

]
, l =

[
1
1

]
, L =

 1 0
1 0
0 1
0 1


With observer gain design according Theorem 2, SeDuMi
package produces the solution

P =

[
0.1582 0

0 0.5022

]
, R1 =

[
0.0371 0

0 0.0409

]
R2 =

[
0.0635 0

0 0.0596

]
, J =

[
0.2347 0.4016
0.0814 0.1186

]
Ae =

[
−8.5840 1.9938
0.7161 −2.4019

]
, Be =

[
0.0410 0.0289
0.0715 0.1425

]
Av =

[
2.1051 5.4774
1.2000 2.6021

]
, A◦

v =

[
0.2523 2.2668
1.1726 2.6048

]
It can see that with strictly Metzler A22 the reduced-order
observer gain J is strictly positive and the reduced-order
observer matrix Ae is strictly Metzler and Hurwitz, where
the eigenvalue spectrum of Ae is

ρ(Ae) = {−8.8069, −2.1790}

With the prescribed tuning parameter δ = 0.8 the solution
of (58)-(61), obtained using the same solver, is given as

P =

[
28.4625 0

0 24.7150

]
, S =

[
4.6436 0

0 14.3068

]
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R1 =

[
0.7040 0

0 0.6617

]
, R2 =

[
3.2671 0

0 2.7689

]
J =

[
0.1516 0.7036
0.0463 0.1935

]
Ae =

[
−8.8112 2.0124
0.7282 −2.3584

]
, Be =

[
0.0027 0.0135
0.0642 0.1414

]
Av =

[
1.2560 6.9565
0.9403 3.0011

]
, A◦

v =

[
0.0132 1.1467
0.9416 3.0570

]
Analyzing this result it is obvious that the reduced-order
observer gain matrix J is strictly positive and checking
the eigenvalue spectrum

ρ(Ae) = {−9.0308, −2.1388}
it can observe that the reduced-order observer matrix Ae

is strictly Metzler and Hurwitz. Note, setting the tuning
parameter such that δ ≥ 1 the resulting matrix A◦

v is real
signum indefinite.

Therewithal, it can see that both solutions match well to-
gether and the dynamic performance of the first solution is
acceptable although a little bit worse than that achieved by
the conditions related to Bounded Real Lemma structure
in Theorem 4.

As a comparison, nonnegative reduced-order observer gain
matrix can be obtained defining the structured matrix
variables

R1 =

[
r11 0
0 0

]
, R2 =

[
r21 0
0 0

]
where r11 > 0, r21 > 0, r11, r21 ∈ R+.

Therefore, a feasible and stable solution of the design
conditions (42)-(45) is

P =

[
2.3290 0

0 4.9633

]
, R1 =

[
0.6407 0

0 0

]
R2 =

[
0.8209 0

0 0

]
, J =

[
0.2751 0.3525

0 0

]
Ae =

[
−8.6735 1.9190
1.3430 −2.1040

]
, Be =

[
0.0432 0.0264
0.1036 0.1701

]
Av =

[
2.3338 5.1776
1.1480 2.2730

]
, A◦

v =

[
−0.0521 2.1206
1.5174 2.7463

]
where J is nonnegative matrix and stable eigenvalue
spectrum of Ae is

ρ(Ae) = {−9.0448, −1.7327}
Comparing

A22 =

[
−6.6540 2.8930
1.3430 −2.1040

]
, Ae =

[
−8.6735 1.9190
1.3430 −2.1040

]
it can see that the solution is independent on the second
row of A22. Then, evidently, it can summarize that apply-
ing the methodology presented in Krokavec and Filasová
(2019) this also yields for the same observer gain J so that
adequately

A22 =

[
−6.6540 2.8930

0 −2.1040

]
, Ae =

[
−8.6735 1.9190

0 −2.1040

]
if the last mentioned Metzler matrix A22 contains a zero
item in the second row. In this case

ρ(Ae) = {−8.6735, −2.1040}
and such resulting Ae is Metzler and Hurwitz, too.

5. CONCLUDING REMARKS

The problem of asymptotic stability of the reduced-order
observers for linear continuous-time Metzlerian systems is
investigated in the paper. The novelty of this work lies in
LMI definition of the observer parametric constraints and
in the partly exploited H∞ approach in observer stability
sustaining. The proposed design method guarantees that,
if exists, the observer gain matrix is positive (nonnegative)
and the reduced-order dynamics is autonomous while
maintaining the Metzler structure of the reduced-order
observer system matrix.

The achievable performance within the proposed design
conditions is guaranteed no worse than that derived from
standard Lyapunov formulation. Presented illustrative ex-
ample documents the design approaches provide an effi-
cient and systematic way for the synthesis of reduced-order
observers for linear continuous-time Metzlerian systems.
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