
A Reactive Synthesis Approach to Supervisory
Control of Terminating Processes

Anne-Kathrin Schmuck ∗ Thomas Moor ∗∗ Klaus Werner Schmidt ∗∗∗

∗Max Planck Institute for Software Systems, Kaiserslautern, Germany
(e-mail: akschmuck@mpi-sws.org)
∗∗ Lehrstuhl für Regelungstechnik,

Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
(e-mail: lrt@fau.de)

∗∗∗ Department of Electrical and Electronics Engineering,
Middle East Technical University, Ankara, Turkey

(e-mail: schmidt@metu.edu.tr)

Abstract: This paper establishes a connection between supervisory control theory (SCT) and reactive
synthesis (RS) in the situation where both the plant and the specification are modeled by ∗-languages,
i.e., formal languages over finite words. In particular, we show that the deterministic finite automaton G
typically used in SCT to construct a maximally permissive supervisor f for a plant language L w.r.t. a
specification language E, can be interpreted as a two-player game which allows to solve the considered
synthesis problem by a two-nested fixed-point algorithm in the µ-calculus over G. The resulting game
turns out to be a cooperative Büchi-type game which allows for a maximally permissive solution in the
particular context of SCT. This is surprising, as classical Büchi games do not have this property.

Keywords: Discrete-event systems, supervisory control, reactive synthesis, µ-calculus, game theory.

INTRODUCTION

Supervisory control theory (SCT) is a branch of control theory
that addresses the systematic design of controllers for discrete-
event systems — dynamical systems whose behavior can be
modeled by discrete sequences of so called events, which model
a particular value change in a relevant variable of the considered
system. Typically, the set of such events is considered finite
and all event sequences a system (typically called the plant)
can possibly exhibit, are collected in a formal language L func-
tioning as the plant model. On the other hand, a specification
language E contains only desired event sequences the plant
should exhibit. The controller synthesis problem then asks to
construct a so-called supervisor f which appropriately restricts
the evolution of the plant s.t. all resulting event sequences
respect the specification. Supervisory control theory was origi-
nally proposed by Ramadge and Wonham (1987) and now is an
established field of research, with standard text books by Cas-
sandras and Lafortune (2008) and Wonham and Cai (2019), as
well as recent reviews by Wonham et al. (2018) and Lafortune
(2019) summarizing the current state-of-the-art in this field.

Within this paper we continue recent efforts, e.g. by Ehlers et al.
(2017), Ramezani et al. (2019) and Schmuck et al. (2020), to
draw formal connections between SCT and reactive synthesis
(RS), a branch of computer science. RS aimes at synthesizing a
computer program which operates in accordance to a prescribed
specification while reacting to external environment inputs. For
a comprehensive introduction to RS and its connection to con-
trol see e.g. Finkbeiner (2016) and Maler (2002), respectively.

Our continuation of these comparative efforts within this paper
is motivated by recent successes stories of the use of compara-
tive insights for solving long-standing open problems both in

SCT and RS. On one hand, it has been shown by Yin and
Lafortune (2016a) that most permissive supervisors for plants
under partial observation can be constructed by utilizing a
game-based approach inspired by RS. This insight has also
been used to enforce opacity (Hélouët et al., 2018) or fault
diagnosability (Cassez and Tripakis, 2008; Yin and Lafortune,
2016b), or to optimize sensor activation for these synthesis
problems (Yin and Lafortune, 2019). Conversely, it had been
shown by Schmuck et al. (2020); Majumdar et al. (2019) that
transferring ideas from SCT to RS results in algorithms which
handle environment assumptions more satisfactory in the con-
text of cyber-physical-system design.

It is the aim of this paper to further facilitate the connection be-
tween SCT and RS to enhance interesting developments within
their intersection. In particular, we show that the connection
between SCT and RS established for non-terminating plant
and specification processes modelled by regular ω-languages
in Schmuck et al. (2020) carries over to terminating processes,
i.e., plants and specifications modelled by regular ∗-languages.

In contrast to Schmuck et al. (2020), however, we show this
connection on the algorithmic level. Given the most basic su-
pervisor synthesis problem defined by ∗-languages L and E
which are generated by deterministic finite automata GL and
GE , we follow the common approach (see e.g., Cassandras and
Lafortune (2008)) to construct a particular product automaton
G to synthesize the supervisor f . We then interpret the su-
pervisor synthesis problem over G as a two player game, in
which the supervisor (player 0) applies a control pattern (i.e.,
provides a set of enabled events) and in which the plant (player
1) subsequently chooses to append an enabled event to resolve
the remaining non-determinism. With this interpretation, we
show that there exists a fixed-point in the µ-calculus over G

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 2179

which computes the so-called winning states of G, that is, all
states of G which allow for a supervisor which restricts the plant
appropriately, such that all generated event sequences fulfill the
specification. The obtained set of winning states then allows us
to extract the desired maximally permissive supervisor f for the
control problem described by L and E if and only if the initial
state of G is contained in the winning state set.

Our work is closely related to supervisor synthesis methods
using a game-theoretic interpretation, e.g. by Yin and Lafortune
(2016a); Hélouët et al. (2018); Cassez and Tripakis (2008),
as discussed above. While these works utilize a game-based
approach to compute supervisors for special instances of SCT,
our contribution has a more tutorial flavor. For the most basic
setting of SCT, we derive the winning conditions and symbolic
synthesis procedures à la RS, which capture the exact intend
of SCT. In particular, we show that supervisor synthesis cor-
responds to solving a cooperative Büchi-type game over G.
Interestingly, this modified Büchi game allows for a maximally
permissive control strategy, which is not true for standard Büchi
games. This comparative result therefore shows, that an SCT
interpretation of control helps to relax synthesis problems s.t.
maximally permissive solutions are available.

Our established connection between the synthesis algorithms
for solving supervisor and reactive synthesis problems via
Büchi-type games extends the connection derived in Ehlers
et al. (2017). There, the authors show that the supervisor syn-
thesis problem over G (as described above) corresponds to
a particular specification in computational tree logic (CTL).
Based on this result, they show that one can transfer G into
a so called Kripke-structure which allows to apply standard
techniques from RS to solve the synthesis problem w.r.t. the
derived CTL specification. Then, they validate that the obtained
result indeed solves the posed SCT problem. Our approach,
however, does not transfer the synthesis problem into a different
modeling formalism to apply RS techniques. We rather show
that the supervisor synthesis problem over G coincides with a
cooperative Büchi-type game à la RS over G.

This paper is by far not the first to combine supervisory con-
troller synthesis with fixed-points in the µ-calculus. There has
been notable work on synthesizing supervisors w.r.t. tempo-
ral specifications, e.g. given in linear temporal logic (LTL)
by Sakakibara and Ushio (2018), computational tree logic
(CTL) by Jiang and Kumar (2006), epistemic temporal logic
by Aucher (2014) or modal logic by van Hulst et al. (2017).
All these works adapt the powerful machinery of reactive syn-
thesis to ensure that computed strategies respect the two fun-
damental requirements of SCT, namely controllability and non-
blockingness, on top of enforcing the imposed temporal spec-
ification. In contrast to this, our paper derives the fixed point
which exactly captures the “common” intent of SCT and works
directly over G.

1. PRELIMINARIES

For a general introduction to supervisory control see (Cassan-
dras and Lafortune, 2008). We give a summary of common
notation and elementary facts relevant for the present paper.

Notation. Let Σ be a finite alphabet, i.e., a finite set of symbols
σ ∈ Σ. The Kleene-closure Σ∗ is the set of finite strings s =
σ1σ2 · · ·σn, n ∈ �, σi ∈ Σ, and the empty string ϵ ∈ Σ∗, ϵ < Σ.
The length of a string s ∈ Σ∗ is denoted |s| ∈ �0, with |ϵ| = 0.

If, for two strings s, r ∈ Σ∗, there exists t ∈ Σ∗ such that s = rt,
we say r is a prefix of s, and write r ≤ s.

Formal Languages. A language over Σ is a subset L ⊆ Σ∗.
The prefix of a language L ⊆ Σ∗ is defined by pfx (L) :={r ∈
Σ
∗ | ∃ s ∈ L : r ≤ s}. The prefix operator is also referred to as

the prefix-closure, and, a language L is closed if L = pfx (L). A
language K is relatively closed w.r.t. L if K = pfx (K) ∩ L. The
prefix operator distributes over arbitrary unions of languages.
However, for the intersection of two languages L and M, we
have pfx ((L ∩ M)) ⊆ (pfx (M))∩ (pfx (M)). If equality holds, L
and M are said to be non-conflicting.

Automata. An automaton is a tuple G = (Q, Σ, δ, qinit, Qm),
with state set Q, initial state qinit ∈ Q, marked states Qm ⊆ Q,
and the partial transition function δ : Q × Σ → Q. We
write δ(q, s)! to indicate that δ is defined for the specified
arguments q ∈ Q and s ∈ Σ∗. The automaton is full if
δ(q, s)! for all q ∈ Q and s ∈ Σ∗, i.e., if δ is a proper
function. With the automaton G = (Q, Σ, δ, qinit, Qm), we
denote the generated language L(G) :={ s ∈ Σ∗ | δ(qinit, s)! } and
the marked language Lm(G,Qm) :={ s ∈ Σ∗ | δ(qinit, s) ∈ Qm) }.
We omit the parameter Qm in the definition of Lm() if it is clear
from the context.

Fixpoint Calculus. Let Q denote a finite set and consider a
monotone operator f , i.e., f (P′) ⊆ f (P′′) ⊆ Q for all P′ ⊆
P′′ ⊆ Q. Then the least fixpoint of f is given by ∪{ f i(∅) | i ∈ N }
and can be obtained by the iteration P1 := ∅, Pi+1 := Pi ∪ f (Pi).
In particular, the fixpoint is attained for some finite i ∈ N.
Likewise, the iteration P1 := Q, Pi+1 := Pi ∩ f (Pi) can be used
to obtain the greatest fixpoint. As a µ-calculus formula, the least
fixpoint of f is denoted µP. f (P), whereas the greatest fixpoint
is denoted νP. f (P). Now consider an operator g that depends
on multiple set-valued parameters, e.g., g(P′, P′′) ⊆ Q for
P′, P′′ ⊆ Q. Assuming that g is monotone in its first argument,
the formulas µP′.g(P′, P′′) and νP′.g(P′, P′′) are well defined.
Provided that g is also monotone in its second argument, the
respective fixpoints are monotone in P′′. In this case, nested
µ-calculus formulae are well defined, e.g. νP′′.µP′.g(P′, P′′)
evaluates to the greatest fixpoint of µP′.g(P′, P′′), interpreted
as an expression in terms of P′′.

2. THE SUPERVISOR SYNTHESIS PROBLEM

Before defining the common supervisor synthesis problem for-
mally in Sec. 2.2, we give an intuitive introduction to supervi-
sory control via an illustrative example.

2.1 Illustrative Example

Consider a regular plant L ⊆ Σ∗, realized by the automaton
GL = (P,Σ, δL, p0, Pm) with Lm(GL) = L, depicted in Fig. 1
(top left). It models a process which can take a controllable
(i.e., preventable) action c (indicated by a tick on the respective
arrow in Fig. 1) or an uncontrollable (i.e., un-preventable)
action u (indicated by normal transition arrows in Fig. 1) in
every state, giving the alphabet Σ = {u, c}. States p3, p4 and p8
are marked in GL (i.e., Pm = {p3, p4, p8}) indicated by a double
boundary line in Fig. 1. Given that L is a ∗-language containing
possibly arbitrary long but finite event sequences, marked states
indicate that the process modeled by GL can (and eventually
will) safely terminate its operation when in any of these marked
states. In turn, this means that it can (and eventually will) not

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2180

GL:

p0

p1

p2

p3 p4

p5

p6

p7

p8

p9

G′E :

s0

s1

s2

s3 s4

s⊥s6

s7

s9

G = GL ×G′E :

q0

q1

q2

q3 q4

q5

q6

q7

q8

q9

Gcl:

q0

q1

q2

q3

q6

q7

q9

Fig. 1. Top: Automata representations GL of the plant language
L (top left) and GE of the specification language E (top
right, black) with its full extension G′E (top right, black
and blue). Bottom: Product automaton G = GL × G′E
used for synthesizing the supervisor f (bottom left) and
its restriction Gcl to its winning states used to extract f .
Marked states have a double boundary and event labels
from Σ = {c, u} are omitted. Uncontrollable transitions on
u are indicated by a tick on the arc; controllable transitions
c are indicated by a normal arc.

reside in any other state infinitely long. Given this interpretation
of a plant model, the automaton GL should never be blocking.
If it is, it means that the process can terminate its operation in
an un-marked state, which should be made explicit by marking
this terminal state. However, our developments in this paper do
formally not require GL to be non-blocking.

Similarly, consider the regular specification E, realized by the
automaton GE = (S ,Σ, δL, s0, S m) with Lm(GE) = E, depicted
in Fig. 1 (top right, black/purple). Intuitively, this specification
asks us to ensure that the plant at hand only terminates its
operation in s3 and s4, and to only continue operating (by
returning to the initial state s0), when in s3. Whenever the plant
reaches s4, it should immediately terminate its operation.

To synthesize a supervisor enforcing this specification on the
given plant, one typically constructs a particular product au-
tomaton by first completing GE to a full automataton G′E
with generated language L(G′E) = Σ∗ and accepted language
Lm(G′E) = E. This is done by adding a sink state (called s⊥ in
Fig. 1 (top right, blue)) and re-directing all non-enabled transi-
tions in GE to this state (see Fig. 1 (top right, blue, dashed)).
After this, the usual product automaton G of GL and G′E is
constructed, depicted in Fig. 1 (bottom left). For simplicity, we
have renamed state pairs (pi, si) and (pi, s⊥) in the constructed
product automaton to qi.

Given the underlying plant dynamics modeled by GL, we know
that the plant will eventually transition to its markings when
in an unmarked state. Given this intuition, the controller only
has to ensure that the plant always remains in the co-reachable
part of G while respecting uncontrollable transitions. That
is, the supervisor can never prevent the plant from taking
an un-controllable (i.e., un-preventable) transition in G. By

inspection, we see that states q0 − q4 and q7 allow a restriction
of enabled events s.t. the plant eventually transitions to (or
already is in) q3 and q4. It is however not true for q6, as the
supervisor cannot disable uncontrollable events and therefore
cannot prevent the plant to transition to q8 from q6, which
renders any marked state in G unreachable. Further, it should be
noted that, once in q4 the plant can transition to q5 which also
renders all marked states of G unreachable. As this transition is
uncontrollable, q4 does not allow to properly control the plant,
which is only true for states q0 − q3 and q7, which we term
“winning states” of G. When restricting G to its winning state
set, we obtain the automaton Gcl depicted in Fig. 1 (bottom
right, black/purple).

When applying standard supervisory controller synthesis algo-
rithms (see e.g. (Cassandras and Lafortune, 2008, p.168)) to
this example, we would additionally remove q7 from Gcl, as
this state is not reachable in the constructed sub-automaton.
Intuitively, Gcl realizes the closed-loop behavior of the plant,
i.e., Lm(Gcl) contains all event sequences the plant produces
when supervised in the sense discussed before.

Now let us assume that p2 is also marked in GL, while s2
stays unmarked in GE . Then, by the usual automata product,
q2 will also stay unmarked both in G and in Gcl. This, however,
implies that the plant under supervision cannot (and will never)
reside in q2 forever and therefore no finite string ending in q2
is part of Lm(Gcl). This, however, is counter intuitive given
that GL models the uncontrolled plant behavior correctly, i.e.,
stating that the plant can (and eventually might) terminate its
operation in p2 (and therefore q2). As the supervisor has no
means to enforce enabled transitions, the constructed closed
loop behavior will turn out incorrect.

This problem is typically circumvented by requiring that the
specification language E is closed w.r.t. L, that is, E = pfx (E)∩
L. Loosely speaking, this requires that GE’s marking respects
GL’s marking, i.e., for any pair (pi, si) in the product automaton
either both states are marked or none (which is not fulfilled if
p2 is marked). In particular, relative closedness of E implies
E ⊆ L and, thus, Lm(G) = E. I.e., the specification can
remove a marking from GL by removing all traces ending in
this state from the marked language (which is the case for
(p8, s⊥)). Consistent with the original literature, we therefore
restrict attention to relatively closed specification languages.

To conclude the example, let us assume that p9, s9 and therefore
q9 are the initial states of the respective automata in Fig. 1
(indicated by the dotted gray arrow pointing at them). Then one
can verify that the synthesis problem at hand has no solution
as q6 does not allow to control the system as desired. There-
fore, existing synthesis algorithms will immediately terminate
with an empty closed-loop system Gcl after investigating q6.
However, it is easy to see that a change in the initial state
does not change the general reasoning about states q0 − q3 and
q7 allowing to suitably control the plant. If, for example, the
transition from q6 to q8 is a rare event that only happens if the
machine at hand needs to be maintained, we can assume that for
all interesting operational modes the plant will transfer from
q6 to q7. Then knowing that q7 allows to control the plant as
desired allows us to provide a controller in this case.

The remainder of this paper formalizes the computation of the
set of states of G that we have termed “winning state set”.
We show that there exists a two-nested fixed-point algorithm
inspired by reactive synthesis which achieves this goal.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2181

2.2 Problem Statement

The supervisory synthesis problem, first stated by Ramadge
and Wonham (1987), is defined by a plant language L ⊆ Σ∗
modeling the process to be controlled, and a specification
language E ⊆ Σ∗ s.t. E is relatively closed w.r.t. L, i.e.,
E = pfx (E) ∩ L. The common alphabet Σ of L and E is
further partitioned in controllable and uncontrollable events,
Σ = Σc∪̇Σuc. Given this partition, one defines the set of control
patterns Γ ⊆ Σ, s.t.

Γ :={ γ ⊆ Σ |Σuc ⊆ γ }. (1)
Given a plant L ⊆ Σ∗, a supervisor is defined as a map f :
pfx (L) → Γ that maps event sequences s ∈ pfx (L) to a control
pattern f (s) ∈ Γ, where the latter specifies the set of enabled
successor events after the occurrence of s. A word s ∈ pfx (L)
is called consistent with f if for all σ ∈ Σ and tσ ∈ pfx (s) holds
that σ ∈ f (t). We collect all words of pfx (L) consistent with f
in the set L(pfx (L), f) which is non-empty and closed.

With this, the supervisory controller synthesis problem can be
stated as follows.
Problem 1. Given a plant L and a relatively closed specification
∅ , E ⊆ L, synthesize a supervisor f : pfx (L)→ Γ s.t.

(i) the closed-loop respects the specification, i.e.,
L(pfx (L), f) ∩ L ⊆ E (2a)

(ii) and the plant and the supervisor are non-conflicting, i.e.,
L(pfx (L), f) = pfx (L(pfx (L), f) ∩ L), (2b)

or determine, that no such supervisor exists.

As ⊇ in (2b) always holds, the constraint is imposed by ⊆ and
ensures that the plant is always able to generate events allowed
by f s.t. it generates a word in its marked language L. Then, by
requirement (2a), all such generated words must be contained
in the upper bound specification E.

Except for the avoidance of an explicit reference to an automa-
ton representation of L, Problem 1 is equivalent to the synthesis
problem studied by Ramadge and Wonham (1987). From the
given reference we recall that if a solution exists there also ex-
ists a maximally permissive one; i.e. a supervisor f : pfx (L)→
Γ that solves Problem 1, such that L(pfx (L), f ′) ⊆ L(pfx (L), f)
for all other solutions f ′ : pfx (L) → Γ. Although maximal
permissiveness is not the main concern in our discussion, we
will establish this property for supervisors obtained by our
alternative synthesis procedure.

2.3 Automata Realizations for Synthesis

In the basic setting of supervisory control theory discussed
by Ramadge and Wonham (1987), both L and E are as-
sumed to be realizable by deterministic finite automata GL =
(P,Σ, δL, p0, Pm) and GE = (S ,Σ, δE , s0, S m), respectively. Then
one can apply the method discussed in Sec. 2.1 to first extend
GE to the full automaton G′E and then construct the product
automaton G = GL ×G′E = (Q,Σ, δ, qinit,Qm). As E is assumed
to be non-empty and relatively closed w.r.t. L, one obtains
∅ , E ⊆ L and, hence, Lm(G) = Lm(GL ×G′E) = L∩E = E and
L(G) = L(GL ×G′E) = pfx (L) ∩ Σ∗ = pfx (L).

The automaton G is typically used to compute the maximally
permissive supervisor f that solves Problem 1 via the algo-
rithm, e.g., presented in Cassandras and Lafortune (2008). It

is known that such an f exists if and only if the standard
construction returns a non-empty sub-automaton of G.

For our subsequent development of an algorithm to compute
the set of winning states to derive f instead, it will turn out
convenient to memorize two sets of marked states in G, namely
FL := Pm × S ⊆ Q and FE := P × S m ⊆ Q. We denote
by Lm(G, FL) and Lm(G, FE) the language marked by G when
interpreting FL and FE as the set of marked states, respectively.
It is easy to verify that Lm(G, FL) = L and Lm(G, FE) = E.
As E is assumed to be relatively closed w.r.t. L we further have
FE ⊆ FL and FE = Qm.

3. A GAME-THEORETIC PERSPECTIVE

3.1 Supervisory Control as a Two-Player Game

In view of reactive synthesis, we interpret the interaction of a
supervisor and the plant as a two-player game played over G.
Here, player 0 (the supervisor) picks a control pattern γ ∈ Γ and
player 1 (the plant) resolves the remaining non-determinism by
choosing a transition allowed by γ. In this context, we define a
player 0 strategy (or control strategy) as a function h : qinitQ∗ →
Γ; it is memoryless if h(νq) = h(q) for all ν ∈ Q∗ and all
q ∈ Q. A strategy for player 1 (or plant strategy) is defined
as a function g : qinitQ∗Γ → Σ s.t. g(νγ) ∈ γ for all ν ∈ qinitQ∗.
The sequence π = q0σ0q1σ1 . . . qk is called a play over G if
q0 = qinit and for all i ∈ [1; k] it holds that qi = δ(qi−1, σi−1); π
is consistent with a control strategy h if it additionally holds that
σi ∈ h(q0 . . . qi−1). We denote by P(G) and P(G, h) the set of all
plays over G and the set of plays consistent with h, respectively.
Further, we denote by L(G, h) the set of all strings s = σ0 . . . σk
s.t. there exists π = q0σ0q1σ1 . . . qk+1 ∈ P(G, h).

Since G is deterministic, a sequence s ∈ L(G) = pfx (L)
corresponds to exactly one run ν ∈ qinitQ∗ of G. Consequently,
given any control strategy h : qinitQ∗ → Γ we can always
define the supervisor f := h ◦ s with the one-on-one map
s : pfx (L)→ qinitQ∗ s.t. L(G, h) = L(pfx (L), f).

On the other hand, given a supervisor f : pfx (L) → Γ
which solves Problem 1, it follows from Ramadge and Wonham
(1987) that there also exists a maximally permissive one f ′ :
pfx (L)→ Γ; see Sec. 2.2 above. The latter supervisor f ′ has the
property that for any two strings s, s′ ∈ pfx (L) leading to the
same state in G, i.e. δ(qinit, s) = δ(qinit, s′), the control decisions
coincide, i.e., we have that f ′(s) = f ′(s′). Consequently, we
can always define the strategy h : f ′ ◦ s−1 s.t. L(G, h) =
L(pfx (L), f ′).

With this correspondence of a supervisor f : pfx (L)→ Γ and a
control strategy h : qinitQ∗ → Γ, Problem 1 can be equivalently
stated as the following control strategy synthesis problem over
a two-player game.
Problem 2. Given an automaton G and two sets of marked
states FL, FE ⊆ Q s.t. FE ⊆ FL, synthesize a control strategy
h : qinitQ∗ → Γ s.t.

L(G, h) ∩ Lm(G, FL) ⊆ Lm(G, FE), and (3a)
L(G, h) = pfx (L(G, h) ∩ Lm(G, FL)), (3b)

or determine, that no such strategy exists.

Intuitively, such a control strategy enforces that if a marked
state is attained by the plant, it must be a state marked by the
specification, Eq. (3a), and it is always possible for the plant to

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2182

organize its moves s.t. it will eventually reach one of its marked
states, Eq. (3b), and thereby generating a word in E.

3.2 Appropriate Winning Conditions for Supervision

Given the two player game outlined above, reactive synthesis is
typically concerned with synthesizing h s.t. all traces in L(G, h)
fulfill a given winning condition φ. In the context of regular
*-languages, winning conditions can be interpreted as another
regular language Mφ ⊆ Σ∗. This would amount to synthesizing
h s.t. L(G, h) ⊆ Mφ. However, if we look back at Problem 2,
the requirements stated in (3) are of a slightly different form.
We therefore cannot use an existing game-solving algorithm
“of-the-shelf”. Below we outline, how we can still derive a
fixed-point algorithm to compute a control strategy solving
Problem 2.

A Reachability Game. An obvious first attempt to solve the
proposed supervisor synthesis problem via the outlined two-
player game is to define Mφ := Lm(G, FE) = E. This requires
that states marked by FE must eventually be reached by all
traces over G consistent with h. This defines a reachability game
over G. It is well known, see e.g., Baier and Katoen (2008),
that all states from which the controller can enforce that FE is
eventually reached, can be computed by the fixed-point

µX . Pre0(X) ∪ FE , (4)
where X ⊆ Q. Here, Pre0 defines the controllable predecessor
operator which returns all states from which player 0 can
provide a control pattern γ which ensures that, no matter which
σ ∈ γ the plant chooses, it will always end up in the states
X ⊆ Q. As Σuc ⊆ γ by definition, the operator Pre0 is defined
for the particular two-player game under consideration by

Pre0(X) := {q ∈ Q|δ(q,Σ) ∩ X , ∅ ∧ δ(q,Σuc) ⊆ X} . (5)
As an example for its application, consider the automaton G
depicted in Fig. 1 (bottom left) and consider X = Qm = FE .
Now one can verify that q1 < Pre0(Qm) as there exists an
uncontrollable transition from q1 to q2 which does not lead
to Qm. A similar reasoning shows that also q7 < Pre0(Qm).
Intuitively, the controller cannot enforce the plant to make
progress towards its marked states when in q1 or q7. Because of
this, the reachability fixed-point, Eq. (4), terminates with only
q3 and q4 as winning states. This, however, is not the set we are
looking for (as indicated by Gcl in Fig. 1 (bottom right)).

A Cooperative Reachability Game. In the context of the
proposed supervisor synthesis problem, Problem 2, we know
that the plant, if allowed to do so, will eventually transition
to its markings by itself, without the supervisor enforcing this.
Hence, we know that there exists no trace of GL consistent with
h which will loop between q1 and q2 or in q7 forever. This is
the reason why (3a) in Problem 2 requires the weaker inclusion
L(G, h)∩L ⊆ Lm(G, FE) instead of L(G, h) ⊆ Lm(G, FE). How-
ever, to exclude trivial solutions to this requirement, i.e., the
supervisor always blocking the plant before reaching any mark-
ing, resulting in L(G, h) = {ϵ} and thereby trivially satisfying
(3a), Problem 2 additionally imposes the non-conflictingness
requirment, Eq. (3b). That is, in any instance of the play the
plant must be able to play such that it will eventually attain
some marked state.

It was shown by Majumdar et al. (2019), that for strategy syn-
thesis w.r.t. a particular fragment of linear temporal logic (LTL)
specifications, namely GR(1) specifications (Bloem et al.,

2012), the non-conflictingness requirement, Eq. (3b), can be in-
corporated by substituting the player-0 controllable predecessor
Pre0 in the original fixed-point algorithm by a cooperative one.
Transferring this idea to reachability games with the particular
SCT inspired interpretation of player 0, we obtain the coopera-
tive reachability fixed-point

νY . µX . CondPre(X,Y) ∪ FE (6)
where

CondPre(X,Y) :=
{q ∈ Q|δ(q,Σ) ∩ X , ∅ ∧ δ(q,Σuc) ∈ X ∪ Y} .

(7)

Let us now apply (6) to the automaton G in Fig. 1 (bottom
left). First, one should note that the outer fixed-point over Y is
initialized by the full state set Q, while the inner fixed-point
over X is initialized by the empty state set. Let us now fix
Y0 = Q and consider the step-by-step evolution of the inner
fixed-point. We have X0 = ∅ and X1 = FE = {q3, q4}. Now
we see that q1 will indeed be added to the set of winning
states in the second iteration, that is q1 ∈ CondPre(FE ,Q).
One can therefore verify that the inner fixed-point terminates
with X∞ = Q \ {q5, q8}, as q5 and q8 are the only states that
do not have a path to Qm = FE . With this, we update Y to
Y1 := Q\{q5, q8} and re-start the inner fixed-point computation.
As q8 < Y1, this iteration now also removes p6 from the winning
state set. Updating Y again to Y2 := Q \ {q5, q6, q8} finally
also removes q9 and the fixed-point algorithm terminates with
Y∞ = {q0, . . . , q4, q7}.
Interestingly, we have q4 ∈ Y∞, i.e., the fixed-point in (6) deter-
mines q4 to be winning. This is not surprising, as (6) computes
the set of states which allow the plant and the controller to coop-
erate s.t. a marked state will be reached “at least once”. Thereby
the algorithm does not care about the behavior of the closed
loop after this happened. As control patterns Γ are defined such
that they always enable all uncontrollable transitions, the closed
loop behavior will however still allow the plant to move to q5
and by this cause a live-lock of the controlled system which is
obviously unintended. Hence, (3a) will be violated.

A Coorperative Büchi-Type Game. To circumvent the above
problem with the cooperative reachability game, we need to
make sure that whenever the plant is able to leave an attained
marking, a marking must be re-reachable. This type of game,
where marked states need to be reached, are called Büchi
games. It is well known, see e.g. (Baier and Katoen, 2008), that
the fixed-point algorithm for solving Büchi games is given by

νY . µX . Pre0(X) ∪ (Pre0(Y) ∩ FE) . (8)
Following Majumdar et al. (2019), its cooperative version is
given by substituting the inner-most controllable predecessor
by the cooperative one, leading to

νY . µX . CondPre(X,Y) ∪ (Pre0(Y) ∩ FE) . (9)
Intuitively, the additional controllable pre-operator Pre0(Y)
conjoined with FE ensures that in states q ∈ FE the supervisor
can enforce the plant to continue operating in a manner that
allows to re-reach a marked state.

Unfortunately, this requirement turns out too strong in the con-
text of Problem 2. To see this, let us consider a slightly modified
version of G in Fig. 1 where the only outgoing transition of q3
is the controllable one reaching q4. I.e., q3 cannot transition to
q1 via the un-controllable transition indicated in Fig. 1. Now
one can verify that for the first iteration of the inner fixed-point
of (8) with Y0 = Q, we again obtain X∞ = Q \ {q5, q8} and

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2183

therefore update Y to Y1 = Q \ {q5, q8}. Now one can verify that
q4 < Pre0(Y1). With this, the next iteration of the inner fixed-
point terminates with X∞ := Q \ {q4, q5, q6, q8} resulting in the
update Y2 := Q \ {q4, q5, q6, q8}. With this, however, we further
have q3 < Pre0(Y2) (as we assume the transition to q1 to be
non-existent). Hence, the fixed-point removes q3 and terminates
with Y∞ = ∅.
In the context of SCT w.r.t. ∗-languages, however, there is no
need to remove q3 from the set of winning states. For correct-
ness we only need to make sure that uncontrollable transitions
starting in marked states only reach states that allow to re-reach
a marked one but we do not need to enforce progress out of
marked states. We obtain this, by weakening the controllable
predecessor operator Pre0(Y) into the universal predecessor op-
erator Pre∀(Y), defined by

Pre∀(X) := {q ∈ Q|δ(q,Σuc) ⊆ X} . (10)
With this substitution, we obtain the fixed-point

νY . µX . CondPre(X,Y) ∪ (Pre∀(Y) ∩ FE) . (11)

While we will show shortly that this is indeed the right fixed-
point to compute a maximally permissive supervisor solving
Problem 2, we first slightly simplify (11). For this, we define
the existential predecessor operator

Pre∃(X) := {q ∈ Q|δ(q,Σ) ∩ X , ∅} . (12)
Now, it follows from the monotonicity of the fixed-point in (11)
that we always have X ⊆ Y for any iteration of (11). With
this, one can verify that CondPre(X,Y) = Pre∃(X) ∩ Pre∀(Y).
Using this substitution and applying common de-Morgan laws,
we obtain the simplified fixed-point

W := νY . µX . (Pre∃(X) ∪ FE) ∩ Pre∀(Y). (13)

In the remainder of this section we show that (13) indeed
computes the desired set of winning states, and thereby, allows
us to extract the desired maximally permissive supervisor if and
only if qinit ∈ W, hence solving Problem 2.

3.3 Correctness of Strategy Synthesis

First, consider the set W ⊆ Q computed via (13) and observe
that for

h(q) :=
{
Σuc ∪ {σ ∈ Σ | δ(q, σ) ∈ W}, q ∈ W
Σ, otherwise

(14)

it holds that h(q) ⊆ Σuc. Therefore, h is obviously a memoryless
control strategy over G.

Indeed, we can show that from any state q ∈ W the strategy h
enforces that the plant will evolve s.t. (3) holds. This establishes
soundness of (13) as summarized in the following lemma and
proven in the appendix.
Lemma 3. Given G as in Problem 2, W ⊆ Q computed via (13)
and h : Q→ Γ as in (14), it holds for all q ∈ W that 1

Lq(G, h) ∩ Lm,q(G, FL) ⊆ Lm,q(G, FE), and (15a)
Lq(G, h) = pfx (Lq(G, h) ∩ Lm,q(G, FL)). (15b)

This shows that we can extract a memoryless control strategy
from W to solve Problem 2 if qinit ∈ W, as for q = qinit equation
(15) coincides with (3). To fulfill the second requirement of
Problem 2, i.e., to surely determine that no controller exists, we
1 Given a state q ∈ Q we denote by Lq(G, ·) and Lm,q(G, ·) the respective
language obtained when interpreting q as the initial state of G.

also need to prove completeness of (13). That is, we show that
for all q ∈ Q\W there exists no control strategy h : qinitQ∗ → Γ
s.t. (3) holds. This is formalized in the following lemma and
proven in the appendix.
Lemma 4. Given G as in Problem 2 and W ⊆ Q computed via
(13), it holds for all q ∈ W = Q \ W and any h : qinitQ∗ → Γ
that either

Lq(G, h) ∩ Lm,q(G, FL) * Lm,q(G, FE), or (16a)
Lq(G, h) * pfx (Lq(G, h) ∩ Lm,q(G, FL)). (16b)

With this, it immediately follows that there exists a control
strategy s.t. (3) holds, if and only if qinit ∈ W. As it turns out,
the strategy h defined in (14) is maximally permissive in the
folllowing sense:
Proposition 5. Given the premises of Lem. 3 s.t. qinit ∈ W, the
memoryless strategy h defined in (14) is maximally permissive
w.r.t. (3), that is, for all h′ : qinitQ∗ → Γ s.t. (3) holds, we have
that L(G, h′) ⊆ L(G, h).

Proof. Pick h′ s.t. (3) holds and assume, for the purpose of
a contradiction, that there exists s = σ0 . . . σk ∈ L(G, h′) s.t.
s < L(G, h). Let π = s(s) = qinitσ0 . . . σkqk+1 ∈ P(G, h′) and
observe that π < P(G, h). This implies that there exists i ∈ [0; k]
s.t. σi ∈ h′(q0 . . . qi) but σi < h(qi). Now recall from (14)
that this implies that δ(qi, σi) < W (as otherwise σi ∈ h(qi)).
With this we have qi+1 ∈ W. With this, it follows from Lem. 4
that there exists no h′′ : qi+1Q∗ → Γ s.t. (3) holds. This
immediately implies that (3) cannot hold for h′ which concludes
the contradiction.

This concludes our evaluation. Recalling the equivalence of
Problem 1 and Problem 2 from Sec. 3.1 and combining this with
Lem. 3, Lem. 4 and Prop. 5, we have the following corollary to
summarize the developments in this paper.
Corollary 6. Given a plant L and a relatively closed specifica-
tion ∅ , E ⊆ L, let G = (Q,Σ, δ, qinit,Qm) be an automaton with
two sets of marked states FE ⊆ FL ⊆ Q s.t. Lm(G, FL) = L,
Lm(G, FE) = E, and L(G) = pfx (L). Further, let W ⊆ Q be
computed via (13) and h : Q → Γ as in (14). If and only if
qinit ∈ W, there exists a supervisor f : pfx (L) → Γ s.t. (2)
holds. In particular, if qinit ∈ W the supervisor f : h ◦ s fulfills
(2) and is maximally permissive.

4. CONCLUSION

In this paper, we have revisited the common problem of super-
visory control, Problem 1, as originally proposed by Ramadge
and Wonham (1987). We have transformed this problem to a
strategy synthesis problem over a two-player game, Problem 2,
as it is common in the field of reactive synthesis, and we provide
an algorithmic solution via the fixpoint (13). As our main re-
sult, summarized in Cor. 6, the closed-loop behaviour achieved
by our supervisor is maximally permissive and, hence, in this
regard matches the literature (Ramadge and Wonham, 1987;
Wonham and Ramadge, 1987). This is an interesting observa-
tion, as not only the perspectives taken but also the subsequent
technical development differs significantly. To this end, our
result contributes to the ongoing discussion on the relationship
between reactive synthesis and supervisory control; e.g., Ehlers
et al. (2017); Schmuck et al. (2020).

Despite the match in the resulting closed-loop behaviour, the
supervisors synthesised by our approach are not identical to

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2184

those obtained by the established procedures. For this obser-
vation, consider a string outside the prefix of the supremal
closed-loop behaviour. In the classical setting, the supervisor
may map this string to any control pattern, trusting in the fact
that such a string will not occur in the closed loop. Hence, if
for whatever reason the actual plant deviates from the design
model the supervisor makes no attempt to faithfully operate
the plant. In this regard, the supervisors synthesised by our
approach perform better in that they apply a well chosen control
pattern as long as the design model is within a winning state.
If, after a deviation from the nominal behaviour by chance a
winning state is again attained, the supervisor will “catch on”
to win its play. We envisage this to be of practical relevance
in the context of fault-tolerant control, control re-configuration
and re-initialisation after break down.

Appendix A. PROOFS

Proof. [of Lem. 3] First, let us consider one entire run of
the inner µ-iteration of (13) at a stage where the outer ν-
iteration has attained its fixpoint Y∞ = W. I.e., we consider
the monotone sequence (Xi)i∈�0 generated by

X0 := ∅ , Xi+1 := Xi ∪ ((Pre∃(Xi) ∪ FE) ∩ Pre∀(W)) . (A.1)
In particular, we have that W = Y∞ = X∞ = ∪{ Xi | i ∈ �0 } and
W ⊆ Pre∀(W). With this, one can verify that

∀q ∈ W, σ ∈ h(q) . δ(q, σ)!⇒ δ(q, σ) ∈ W. (A.2)
For σ ∈ Σc the claim in (A.2) follows directly from the
definition of h, Eq. (14). For σ ∈ Σuc, the claim in (A.2) follows
from the fact that W ⊆ Pre∀(W) and the definition of Pre∀(W),
Eq. (10), implies that δ(q, σ) ∈ W for all enabled uncontrollable
transitions.

Now let us introduce the following ranking of states q ∈ W:
rank(q) := i ∈ �0 iff q ∈ Xi \ Xi−1 . (A.3)

Note that rank(q) ≥ 1 for all q ∈ W and rank(q) = 1 iff
q ∈ FE ∩ W since X0 = ∅ and Pre∃(∅) = ∅. With this, we
show that

∀q ∈ W . Lq(G, h) ∩ Lm,q(G, FE) , ∅. (A.4)
We show this claim by constructing a play π = s0σ0s1σ1 . . . sk ∈
Pq(G, h) with s0 = q generating the string ν = σ0σ1 . . . σk−1 ∈
Lq(G, h) ∩ Lm,q(G, FE). As s0 = q ∈ W we know rank(s0) = i
is defined. If i = 1 we know s0 ∈ FE and therefore ϵ ∈ Lq(G, h)
and ϵ ∈ Lm,q(G, FE). Now assume i > 1. Then s0 ∈ Xi and we
know from the definition of Pre∃, Eq. (12), and the definition of
h, Eq (14), that there exists σ0 ∈ h(s0) s.t. s1 = δ(s0, σ0) ∈ Xi−1.
By iteratively applying this argument we reach a state sk ∈ X1 =
FE . As the constructed sequence is compliant with h and a run
on G ending in FE , we have ν ∈ Lq(G, h) ∩ Lm,q(G, FE).

As FE ⊆ FL one can verify that (A.4) directly implies (3b).
First, recall that ⊇ always holds and we are left with showing
⊆. For this, we pick a play π = s0σ0s1σ1 . . . sk ∈ Pq(G, h)
with s0 = q ∈ W generating the string ν = σ0σ1 . . . σk−1 ∈
Lq(G, h). Then we know from inductively applying (A.2), that
sn ∈ W. Therefore we can use (A.4) to pick a sequence β
s.t. νβ ∈ Lq(G, h) ∩ Lm,q(G, FE). As FE ⊆ FL, and therefore
Lm,q(G, FE) ⊆ Lm,q(G, FL) this immediately implies that ν ∈
pfx (Lq(G, h) ∩ Lm,q(G, FL)).

Now it remains to show that (3a) also holds. Towards this goal,
we first show that

q ∈ W ∩ FL ⇒ q ∈ FE . (A.5)

As FE ⊆ FL, the claim immediately holds if q ∈ W ∩ FE .
For the sake of a contradiction, let us assume that there exists
a state q ∈ W ∩ FL \ FE . As E is relatively closed w.r.t. L we
know that there exists some p ∈ P (of GL) s.t. q = (p, s⊥).
Further, we have that δ′E(s⊥,Σ∗) = s⊥ and s⊥ < S m (of G′E). As
G = GL × G′E , this implies Lq(G, h) ∩ Lm,q(G, FE) = ∅. Using
(A.4) this implies q < W, which concludes the contradiction.

Given (A.5), one can verify that (3a) holds. For this, pick any
π = s0σ0s1σ1 . . . sk ∈ Pq(G, h) where s0 = q ∈ W s.t.
ν = σ0σ1 . . . σk−1 ∈ Lq(G, h) ∩ Lm,q(G, FL). Then we know
from inductively applying (A.2), that sn ∈ W∩FL, and therefore
from (A.5) that sn ∈ FE . Hence, ν ∈ Lm,q(G, FE).

Proof. [of Lem. 4] We first negate the fixed-point in (13) to
formally characterize the set of states W = Q \ W. Using
the negation rule of the µ-calculus, i.e., ¬(µX . F(X)) =
νX . ¬F(¬X), and common de-Morgan laws, we obtain

W = µY . νX .
(
Q \ FE ∩ Pre∃(X)

)
∪ Pre∀(Y) (A.6)

with
Pre∃(X) = {q ∈ Q | δ(q,Σ) ⊆ X} (A.7)

Pre∀(Y) = {q ∈ Q | δ(q,Σuc) ∩ Y , ∅} (A.8)

First, let us consider the last run over the outer µ-iteration before
termination. In this case we have Y0 = ∅ and denote by Yi for
i > 0 the set obtained from the i-th iteration of the outer fixed-
point. For i ≥ 1 we have X∞i = Yi as the value of the inner
fixed-point over X that computes the i-th iteration of Y . Then
we obtain the monotone sequence (Yi)i∈�0 which satisfies

Y0 := ∅ , Yi = Yi−1 ∪
(
Q \ FE ∩ Pre∃(Yi)

)
∪Pre∀(Yi−1). (A.9)

In particular, we have that W = X∞∞ = Y∞ = ∪{Yi | i ∈ �0 }.
Now let us introduce the following ranking of states q ∈ W:

rank(q) := i ∈ �0 iff q ∈ Yi \ Yi−1 . (A.10)

Note that rank(q) ≥ 1 for all q ∈ W since Y0 = ∅, With this, we
can verify that for any state q ∈ W with rank(q) = i we have
that either (a) q < FE and q′ = δ(q, σ) ∈ Yi i.e., rank(q′) ≤ i for
all σ enabled in q, or (b) there exists σ ∈ Σuc which is enabled
in q and q′ = δ(q, σ) ∈ Yi−1, i.e., rank(q′) ≤ i − 1.

Now consider a state q ∈ W and any control strategy h :
qinit(Q)∗ → Γ. Let us first assume that there exists no σ ∈ Σ
s.t. (q, σ)!. This implies that case (a) holds for q, i.e., q < FE .
Now we can either have q ∈ FL in which case (16a) is true, or
q < FL, in which case (16b) is true, as no outgoing transitions
of q implies that no state q′ < FL is reachable from q. I.e., if q
has no enabled transitions, (16) holds.

Now let us assume that there exists an enabled uncontrollable
transition σ ∈ Σuc in q s.t. (q, σ)!. If in addition (a) holds,
then this transition can always be taken by the plant no matter
which control pattern γ the strategy h chooses for q and will
always result in a state q′ ∈ W with equal or reduced rank.
I.e., if rank(q) = i then rank(q′) ≤ i. On the other hand, if in
addition (b) holds, then we know that there exists a possibly
different σ′ ∈ Σuc which is always enabled no matter which
control pattern h chooses for q and allows the plant to transition
to a state q′ ∈ W while reducing the rank.

Now let us assume that there exists no enabled uncontrollable
transition σ ∈ Σuc in q s.t. (q, σ)!. This implies that (a) must
hold. Then we know that all enabled controllable transitions σ′

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2185

lead to a state q′ ∈ W with equal or reduced rank. Now we have
two cases. If at least one such σ′ is contained in γ chosen by h
in q, we know that the plant can take this transition to q′ ∈ W
while not increasing the rank. If this is not the case, we observe
from (a) that q < FE . It then follows from the same reasoning
as in the blocking scenario above that (16b) is true.

The above reasoning shows that either we encounter a blocking
situation (due to disabled events, or due to a control strategy
h disabling all enabled controllable events) and thereby verify
that (16) holds, or any control strategy h allows the plant to
proceed to a state in W while never increasing the rank. To
show that (16) also holds in the second case, let us iteratively
construct a tree T rooted in q which collects all traces over G
generated by the plant which ensure it is staying in W. Further,
let us label each node of T by either (a) or (b), depending on
which case applies, and observe that for all nodes q′ of the tree
we have q′ ∈ W. Further, we label a node by (⊥) if it is blocking
due to one of the two previously discussed scenarios.

First, let us assume that there exists a node q′′ in T with
label (⊥) which is reached from q with trace β = qσ0 . . . q′′

generating the event sequence β′ ∈ Lq(G, h). As q′′ ∈ W we
can apply the same reasoning as above to determine that (16)
holds. Now, consider the case that there exists no node q′′ in
T with label (⊥) which is reachable from q, implying that T
is an infinite tree. Now assume by contradiction that case (b)
occurs infinitely often in T. By König’s lemma, it follows that
there is a path π in T along which (b) occurs infinitely often.
However, whenever (b), occurs, the rank of the node decreases.
Further, the occurence of (a) can never increase the rank. As
the rank is finite, this shows that (b) can only happen finitely
often along each trace of T. This reasoning implies that along
every branch of T (enumerated by k ∈ N) there exists a finite
prefix sk ∈ pfx (Lq(G, h)) leading to a state qk at which a sub-
tree T ′k is rooted in which only case (a) occurs. As case (a)
renders W closed under any enabled transition, we know that
no state FE is ever reachable along these traces (as nodes for
which case (a) applies are by definition not in FE). This implies
that sk * pfx (Lm,q(G, FE)), which shows that (16b) is true.

REFERENCES

Aucher, G. (2014). Supervisory control theory in epistemic
temporal logic. In AAMAS ’14, 333–340.

Baier, C. and Katoen, J.P. (2008). Principles of model checking.
MIT press.

Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., and Sahar,
Y. (2012). Synthesis of reactive(1) designs. Journal of
Computer and System Sciences, 78(3), 911 – 938.

Cassandras, C.G. and Lafortune, S. (2008). Introduction to
Discrete Event Systems. Springer, second edition.

Cassez, F. and Tripakis, S. (2008). Fault diagnosis with static
and dynamic observers. Fundamenta Informaticae, 88(4),
497–540.

Ehlers, R., Lafortune, S., Tripakis, S., and Vardi, M.Y. (2017).
Supervisory control and reactive synthesis: a comparative
introduction. Discrete Event Dynamic Systems, 27(2), 209–
260.

Finkbeiner, B. (2016). Synthesis of reactive systems. Technical
report, Universität des Saarlandes.

Hélouët, L., Marchand, H., and Ricker, L. (2018). Opacity with
powerful attackers. WODES’18, 51(7), 464 – 471.

Jiang, S. and Kumar, R. (2006). Supervisory control of discrete
event systems with ctl* temporal logic specifications. SIAM
Journal on Control and Optimization, 44(6), 2079–2103.

Lafortune, S. (2019). Discrete event systems: Modeling, obser-
vation, and control. Annual Review of Control, Robotics, and
Autonomous Systems, 2, 141–159.

Majumdar, R., Piterman, N., and Schmuck, A.K. (2019).
Environmentally-friendly gr (1) synthesis. In International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems, 229–246. Springer.

Maler, O. (2002). Control from computer science. Annual
Reviews in Control, 26(2), 175 – 187.

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory control
of a class of discrete event processes. SIAM J. Control and
Optimization, 25, 206–230.

Ramezani, Z., Krook, J., Fei, Z., Fabian, M., and Akesson,
K. (2019). Comparative case studies of reactive synthesis
and supervisory control. In 2019 18th European Control
Conference (ECC), 1752–1759. IEEE.

Sakakibara, A. and Ushio, T. (2018). Hierarchical control
of concurrent discrete event systems with linear temporal
logic specifications. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences,
E101.A(2), 313–321. doi:10.1587/transfun.E101.A.313.

Schmuck, A.K., Moor, T., and Majumdar, R. (2020). On the
relation between reactive synthesis and supervisory control
of non-terminating processes. Discrete Event Dynamic Sys-
tems, 30, 81–124.

van Hulst, A.C., Reniers, M.A., and Fokkink, W.J. (2017).
Maximally permissive controlled system synthesis for non-
determinism and modal logic. Discrete Event Dynamic
Systems, 27(1), 109–142.

Wonham, W.M. and Cai, K. (2019). Supervisory control of
discrete-event systems. Communications and Control Engi-
neering. Springer.

Wonham, W.M. and Ramadge, P.J. (1987). On the supremal
controllable sublanguage of a given language. SIAM Journal
on Control and Optimization, 25(3), 637–659.

Wonham, W., Cai, K., and Rudie, K. (2018). Supervisory
control of discrete-event systems: A brief history. Annual
Reviews in Control.

Yin, X. and Lafortune, S. (2016a). Synthesis of maximally
permissive supervisors for partially-observed discrete-event
systems. IEEE Transactions on Automatic Control, 61(5),
1239–1254.

Yin, X. and Lafortune, S. (2016b). A uniform approach
for synthesizing property-enforcing supervisors for partially-
observed discrete-event systems. IEEE Transactions on Au-
tomatic Control, 61(8), 2140–2154.

Yin, X. and Lafortune, S. (2019). A general approach for opti-
mizing dynamic sensor activation for discrete event systems.
Automatica, 105, 376 – 383.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2186

