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Abstract: Time/energy optimal trajectory planning for a Segway model (inverted pendulum on
two independently actuated wheels) is addressed. Basis for this planning is the dynamical model
for this under-actuated, non-holonomic multibody system. In order to reduce the calculation
effort for the optimization, an input/output transformation is applied, which leads to a control
system in strict feedforward form. The full system state can thus be described by two outputs,
which are parameterized by two B-splines. The system is required to move on the ground within
a predefined area. For the optimization the control points of the B-Splines serve as optimization
variables and the cost functional is comprised of the overall energy of the robot and the terminal
time. Additionally to the maximum motor velocities and torques, the maximum ground reaction
forces give rise to the constraints. The latter are crucial to ensure that the wheels do not slip.

Keywords: Motion Control Systems, Mobile Robots, Modeling, Feedback Linearization,
Trajectory and Path Planning

1. INTRODUCTION

Segway-type mobile systems have attracted attention not
only for leisure activities but also for logistic applications.
Since this under-actuated non-holonomic mechanism, is in-
herently unstable, the use of model-based control is crucial
for reliable operation. There exist quite a number of contri-
butions addressing the derivation of the nonlinear dynamic
model, e.g. Ghaffari et al. (2016) focuses on the effect of
the nonlinear coupling terms, and the control of such a
system. Without any claim to completeness a few of them
are listed here. The linear control problem is addressed in
Salerno and Angeles (2004), Kim et al. (2005) and Albert
et al. (2018), while various nonlinear control algorithms
are examined in Pathak et al. (2005), Cui et al. (2015) and
Kim and Kwon (2017). Worth mentioning is, that in Albert
et al. (2018) structure-preserving trajectory optimization
is performed using variational integrators. In this paper
time/energy-optimal motion planning of the Segway model
in Fig. 1 is addressed using a direct approach to optimal
control. Since it has so far not been possible to find a flat
output for the Segway model, which would substantially
simplify this task (Levine (2009)), a partial feedback lin-
earization (Isidori (1995)) is applied. It is shown that the
resulting system has a strict feedforward structure. The
latter allows expressing the system trajectory in terms of
the outputs of the associated transformed system. In con-
trast to differentially flat systems, the strict feedforward
structure involves a cascaded integration chain to deduce
the state from the outputs. To the best of our knowledge no

1 This work has been supported by the “LCM - K2 Center for
Symbiotic Mechatronics” within the framework of the Austrian
COMET-K2 program.

effort has been made so far to exploit this special structure
in order to reduce the calculation effort while optimizing
trajectories. The chosen two outputs (heading and rolling
angle) are described with B-splines. The optimal control
problem then becomes a constrained optimization problem
in terms of the B-spline parameters. Constraints account
for the geometric bounds of the area the Segway is allowed
to move and for the limits on velocity and motor torques.

2. MATHEMATICAL MODELING

2.1 Dynamic Model

In order to describe the dynamic behavior of the Segway
model, consisting of 3 rigid bodies, shown in Fig. 1, the
equations of motion are needed. Therefore the generalized

coordinates q = (x y γ θ ξ η)
ᵀ

are introduced, with the
position x, y and the orientation γ in the horizontal plane,
the inclination angle θ of the basis, and the relative rota-
tion angles ξ and η of the wheels. Since ideal rolling of the
wheels is assumed, non-holonomic constraints (constraints
at velocity level) have to be considered. This leads to the
kinematic relation q̇ = H(γ)ṡ with the matrix

H(γ) =




cos(γ) 0 0
sin(γ) 0 0

0 1 0
0 0 1
2
DW

− 2aW
DW

−1
2
DW

2aW
DW

−1




(1)

and the vector of minimal velocities ṡ =
(
vL γ̇ θ̇

)T
, with

the longitudinal velocity vL and the angular velocities γ̇
and θ̇. The dimensions aW and DW are indicated in Fig. 1.
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Fig. 1. Segway with reference frames, minimal coordinates
and important dimensions

The generalized coordinates and the minimal velocities

can be combined to the vector of states x =
(
qᵀ ṡT

)T
.

Likewise the driving torques can be combined to the

vector of inputs u = (M1 M2)
ᵀ
. Furthermore the dynamic

properties collected in Tab. 1 as well as the positions of
the centers of gravity CB , CW1

and CW2
indicated by cBx

,
cBz

and cWy
in Fig. 1 have to be considered. Using these

definitions and by applying synthetic methods proposed
in Bremer (2008) the equations of motion in configuration
space representation

M(θ)s̈ + g(θ, ṡ) = Bu (2)

can be obtained. The derivation can be found in Ap-
pendix A. The symmetric positive definite mass matrix

M(θ) =

[
M1,1 0 M1,3(θ)

0 M2,2(θ) 0
M3,1(θ) 0 M3,3

]
(3)

consists of the constant entries

M1,1 = mB + 2mW + 8
DW

2

(
JWa

+ iG
2JM

)
(4)

M3,3 = JBy
+mB

(
cBx

2 + cBz

2
)

(5)

and the state dependent entries

M1,3(θ) = M3,1(θ) = mB (cBz
cos(θ)− cBx

sin(θ)) (6)

M2,2(θ) = JBz
cos(θ)2 + JBx

sin(θ)2

+mB (cBx
cos(θ) + cBz

sin(θ))
2

+ 2
(
JWr +mW cWy

2
)

+ 8aW
2

DW
2

(
JWa + iG

2JM
)
. (7)

The state dependent generalized forces are collected in the
vector

g(θ, ṡ) =

(
g1(θ, ṡ)
g2(θ, ṡ)
g3(θ, ṡ)

)
(8)

with the entries

g1(θ, ṡ) = −
(
γ̇2 + θ̇2

)
mB (cBx cos(θ) + cBz sin(θ))

+
(
vL

4
DW

2 − θ̇ 2
DW

)
(d1 + d2)− γ̇aW (d1 − d2) (9)

g2(θ, ṡ) = vLγ̇mB (cBx
cos(θ) + cBz

sin(θ))

+ 2γ̇θ̇mBcBx
cBz

(
cos(θ)2 − sin(θ)2

)

+ 2γ̇θ̇
(
JBx

+mBcBz

2
)

cos(θ) sin(θ)

− 2γ̇θ̇
(
JBz

+mBcBx

2
)

cos(θ) sin(θ)

+ γ̇ 4aW
2

DW
2 (d1 + d2) +

(
θ̇ 2aW
DW
− vL 4aW

DW
2

)
(d1 − d2) (10)

g3(θ, ṡ) = γ̇2mBcBxcBz

(
sin(θ)2 − cos(θ)2

)

− γ̇2
(
JBx

+mBcBz

2
)

cos(θ) sin(θ)

+ γ̇2
(
JBz +mBcBx

2
)

cos(θ) sin(θ)

+
(
θ̇ − vL 2

DW

)
(d1 + d2) + γ̇ 2aW

DW
(d1 − d2)

−mBg (cBx
cos(θ) + cBz

sin(θ)) (11)

and the constant input matrix is

B =




2
DW

2
DW

− 2aW
DW

2aW
DW

−1 −1


 . (12)

Since the mass matrix is invertible, the equations of motion
(2) can be transformed into the state space representation(

q̇
s̈

)
=

(
H(γ)ṡ

−M(θ)−1g(θ, ṡ)

)
+

[
06×2

M(θ)−1B

]
u (13)

which is leading to the expression

ẋ = f(x) + G(x)u

=




vL cos(γ)
vL sin(γ)

γ̇

θ̇
2
DW

(vL − γ̇aW )− θ̇
2
DW

(vL + γ̇aW )− θ̇
f7(θ, ṡ)
f8(θ, ṡ)
f9(θ, ṡ)




+




0 0
0 0
0 0
0 0
0 0

0 0
G7(θ) G7(θ)
G8(θ) −G8(θ)
G9(θ) G9(θ)




u (14)

with

f7(θ, ṡ) =
M1,3(θ)g3(θ,ṡ)−M3,3g1(θ,ṡ)

M1,1M3,3−M1,3(θ)2
(15)

f8(θ, ṡ) = − g2(θ,ṡ)
M2,2(θ)

(16)

f9(θ, ṡ) =
M1,3(θ)g1(θ,ṡ)−M1,1g3(θ,ṡ)

M1,1M3,3−M1,3(θ)2
(17)

G7(θ) =
−DWM1,3(θ)−2M3,3

DW (M1,1M3,3−M1,3(θ)2)
(18)

G8(θ) = 2aW
DWM2,2(θ)

(19)

G9(θ) =
−DWM1,1+2M1,3(θ)

DW (M1,1M3,3−M1,3(θ)2)
. (20)

Equation (14) are the (non-linear) motion equations in
control-affine form, i.e. linear in the control vector.

2.2 Exact Input/Output Linearization

As the name implies the exact input/output linearization
results in a linear subsystem relating a chosen (virtual)
output and the resulting new inputs of the transformed
system. Since there exist two inputs to the original system,
two virtual outputs can be chosen. Because (3) to (11)
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Table 1. Dynamic model parameters of Segway

Symbol Description

g gravitational acceleration
mB mass of basis including stators of motors
mW mass of a wheel including rotor of motor
JBx moment of inertia of basis about Bx-axis
JBy moment of inertia of basis about By-axis

JBz moment of inertia of basis about Bz-axis
JWa axial moment of inertia of a wheel (about Ry-axis)
JWr radial moment of inertia of a wheel
JM axial moment of inertia of a rotor of a motor
d1 constant of viscous friction between basis and wheel 1
d2 constant of viscous friction between basis and wheel 2
iG gear box ratio

involve many trigonometric functions of θ and γ, y =

(γ, θ)
ᵀ

is chosen as vector of virtual outputs. Since y is
actually put together by state coordinates of (14) its time
derivatives can be easily extracted from (14) and can be
stated by

ẏ =

(
f3(γ̇)

f4(θ̇)

)
=

(
γ̇

θ̇

)
(21)

ÿ = f89(θ, ṡ) + G89(θ)u

=

(
f8(θ, ṡ)
f9(θ, ṡ)

)
+

[
G8(θ) −G8(θ)
G9(θ) G9(θ)

]
u. (22)

Since G89(θ) has always full rank, the linearizing state-
feedback transformation can be obtained by setting ÿ = v
with the new input vector v

u = G89(θ)−1 (v − f89(θ, ṡ))

=

[
1

2G8(θ)
1

2G9(θ)
−1

2G8(θ)
1

2G9(θ)

](
v −

(
f8(θ, ṡ)
f9(θ, ṡ)

))
. (23)

Applying this transformation to the system (14) results in

ẋ = f̄(x) + Ḡ(x)v

=




vL cos(γ)
vL sin(γ)

γ̇

θ̇
2
DW

(vL − γ̇aW )− θ̇
2
DW

(vL + γ̇aW )− θ̇
f̄7(θ, γ̇, θ̇)

0
0




+




0 0
0 0
0 0
0 0
0 0

0 0

0 Ḡ7(θ)
1 0
0 1




v (24)

with
f̄7(θ, γ̇, θ̇) = f7(θ, ṡ)− G7(θ)f9(θ,ṡ)

G9(θ)
(25)

and
Ḡ7(θ) = G7(θ)

G9(θ)
. (26)

It should be noted, that in equation (25) the dependency
on vL has canceled out. This is not by design, but due to
the special structure of the equations of motion.

2.3 Strict Feedforward Structure

Expanding the definition of Tall and Respondek (2005) to
systems with multiple affine inputs, the system

ζ̇ = f̃(ζ) + G̃(ζ)υ (27)

is in strict feedforward form, if f̃(ζ) and G̃(ζ) have the
form

f̃(ζ) =




f̃1(ζ2, ζ3, . . . , ζn−1, ζn)

f̃2(ζ3, ζ4, . . . , ζn−1, ζn)
...

f̃n−2(ζn−1, ζn)

f̃n−1(ζn)

f̃n




(28)

and

G̃(ζ) =




G̃1(ζ2, ζ3, . . . , ζn−1, ζn)

G̃2(ζ3, ζ4, . . . , ζn−1, ζn)
...

G̃n−2(ζn−1, ζn)

G̃n−1(ζn)

G̃n




(29)

respectively. This form has the advantage, that with a
given input υ the system state ζ can be calculated step
by step backwards from ζn to ζ1 solely by integrating
possibly nonlinear functions, e.g. with quadrature rules.
By comparing f̄(x) and Ḡ(x) in (24) with f̃(ζ) (28) and

G̃(ζ) (29) it can be easily seen, that rearranging the state
x to

z = (z1 z2 z3 z4 z5 z6 z7 z8 z9)
ᵀ

=
(
x y ξ η vL γ θ γ̇ θ̇

)T
(30)

leads to the system

ż = ¯̄f(z) + ¯̄G(z)v

=




z5 cos(z6)
z5 sin(z6)

2
DW

(z5 − z8aW )− z9
2
DW

(z5 + z8aW )− z9
f̄7(z7, z8, z9)

z8
z9
0
0




+




0 0
0 0
0 0

0 0

0 Ḡ7(z7)
0 0
0 0
1 0
0 1




v, (31)

which is already in the strict feedforward form.

2.4 Ground Reaction Forces

The reaction forces at the ground contact points GW1
and

GW2
of the wheels are derived. The total wrench due to

the two reaction forces at point G is
(

Rf
z
G

RM
z
G

)
=

[
I 0

Rr̃GCB
I

] [
RRB 0
0 RRB

](
Bf

z
CB

BM
z
CB

)

+

2∑

i=1

[
I 0

Rr̃GCWi
I

](
Rf

z
CWi

RM
z
CWi

)
(32)

with

Rf
z
G = (FG,x FG,y FG,z)

ᵀ
, RM

z
G = (MG,x MG,y MG,z)

ᵀ

RrGCB
=
(
0 0 DW

2

)T
+ RRB (cBx

0 cBz )
ᵀ

RrGCW1
=
(
0 cWy

DW

2

)T
, RrGCW2

=
(
0 −cWy

DW

2

)T
.

Here r̃ denotes the skew symmetric cross product matrix.
The Rx- and Rz-components of the reaction forces at point
G are separated for the two contact points of the wheels
GW1 and GW2 by solving a linear equation system with
the solution
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FW1,x

FW2,x

FW1,z

FW2,z


 =




1
2 0 0 −1

2aW
1
2 0 0 1

2aW
0 1

2
1

2aW
0

0 1
2

−1
2aW

0






FG,x
FG,z
MG,x

MG,z


 (33)

Due to the collinearity of the points G, GW1
and GW2

the

Ry-component of RM
z
G results in MG,y = 0. Thus the Ry-

component of Rf
z
G cannot be easily separated and only the

sum over the two wheels FW,y = FG,y is relevant.

3. TRAJECTORY PLANNING

3.1 Trajectory Definition

Based on the strict feedforward formulation of the EOM
a trajectory consistent with the system dynamics could
be defined by two parameterized functions over time
(e.g. B-splines) for v and integration constants for each
state coordinate. On the other hand, since the linear
subsystem composed of γ, θ, γ̇ and θ̇ actually consists
of two separate double integrators, it is also possible
to define two B-splines of sufficiently high degree for
γ and θ. Here the latter approach is chosen, because
in contrast to integrating, differentiating preserves the
beneficial property of the local support of the spline basis
functions. In order to avoid discontinuities for the driving
torques, γ and θ are defined by the B-splines of degree
nsp = 3

γ(t, γ̂, t̂) =

Nsp+nsp∑

i=1

γ̂iB
nsp

i (t, t̂i, t̂i+1, . . . , t̂i+nsp+1) (34)

and

θ(t, θ̂, t̂) =

Nsp+nsp∑

i=1

θ̂iB
nsp

i (t, t̂i, t̂i+1, . . . , t̂i+nsp+1) (35)

with the number of spline parts Nsp, the i-th B-spline
basis function B

nsp

i (t, . . . ), where nsp denotes the highest
occurring degree of t, calculated by the recursive formula
stated by Piegl and Tiller (2012), the vectors of control
points

γ̂ =
(
γ̂1 γ̂2 · · · γ̂Nsp+nsp

)T
(36)

θ̂ =
(
θ̂1 θ̂2 · · · θ̂Nsp+nsp

)T
(37)

and the vector of knots

t̂ =
(
t̂1 t̂2 · · · t̂Nsp+2nsp+1

)T
(38)

derived from the vector of time points

t =
(
t0 t1 · · · tNsp−1 tE

)T
. (39)

Because of the knot multiplicity of nsp+1 at the start and

at the end, t̂1 = · · · = t̂nsp+1 = t0 and t̂Nsp+nsp+1 = · · · =
t̂Nsp+2nsp+1 = tE .

Following the approach of Piegl and Tiller (2012), the
needed time derivatives of the splines γ(t, γ̂, t̂) and

θ(t, θ̂, t̂) can be calculated analytically and are again rep-
resented by splines of a reduced degree, with control points

depending on t̂ and γ̂ and θ̂ respectively.

The desired path on the ground surface is defined piece
wise by primitive subpaths like straight lines, circular arcs
and rotations. The quadratic distance measure from an
accumulation of these primitives to an arbitrary point on

the surface is defined by the function X (x, y). The valid
region of positions of the point G of the Segway can be
stated by the region where X (x, y) ≤ ε2 holds true, as can
be seen for the example trajectory in Fig. 2.

By setting the first and last three control points to

γ̂1 = γ̂2 = γ̂3 = γ0 (40)

γ̂Nsp+nsp−2 = γ̂Nsp+nsp−1 = γ̂Nsp+nsp
= γE (41)

θ̂1 = θ̂2 = θ̂3 = θe (42)

θ̂Nsp+nsp−2 = θ̂Nsp+nsp−1 = θ̂Nsp+nsp
= θe (43)

with θe = − arctan
(
cBx

cBz

)
the trajectory is defined so to

start and terminate in the upright equilibrium position.
Furthermore by using x0, y0, γ0, ξ0, η0 and vL,0 = 0 as
integration constants the start state is defined by

x0 = (x0 y0 γ0 θe ξ0 η0 0 0 0)
ᵀ
, u0 = (0 0)

ᵀ
. (44)

Without loss of generality the start value for the wheel
angles ξ0 and η0 as well as the start time t0 is set to zero.

3.2 Trajectory Optimization

The goal is to minimize the overall required energy as
well as the duration of the trajectory weighted by νt.
Following the definitions of the previous sections the vector
of optimization variables can be defined by

p =




(
t1 t2 · · · tNsp

)T
(
γ̂4 γ̂5 · · · γ̂Nsp+nsp−3

)T
(
θ̂4 θ̂5 · · · θ̂Nsp+nsp−3

)T


 . (45)

With these optimization variables and with the initial
state of the trajectory x0 the time curves of the system
state x(t,p), the new input v(t,p) and the driving torques
u(t,p) are defined. The definition of the desired path on
the ground surface gives a constraint for x(t,p) and y(t,p)
over time and the end position defined by xE , yE and
γE . An additional constraint is obtained by setting the
terminal velocity vL,E = 0. Furthermore the system limits
for the motor torques as well as the motor speeds must not
be exceeded. In order to exclude mathematical solutions
from the outset, which contain a pendulum swing below
the ground level, the inclination angle θ(t,p) is limited by
θmax = π

4 rad. The optimal control problem thus becomes

min
p

(∫ tE(p)

t0

‖u(τ,p)‖22 + νt dτ

)
(46)

s.t.
∥∥∥∥
(
x(tE ,p)
y(tE ,p)

)
−
(
xE
yE

)∥∥∥∥
2

2

= 0

γ(tE ,p)− γE = 0

vL(tE ,p) = 0

X (x(t,p), y(t,p)) < ε2

|Mi(t,p)| < Mmax i ∈ {1, 2}
|ξ̇(t,p)| < ωM,max

|η̇(t,p)| < ωM,max

|θ(t,p)| < θmax
FW,z,min < FWi,z(t,p) i ∈ {1, 2}
|FWi,x(t,p)| < FWi,x,max(t,p) i ∈ {1, 2}
|FW,y(t,p)| < FW,y,max(t,p)
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with the ground reaction forces limited in such a way, that
the FWi,z(t,p) components with i ∈ {1, 2} are limited to a
minimal compressive force and the remaining components
are limited according to

FWi,x,max(t,p) = µ0FWi,z(t,p) i ∈ {1, 2} (47)

FW,y,max(t,p) =
2∑

i=1

√
FWi,x,max(t,p)2 − FWi,x(t,p)2. (48)

4. SIMULATION

In this section the results of the optimization of an
example trajectory defined by the segments listed in Tab. 2
are shown. Since this trajectory should comply with an
actually built Segway prototype as shown in Fig. 1, the
model parameters and constraints are chosen according to
this experimental setup. For this optimization the weight
for the terminal time is set to νt = 2. Figure 2 shows
the position of the Segway on the ground surface and the
region of valid positions with ε = 0.1 m. In Fig. 3 the time
curves of the relevant state coordinates are depicted. That
the maximum driving torques Mmax = 0.705 N ·m and
wheel speeds ωM,max = 37.04 rad/s are not exceeded is
shown in Fig. 4. Figure 5 shows that the ground reaction
forces are within the cone of friction with a dry friction
coefficient µ0 = 0.5 and a minimum compressive force
FW,z,min = 5 N. Thereby the rolling condition can be
assumed to be satisfied. This optimization problem has
been solved with an active set SQP algorithm.

Table 2. Segments of example trajectory

# Description Definition

- start point x0 = 0.5 m, y0 = 0.5 m, γ0 = 0 rad
1 straight line length: 1.5 m
2 circular arc radius: 0.5 m, angle: πrad
3 straight line length: 1.3 m
4 circular arc radius: 0.2 m, angle: π

2
rad

5 straight line length: 0.8 m
6 rotation angle: π

2
rad

- end point xE = 0.5 m, yE = 0.5 m, γE = 0 rad

0.5 1 1.5 2 2.5

0.5

1

1.5

x in m

y in m

X ≤ ε2(
x y
)T

Fig. 2. Example Trajectory: Position on the surface

5. CONCLUSION

In this paper the control of a Segway (inverted pendulum
on two independently actuated wheels) as a highly non-
linear control system is considered. It was shown that the
control system associated to the input-output linearized

0 1 2 3 4
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θ in rad
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γ

θ

vL

θ̇

θ̇

γ

θ

vL
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θ̇

Fig. 3. Example Trajectory: State coordinates
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−40

−20
0

20

40

t in s
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ξ̇

η̇

−ωW,max

ωW,max

Fig. 4. Example Trajectory: Motor torque and wheel speed

form of the control system associated to a Segway model
exhibits a strict feedforward structure. A constrained op-
timal control problem for energy/time optimal trajectory
planning has been formulated. It is shown how the strict
feedforward structure can be exploited for solving this
problem with reduced computational effort. Simulation
results are shown when the Segway is required to perform
motion on a closed path within a predefined area. The
calculated control torques can be used as feedforward
within a model-based controller. This is a particularly
important result since, so far, the Segway model could
not been shown to be flat, and no flatness-based control
method be applied. The optimal trajectories are currently
being implemented on a real prototype. Future research
will focus on identification of dynamic model parameters.
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Appendix A. EQUATIONS OF MOTION

For the representation of vectors in R3 the reference frames
I, R and B are defined in Fig. 1. The rotation matrices

RIR =

[
cos(γ) sin(γ) 0
− sin(γ) cos(γ) 0

0 0 1

]
, RRB =

[
cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

]

transform from the R to the I reference frame and from
the B to the R reference frame respectively. The absolute
angular velocities of these reference frames are given by

RωIR = (0 0 γ̇)
ᵀ

and RωIB =
(
0 θ̇ γ̇

)T
. The left index R(·)

indicates representation in frame R. The angular velocities
of the three bodies are

BωIB = RRB
ᵀ
RωIB , RωIW1

=
(
0 2
DW

(vL − γ̇aW ) γ̇
)T
,

RωIW2 =
(
0 2
DW

(vL + γ̇aW ) γ̇
)T
.

With the velocity vectors for the COM of the bodies

BvCB
=




vL cos(θ) + θ̇cBz

γ̇ (cos(θ)cBx
+ sin(θ)cBz

)

vL sin(θ)− θ̇cBx


 ,

RvCW1
=
(
vL − γ̇cWy

0 0
)T
, RvCW2

=
(
vL + γ̇cWy

0 0
)T

the momentum vectors are given by BpCB
= mBBvCB

,

RpCW1
= mWRvCW1

and RpCW2
= mWRvCW1

. The
angular momentum vectors are defined by

BLCB
= diag

(
JBx

, JBy
, JBz

)
BωIB

RLCW1
= diag

(
JWr

, JWa
+ iG

2JM , JWr

)
RωIW1

RLCW2
= diag

(
JWr

, JWa
+ iG

2JM , JWr

)
RωIW2

.

The forces due to gravity are Bf
e
CB

= RRB
ᵀ

(0 0 −mBg)
ᵀ

and Rf
e
CW1

= Rf
e
CW2

= (0 0 −mW g)
ᵀ

and the torques due

to the motors and viscous friction are

RM
e
CW1

=




0

M1 − d1
(

2
DW

(vL − γ̇aW )− θ̇
)

0




RM
e
CW2

=




0

M2 − d2
(

2
DW

(vL + γ̇aW )− θ̇
)

0




BM
e
CB

= RRB
ᵀ(−RMe

CW1
− RM

e
CW2

)
.

The reaction forces/torques for base and wheel i ∈ {1, 2}
Bf

z
CB

= BṗCB
+ Bω̃IBBpCB

− Bf
e
CB

BM
z
CB

= BL̇CB
+ Bω̃IBBLCB

− BM
e
CB

Rf
z
CWi

= RṗCWi
+ Rω̃IRRpCWi

− Rf
e
CWi

RM
z
CWi

= RL̇CWi
+ Rω̃IRRLCWi

− RM
e
CWi

.

The EOM are then determined as (Bremer (2008))

0 =
[
BJCB

ᵀ
RJCW1

ᵀ
RJCW2

ᵀ]




Bf
z
CB

BM
z
CB

Rf
z
CW1

RM
z
CW1

Rf
z
CW2

RM
z
CW2




with the Jacobian matrices

BJCB
=

[∂BvCB

∂ṡ
∂BωIB

∂ṡ

]
, RJCWi

=

[
∂RvCWi

∂ṡ
∂RωIWi

∂ṡ

]
.

The EOM always train the form

M(θ)s̈ + g(θ, ṡ) = Bu.
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