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Abstract: We focus on the control theory aspects of the dynamics of magnetized micro-swimmer
robots made of two or three rigid links. Under generic assumptions on the parameters, we show
that the control system which models the swimmers’ dynamics is locally controllable in small
time around its equilibrium position (the straight line), but with bounded controls that do not
go to zero as the target state gets closer to the initial state. Numerical simulations illustrate the
results, which are relevant for useful applications in the micro-swimming field.
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1. INTRODUCTION

Micro-swimming robots offer potential high-impact appli-
cations in the biomedical field, such as targeted drug de-
livery or non-invasive surgery. For that reason, the interest
in building such robots has been growing in the past years.
The shapes and propulsion techniques of these new robots
could be inspired by biology, since micro-organisms such as
sperm cells or bacterias developed efficient ways to move
through a surrounding fluid (see Peyer et al. (2013)). One
promising technique consists of using an external magnetic
field to drive a magnetized swimmer (see Gao et al. (2012);
Dreyfus et al. (2005); Ghosh and Fischer (2009)).

Here, we focus on this type of propulsion, applied on
simple models of micro-swimmers consisting of two or
three magnetized segments linked by elastic joints. Such
models, with different numbers of segments, have been
studied for instance in the works of Gutman and Or (2014)
and Alouges et al. (2013), in which the authors show
that sinusoidal magnetic fields allow the swimmer to move
forward in a prescribed direction. The 3-link articulated
swimmer was introduced by Purcell in a founding talk
about micro-swimming (see Purcell (1977)).

At the microscopic scale, the Reynolds number is typically
very small (around 10−6), which means that the intensity
of inertial forces is negligible compared to those of viscous
ones. Therefore, we can assume that the fluid is governed
by the Stokes equations. We model the hydrodynamic
interaction between the swimmer and the fluid by the local
drag approximation of Resistive Force Theory introduced
in the work of Gray and Hancock (1955).

We state a local controllability result for the 2- and 3-link
swimmers. Under generic conditions on the links magne-
tizations, they are controllable around their equilibrium
position (a straight line), but with controls that cannot
be made arbitrarily small. This is due to the fact that the
parallel component of the magnetic field cannot act on the
swimmer when all its links are aligned. The results give an

Fig. 1. Parametrization of the 2-link swimmer model

explicit bound on the controls to achieve small-time local
controllability (STLC).

This extended abstract reproduces the model and results
developed in Moreau (2019); Giraldi et al. (2019), without
going into detailed derivation of the equations and proofs
of the results, for the sake of brevity. It features new
numerical simulations for the three-link swimmer, that
illustrate its controllability properties in the general case
and in a degenerate case that was left open in Moreau
(2019).

2. THE MODEL

2.1 The swimmers

We mostly follow the notations and model used in the
works of Alouges et al. (2015), Giraldi and Pomet (2017)
and Giraldi et al. (2016). We focus on micro-swimmers
consisting of two or three rigid magnetized segments –
see Figures 1 and 2 – connected by torsional springs
with stiffness κ, subject to a uniform in space, time-
varying magnetic field H. The segments, called Si with
i = 1, 2 or 3, have same length `, same hydrodynamic
drag coefficients ξ and η, and magnetic moments Mi.
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Fig. 2. Parametrization of the 3-link swimmer model

The swimmers can move in the 2d-plane defined by the
vectors ex and ey. Let ez = ex × ey. Let x = (x, y) be
the coordinates of the end of S1, θ the angle between
(Ox) and S1. In the two- (respectively three-)link case,
we denote by α the angle between S1 and S2 (resp. by
α1 and α2 the angles between S1 and S2 and between S2

and S3). The swimmer is then completely described by
the four (resp. five) state variables Z = (x, y, θ, α) (resp.
Z = (x, y, θ, α1, α2)): the pair (x, y) represents the position
of the swimmer, θ its orientation and α (resp. (α1, α2)) its
shape. Let us also define the moving frames associated to
Si for i = 1, 2 or 3 as (ei,‖, ei,⊥).

2.2 The control system

The magnetic field H(t) induces a torque in each of the
segments. As it moves, the swimmer experiences hydro-
dynamic drag, as well as elastic restoring torques at the
joints between the segments.

Elasticity The torsional springs which connect the swim-
mer segments exert a torque Tel proportional to the shape
angles α (resp. α1 and α2 for the 3-link model). Hence :

• for the 2-link swimmer, the torque Tel exerted on S2

is given by Tel
2 = καez;

• for the 3-link swimmer, the torque Tel
2 exerted on S2

is given by Tel
2 = κα1ez and the torque Tel

3 exerted
on S3 is given by Tel

3 = κα2ez.

The springs tend to get the swimmer back to a straight
shape, in which all the segments are aligned.

Hydrodynamics The fluid surrounding the swimmer ex-
erts a hydrodynamic drag on it. We use the Resistive Force
Theory Gray and Hancock (1955) to model this interac-
tion, i.e. the drag force per unit of length is proportional to
the velocity and to the hydrodynamics coefficients ξ and
η. For s ∈ [0, `], let xs be the point of arclength s on one of
the segments Si. Its velocity ui(xs) is given in the moving
frame (ei,‖, ei,⊥) by ui(xs) = ui,‖ei,‖+ui,⊥ei,⊥. The drag
force exerted on this point is then given by

fi(xs) = −ξui,‖ei,‖ − ηui,⊥ei,⊥.

Integrating over Si to obtain the total force Fh
i exerted on

Si:

Fh
i =

∫
Si

fi(xs)dxs.

Moreover, given a point x0, the drag torque for Si with
respect to x0 takes the form

Th
i,x0

=

∫
Si

(xs − x0)× fi(xs)dxs.

Hydrodynamic drag effects are resistant: without a mag-
netic field, the swimmer tends to immobilize at its equi-
librium straight shape.

Magnetism The magnetic field exerts a torque Tm
i on Si

which is proportional to its magnetization coefficient Mi:
Tm

i = Miei,‖ ×H.

The swimmers are considered sufficiently small to be at
low Reynolds number regime, and, as a result, inertia may
be neglected (see Purcell (1977)). Writing the balance of
forces and torques and expressing the different contribu-
tions Fh

i , Th
i and Tm

i ,, we can write the dynamics of the
swimmers as a nonlinear control system given by

Ż = F0 +H‖F1 +H⊥F2, (1)

with H‖ and H⊥ the projection of the magnetic field in the
moving frame associated to S1: H(t) = H‖e1,‖ +H⊥e1,⊥,
and F0, F1 and F2 vector fields calculated from the system
parameters. The magnetic components H‖ and H⊥ are
seen as the control functions.

Moreover, F0(0) = 0 and F1(0) = 0, which means
that if the orthogonal magnetic field is equal to zero,
(i.e. H⊥ = 0 for all times), for any H‖, states of the
form (x, y, θ, 0) (resp. (x, y, θ, 0, 0) for the 3-link swimmer)
with (x, y, θ) ∈ R3 are equilibrium positions. Since the
problem is invariant by translation and rotation, we focus
on the equilibrium position (0, 0, 0, 0) (resp. (0, 0, 0, 0, 0)),
without loss of generality. In the following, we study local
controllability of the swimmers around this equilibrium
position, noted 0 for the sake of readability.

3. LOCAL CONTROLLABILITY AROUND
EQUILIBRIUM STATES

We recall the definition of small-time local controllability
that we will use later on. Let

ż = f0(z) + u1(t)f1(z) + u2(t)f2(z). (2)

be a general nonlinear control-affine system, with z in Rn,
f0, f1, f2 real analytic vector fields in Rn and u1, u2 control
functions in L∞([0, T ]) for some T > 0. For η > 0, and
z ∈ Rn, let B(z, η) be the open ball centered at z with
radius η. The following definition appears in (Coron, 2007,
Definition 3.2).

Let ze in Rn, and ue = (u1e, u2e) constant controls such
that (ze, ue) is an equilibrium of the system (2). The
control system (2) is STLC at (ze, ue) if, for every ε > 0,
there exists ζ > 0 such that, for every z0, z1 in B(ze, ζ),
there exists controls u1(·) and u2(·) in L∞([0, ε]) such that
the solution of the control system z(·) : [0, ε]→ Rn of (2)
satisfies z(0) = z0, z(ε) = z1, and

‖u1 − u1e‖L∞ 6 ε , ‖u2 − u2e‖L∞ 6 ε.
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4. RESULTS FOR THE 2- AND 3-LINK SWIMMERS

From now on, we assume that the physical constants `,
η, ξ, κ are positive, and that η > ξ. This is usually true
in the swimmer’s physical setting (for thin filaments, one
typically has η = 2ξ, see Gray and Hancock (1955)), and
avoid dealing with numerous subcases.

4.1 The 2-link case

Before stating the result, we need to make a few technical
assumptions about the magnetizations.

Assumption 1. The magnetizations M1, and M2 are such
that M1 6= 0, M2 6= 0, M1 −M2 6= 0 and M1 +M2 6= 0.

Remark 1. It can be shown that the swimmer is not STLC
at (0, (0, 0)) if M1 = 0, M2 = 0 or M1 −M2 = 0, and that
it is STLC at (0, (0, 0)) if M1 +M2 = 0.

Theorem 1. The two-link swimmer is STLC at (0, (γ2, 0))
with

γ2 = κ

(
1

M1
+

1

M2

)
.

Moreover, it is not STLC at (0, (α, 0)) with α 6= γ2.

4.2 The 3-link case

Let m = M1 +M3 and µ = M1 −M3.

Assumption 2. The magnetizations M1, M2 and M3 are
such that

µ 6= 0;
(m 6= 0 or M2 6= 0);

−7M2
2 + 9M2m− 5M1M3 6= 0;

P (M1,M2,M3) 6= 0,

(3)

with

P (x, y, z) = 49y3 − 91y2(x+ z)
+36y(x+ z)2 − (45y + 65(x+ z))xz.

Remark 2. It can be shown that the first three conditions
in equation (3) are necessary for local controllability. It
is unclear whether the last one is also necessary. The
polynomial expression P seems to be of importance in the
swimmer’s dynamics, as it appears in all the calculations
needed in the proof of Theorem 2 below. The values of
(M1,M2,M3) for which P vanishes may correspond with
cases where the swimmer’s movement ability is limited.
We conducted numerical simulations, displayed on Figure
4 below, that tend to confirm this hypothesis.

Theorem 2. The three-link swimmer is STLC at (0, (γ3, 0))
with

γ3 = κ
17m− 16M2

−7M2
2 + 9M2m− 5M1M3

.

Moreover, it is not STLC at (0, (α, 0)) with α 6= γ3.

5. COMMENTS ON THE RESULTS. PERSPECTIVES

Theorems 1 and 2 provide a full understanding of the lo-
cal controllability properties of the magnetically actuated
2- and 3-link swimmers. They show, rather counterintu-
itively, that the parallel component of the magnetic field
needs to remain large in order to control the swimmer,
even when the target state is very close to its equilibrium
position. In some particular cases, such as 16m−17M2 = 0

in the three-link case, the constant γ3 is equal to 0, and
the standard STLC at (0, (0, 0)) is retrieved.

Physically, these results reflect the fact that the parallel
component of the magnetic field has no effect on the
swimmer when it is at its equilibrium shape, i.e. when
all the segments are aligned. This may be seen as a loss
of controllability at the equilibrium. The parallel control
H‖ plays however a crucial role in the controllability
properties of the swimmers.

This result provides a useful insight for experiments, by
showing that the 2- and 3-link swimmers may not be driven
easily in any direction from an equilibrium point, and
giving an explicit lower bound on the control needed to
achieve local controllability. Further work on the subject
of micro-swimmers, currently under our investigation, is
to consider swimmers with more links, that describe more
realistically flexible filaments. This work also addresses
the question of the existence of necessary conditions for
local controllability for systems with non-scalar controls,
for which little is known.

6. NUMERICAL SIMULATIONS FOR THE 2-LINK
SWIMMER

In order to numerically observe the local behavior of the
system, we steer it from an equilibrium state with different
controls that stay “close” to the equilibrium control. Let
β be a real number and ε > 0 be a small parameter; we
set

H‖(t) = β + ε(h1 + h2 cos(10t) + h3 cos(100t))
H⊥(t) = ε(h4 + h5 cos(10t) + h3 cos(100t))

(4)

with h1 to h6 constants taken randomly in [−1, 1]. We
take N realizations of these random controls and solve the
2- and 3-link swimmer systems, starting respectively from
(0, 0, 0, 0) and (0, 0, 0, 0, 0) over the time interval [0, T ].
With such a range of randomized oscillating controls close
to (β, 0), we expect the obtained trajectories to roughly
cover the reachable space in small time T , which allows
to observe the unattainable regions if there are any. The
results of the simulations, performed with Matlab, are
displayed on Figure 3 for the 2-link swimmer and on Figure
4 for the 3-link swimmer. When β is different from the
critical values γ2 and γ3, the trajectories remain, locally,
either always left or always right of (0, 0) in the 2d-plane,
which tends to validate the non-STLC of the swimmer. On
the contrary, for β = γ2 or β = γ3, the trajectories cover
a neighborhood of 0.

The bottom row of Figure 4 gives insight as to why the last
condition in equation (3) is necessary for the 3-link swim-
mer controllability. It shows that, if P (M1,M2,M3) = 0
and β = γ3, then α1 remains approximately equal to α2

for all time, which suggests that the swimmer’s movement
ability might be limited in this particular case.
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(a) β = 0.5γ2 (b) β = 0.9γ2 (c) β = γ2 (d) β = 1.1γ2 (e) β = 1.25γ2

Fig. 3. Illustration of the role played by the constant γ2 for the two-link swimmer. On each graph are plotted N = 30
trajectories of the swimmer’s extremity in the 2d-plane (x, y), with the randomized controls (4) taken “around”
(β, 0), for 5 different values of β (a zoom-in around the origin is added on the middle graph). The origin (0, 0)
is indicated by the red dot on each graph. When β is different from the critical value γ2, the trajectories remain
either all to the left or all to the right of the origin. Only the control (γ2, 0) enables the trajectories to cover a
neighbourhood of the origin. Numerical values: η = 4, ξ = 2, l = 1, M1 = 1, M2 = 3, k = 1, ε = 10−2, T = 1.

Fig. 4. Illustration of the role played by the constant γ3 for the three-link swimmer. On each couple of plots, the evolution
of (x, y) and (α1, α2) for N = 15 trajectories has been drawn with realisations of controls (4) taken “around” (β, 0)
for three different values of β (zoom-ins around the origin are occasionally added). When β is different from the
critical value γ3, the trajectories remain either all to the left or all to the right of the origin. Only the control (γ3, 0)
enables the trajectories to cover a neighbourhood of the origin. The second row of plots illustrates the change in
the swimmer’s behaviour in the (α1, α2) plane when β = γ3 and P (M1,M2,M3) = 0. Numerical values: η = 4,
ξ = 2, ` = 1, M1 = 8 (first row), M1 = 7.069 (second row), M2 = 10, M3 = 4, k = 1, ε = 10−2, T = 1.
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