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Abstract: In this paper we propose two novel distributed algorithms for multi-agent off-
policy learning of linear approximation of the value function in Markov decision processes.
The algorithms differ in the way of how distributed consensus iterations are incorporated in a
basic, recently proposed, single agent scheme. The proposed completely decentralized off-policy
learning schemes subsume local eligibility traces, and allow applications in which all the agents
may have different behavior policies while evaluating a single target policy. Under nonrestrictive
assumptions on the time-varying network topology and the individual state-visiting distributions
of the agents, we prove that the parameter estimates of the algorithms weakly converge to a
consensus. The variance reduction properties of the proposed algorithms are demonstrated. We
also formulate specific guidelines on how to design the network weights and topology. The results
are illustrated using simulations.
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1. INTRODUCTION

Recently, interest in decentralized multi-agent algorithms
has grown dramatically mainly due to their fundamental
role in cutting edge technologies such as Cyber-Physical
Systems (CPS) and Internet of Things (IoT). Distributed
estimation and optimization methods play an essential
role in development of these algorithms; a large class of
them are based on consensus-based collaborations (e.g.
Stanković et al. (2011); Stanković et al. (2015); Kushner
and Yin (1987); Stanković et al. (2018b,a); Nedić and
Olshevsky (2015); Stanković et al. (2016, 2020) and ref-
erences therein).

Reinforcement learning (RL) is a powerful methodology
for decision making in uncertain environments which typ-
ically uses Markov Decision Process (MDP) modeling, as
well as approximate and adaptive dynamic programming
(Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996).
A fundamentally important issue is the approximation of
the value function, under large state spaces and off-policy
learning (e.g. Sutton et al. (2009); Geist and Scherrer
(2014); Yu (2017)).

Distributed and multi-agent RL methods have received
a lot of attention (see, e.g. Busoniu et al. (2008); Zhang
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et al. (2019) and references therein). A typical distributed
setup assumes that each agent can access the same MDP
with different agents’ behaviors, and without mutual in-
teractions through the MDP. Similar setups have been
adopted in several recent works (Mathkar and Borkar,
2017; Kar et al., 2013; Macua et al., 2015; Lee et al., 2018;
Zhang and Zavlanos, 2019; Stanković and Stanković, 2016;
Suttle et al., 2019), but introducing several restricitve
and/or simplifying assumptions: the same behavior of all
the agents (Mathkar and Borkar, 2017), presence of a
global controller (Kar et al., 2013), independent sampling
from the underlying stationary distributions, and without
eligibility traces (Stanković and Stanković, 2016; Macua
et al., 2015; Lee et al., 2018), mean-square convergence un-
der fixed communication graph (Macua et al., 2015). The
authors of (Zhang and Zavlanos, 2019; Suttle et al., 2019)
developed actor-critic schemes based on similar reasoning
with consensus-based collaboration.

In this paper we propose new distributed algorithms for
iterative multi-agent off-policy learning of linear approx-
imation of the value function in MDPs. The algorithms
represent a generalization of the recently proposed single
agent off-policy algorithms (Sutton et al., 2009; Geist and
Scherrer, 2014; Yu, 2017), including the algorithms with
eligibility traces, to decentralized multi-agent framework.
The main idea is to incorporate linear distributed dynamic
consensus iterations over the underlying network of agents
which can communicate only with their corresponding
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neighbors, avoiding in such a way dependence on any type
of fusion center. In the adopted distributed framework, it is
of fundamental importance that the proposed algorithms
are off-policy since this allows applications to scenarios
which are typical in practice, in which all the agents may
have different behavior policies while evaluating a single
target policy. Another important property of the proposed
algorithms is that the local recursions of each agent can be
based on eligibility traces (Geist and Scherrer, 2014; Yu,
2017), where each agent may choose different λ param-
eters, which can be history dependent. The linear value
function parameterization is performed a priori in such a
way that all the agents use the same feature vectors. Under
nonrestrictive assumptions on the time-varying network
topology and the individual behavior policies, we prove
that the parameter estimates of the algorithms weakly con-
verge to a consensus point. In the convergence proofs, the
stochastic dynamics of the underlying MDP are rigoroulsy
taken into account. The denoising effect of the scheme is
verified by theoretical analysis of the algorithms’ rate of
convergence. We also formulate specific guidelines on how
to design the network weights and topology such that a
desired convergence point is achieved.

The paper is organized as follows. In Section 2 we formu-
late the problem and define the proposed algorithms. In
Section 3 rigorous weak convergence analysis, including
convergence rate, is presented, while in Section 4 the
results of simulations demonstrating the effectiveness of
the proposed algorithms are shown.

2. DISTRIBUTED GRADIENT BASED TEMPORAL
DIFFERENCE ALGORITHMS

Consider N autonomous agents, each acting on a separate
Markov Decision Process (MDP), denoted as MDP(i),
i = 1, . . . , N , characterized by the quadruplet {S, A,
p(s′|s, a), R(s, a, s′)}, where S = {1, . . . ,M} is a finite
set of states, A is a finite set of actions, p(s′|s, a) is a
function defining probabilities of moving from s ∈ S to
s′ ∈ S by applying action a ∈ A, and R(s, a, s′) are
appropriate random rewards. Let MDP(0), characterized
by the same quadruplet, represent a reference MDP. Each
MDP(i), i = 0, 1, . . . , N , has an associated fixed stationary
policy π(i)(a|s) (indicating the probability of taking action
a at state s), so that the resulting state processes {Si(n)},
where n ≥ 1 denotes integer transition times, are time
homogenous Markov chains. The goal of the agents is to
learn the state value function for a given target policy

π(0) in MDP(0), where each agent i can observe only
state transitions and rewards in MDP(i) with behavior
policy π(i), i = 1, . . . , n. Let P (0) and P (i) denote the
resulting transition matrices of the Markov chains {S0(n)}
and {Si(n)}, respectively. Therefore, we are dealing with
a cooperative off-policy reinforcement learning problem
(Sutton and Barto, 1998; Stanković and Stanković, 2016).

The desired state value function is defined in accordance
with the classical literature, using discount factors γ(s) ∈
[0, 1], s ∈ S; we describe the value function using a vector
vπ(0) ∈ RM (Yu et al., 2019). Denote by Γ the M ×M
diagonal matrix with γ(s) as diagonal entries. By the MDP
theory (Sutton and Barto, 1998; Yu, 2017; Yu et al., 2019)
vπ(0) uniquely satisfies the Bellman equation

vπ(0) = rπ(0) + P (0)Γvπ(0) , (1)

where rπ(0) is the vector of one-stage expected rewards
at each state s ∈ S under policy π(0). Besides (1), vπ(0)

also satisfies a family of generalized Bellman equations,
vπ(0) = T (0,λ)vπ(0) , where T (0,λ) is the generalized Bellman

operator, T (0,λ)v = r
(λ)

π(0) + P (0,λ)v, ∀v ∈ RM , for a

given vector r
(λ)

π(0) and a substochastic matrix P (0,λ), where
λ ∈ [0, 1] are the so-called λ-parameters (Yu, 2017; Yu
et al., 2019).

Introduce the local importance sampling ratios ρi(s, s
′) =

P
(0)
ss′ /P

(i)
ss′ for s, s′ ∈ S (with 0/0 = 0). The following

assumption ensures well defined value function and the
importance ratios:

(A1) (Assumptions on target and behavior policies)
a) P (0) is such that I − P (0)Γ is nonsingular;
b) P (i) are irreducible and such that for all s, s′ ∈ S
P

(i)
ss′ = 0 ⇒ P

(0)
ss′ = 0, i = 1, . . . , N .

Let φ : S → Rp be a function that maps each state to a p-
dimensional feature vector φ; let the subspace spanned by
these vectors be Lφ. Our goal is to find v = [v1 . . . vM ]T ∈
Lφ that satisfies v ≈ T (0,λ)v, assuming that vs = φ(s)T θ,
where s ∈ S and θ ∈ Rp is a parameter vector. Let Φ be an
M × p matrix composed of p-vectors φ(s) as row vectors,
so that we introduce vθ = Φθ.

We define the following global objective function

J(θ) =

N∑
i=1

qiJi(θ) =
1

2

N∑
i=1

qi‖Πξi(T
(λi)vθ − vθ)‖2ξi , (2)

where Ji(θ) are the local objective functions, qi > 0 the
a priori defined weighting coefficients, λi is the local
λ-parameter, T (λi) stands for T (0,λi) and Πξi denotes
the projection onto the subspace Lφ w.r.t. the weighted
Euclidean norm ‖v‖2ξi =

∑
s∈S ξi;sv

2
s for a positive M -

dimensional vector ξi with components ξi;s (see Stanković
and Stanković (2016); Yu (2017)). Let ξi be the invari-
ant probability distribution for the local Markov chain
{S(i)(n)} (ξTi P

(i) = ξTi ). It follows that

∇J(θ) =

N∑
i=1

qi(Φ
TΞi(P

(λi) − I)Φ)Twi(θ), (3)

where P (λi) stands for P (0,λi), Ξi is an M ×M diagonal
matrix with the components of ξi on the diagonal, and
wi(θ) the unique solution (in wi) of the equation

Φwi = Πξi(T
(λi)vθ − vθ), (4)

assuming that wi ∈ span{φ(s)}.
Let ρi(n) = ρi(Si(n), Si(n+1)) and γi(n) = γ(Si(n)) (Yu,
2017; Yu et al., 2019). The local temporal-difference terms
are given by δi(vθ;n) = ρi(n)(Ri(n+1)+γi(n+1)vθ(Si(n+
1))−vθ(Si(n))), where Ri(n+1) is the local random reward
defined by the function R(s, a, s′) and the corresponding
transition, and vθ(Si(n)) is the approximation of the value
function obtained by the i-th agent using θ.

The sequences of the local eligibility trace vectors {ei(n)}
are supposed to be locally available. They are defined as

ei(n) = λi(n)γi(n)ρi(n− 1)ei(n− 1) + φ(Si(n)). (5)
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We propose algorithms composed of two main parts:
1) local parameter updates, based on gradient descent
recursion starting from (3), and local observations of state
transitions and rewards associated to MDP(i), and 2)
real-time incorporation of estimates communicated from
neighboring agents, aimed at achieving consensus.

The first proposed algorithm is derived from (3) and de-
noted as D1-GTD2(λ), according to the algorithm GTD2
proposed in (Sutton et al., 2009). The local updates are
defined by

θ′i(n) =θi(n) + α(n)qiρi(n)(φ(Si(n))

− γi(n+ 1)φ(Si(n+ 1)))ei(n)Twi(n) (6)

w′i(n) =wi(n) + β(n)(ei(n)δi(vθi(n);n)

− φ(Si(n))φ(Si(n))Twi(n)) (7)

where vθi(n) = Φθi(n). The initial values θi(0) are chosen
arbitrarily; however, wi(0), as well as ei(0), have to satisfy
wi(0), ei(0) ∈ span{φ(s)} in order to achieve the desired
convergence properties (discussed in the next section).
Sequences {α(n)} and {β(n)} are positive step sizes,
which can be either equal (single time-scale) or satisfying
α(n) << β(n) (two time-scales), see (Yu, 2017).

The second step of the algorithm performs the following
convexification:

θi(n+ 1) =

N∑
j=1

aij(n)θ′j(n), wi(n+ 1) = w′i(n), (8)

where aij(n) are random variables, elements of a ran-
dom matrix A(n) = [aij(n)](Stanković et al., 2011, 2016;
Stanković and Stanković, 2016). If one adopts that the
agents are connected by communication links in accor-
dance with a directed graph G = (N , E), where N is the
set of nodes and E the set of arcs, then matrix A(n) has
zeros at the same places as the graph adjacency matrix AG
and is row-stochastic, i.e.,

∑N
j=1 aij(n) = 1, i = 1, . . . , N ,

∀n ≥ 0.

We also consider a modification of D1-GTD2(λ), denoted
as D2-GTD2(λ), obtained by applying convexification to
both θi and wi, i = 1, . . . , N , from (6), in such a way that

in (8) wi(n+ 1) =
∑N
j=1 aij(n)w′j(n).

3. CONVERGENCE ANALYSIS

3.1 Preliminaries

1. Properties of the State-Trace Processes

We shall consider state-dependent λi, when λi(n) =
λi(Si(n)) for a given function λi : S → [0, 1]. Let Zi(n) =
(Si(n), ei(n), Si(n+ 1)). It has been shown that the state-
trace processes are Markov chains with the weak Feller
property (see Yu (2017); Yu et al. (2019) for details).

According to (6), denoting z = (s, e, s′), introduce func-
tions

gi(θ, w, z) = ρi(s, s
′)(φ(s)− γ(s′)φ(s′))eTw (9)

and
ki(θ, w, z) = eδ̄i(s, s

′, vθ)− φ(s)φ(s)Tw, (10)

where δ̄i(s, s
′, vθ) = ρi(s, s

′)(ri(s, s
′) + γ(s′)vθ(s

′)− vθ(s))
is the temporal difference term with averaged reward

ri(s, s
′) (under policy π(i), with possible presence of ad-

ditive zero-mean white noise term in the actual rewards).
Using the results from (Yu, 2017), we have:

ḡi(θ, w) = (ΦTΞi(I − P (λi))Φ)Tw (11)

k̄i(θ, w) = ΦTΞi(T
(λi)vθ − vθ)− ΦTΞiΦw. (12)

For any given θi there is a unique solution wi(θi) to the
linear equation k̄i(θi, wi) = 0, wi ∈ span{φ(s)}, so that we
obtain ḡi(θi, wi(θi)) = −∇Ji(θi).
The results from (Yu, 2017) may be applied in extenso
to our analysis. We shall mention only the following basic
result:
Under (A1), for each θi and wi on each compact set

Di ∈ domain(Zi), k̄i(θi, wi) = limm,n→∞
1
m

∑n+m−1
s=n

En{ki(θi, wi, Zi(s+ 1))}I(Zi(n) ∈ Di) = 0 (in mean) and

ḡi(θi, wi) = limm,n→∞
1
m

∑n+m−1
s=n En{gi(θi, wi, Zi(s +

1))}I(Zi(n) ∈ Di) = 0 (in mean), where En{·}
denotes the conditional expectation given the history
(Zi(0), · · · , Zi(n)) and I(·) denotes the indicator function
(for details, see Yu (2017)).

The last result is basic for the convergence analysis given
below, allowing direct verification of the underlying gen-
eral assumptions given in (Kushner and Yin, 1987, 2003).

2. Global Model

LetX(n) = [Θ(n)T
...W (n)T ]T , Θ(n) = [θ1(n)T · · · θN (n)T ]T ,

W (n) = [w1(n)T · · ·wN (n)T ]T ; similarly,X ′(n) = [Θ′(n)T
...

W ′(n)T ]T , together with the corresponding vector compo-
nents. Then, we have the following global model at the
network level:

X ′(n) = X(n) + Γ(n)F (X(n), n), (13)

X(n+ 1) = diag{(A(n)⊗ Ip), INp}X ′(n),

where ⊗ denotes the Kronecker’s product,
- Γ(n) = diag{α(n), β(n)} ⊗ INp,

- F (X(n), n) = [F θ(X(n), n)T
...Fw(X(n), n)T ]T ,

- F θ(X(n), n) = [q1g1 (θ1(n), w1(n), Z1(n))T
...qNgN (θN (n),

wN (n), ZN (n)) T ]T ,
- Fw(X(n), n) = [k1(θ1(n), w1(n), Z1(n))T +e1(n)Tω1(n+
1) · · · kN (θN (n), wN (n), ZN (n)) + eN (n)T ωN (n+ 1)]T

- ωi(n+ 1) = ρi(n)(Ri(n+ 1)− r(Si(n), Si(n+ 1))).

3. Communication Part of the Algorithm

The results given here follow from (Kushner and Yin,
1987) and (Stanković et al., 2016).

Define Ψ(n|k) = A(n) · · ·A(k) for n ≥ k, Ψ(n|n+1) = IN .
Let Fn be an increasing sequence of σ-algebras such that
Fn measures {X(k), k ≤ n,A(k), k < n}.
(A2) There is a scalar α0 > 0, such that aii(n) ≥ α0, and,
for i 6= j, either aij(n) = 0 or aij(n) ≥ α0.

(A3) For all n, there are a scalar p0 > 0 and an integer
n0 such that PFn{agent j communicates to agent i on the
interval [n, n+ n0]} ≥ p0, i, j = 1, . . . N .

(A4) The digraph G is strongly connected.
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Lemma 1. (Kushner and Yin (1987)). Let (A2)–(A4) hold.
Then Ψ(k) = limn Ψ(n|k) exists w.p.1 and its rows are all
equal; moreover, E{|Ψ(n|k) − Ψ(k)|} and EFn{|Ψ(n|k) −
Ψ(k)|} → 0 geometrically as n − k → ∞, uniformly in
k and ω (w.p.1); also, EFn{Ψ(n|k)} converges to Ψ(k)
geometrically, uniformly in ω and k, as t→∞.

3.2 Weak Convergence Proof

(A5) Sequence {A(n)} is independent of the processes in
MDP(i), i = 1, . . . , N .

(A6) There is aN×N matrix Ψ̄ such that E{|EFk{Ψ(n)}−
Ψ̄|} → 0 as n − k → ∞, uniformly in k. Under the
conditions of Lemma 1,

Ψ̄ =

 ψ̄1 · · · ψ̄N
· · ·

ψ̄1 · · · ψ̄N

 =

 Ψ̂
...

Ψ̂

 ,
where

∑
i ψ̄i = 1 (| · | denotes the infinity norm).

(A7) Sequence {X(n)} is tight.

Because of the lack of space, we shall pay attention only
to D1-GTD2(λ) with single time-scale. Define Xα(·) as
Xα(t) = X(n) for t ∈ [(n − nα)α, (n − nα + 1)α), where

nα is a sequence tending to ∞ and satisfying α
1
2nα → 0

(for details, see Kushner and Yin (1987)).

Theorem 1. Let (A1)–(A7) hold. Let Xα(n) be gener-
ated by (6), (7) and (8), with βi(n) = αi(n) = α.
Let wαi (0) = wαi,0, ei(0) = ei,0 ∈ span{φ(s)}. De-

fine Xα(0) by limα→0X
α
0 = [θT0 · · · θT0 wT1,0 · · ·wTN,0]T .

Then Xα(·) is tight and converges weakly to a pro-
cess Xα(·) = [θ(·)T · · · θ(·)Tw1(·)T · · ·wN (·)T ]T , where
θ(·), w1(·), . . . , wN (·) satisfy the following system of ODE’s

θ̇ = ψ̄1q1ḡ1(θ, w1) + · · ·+ ψ̄NqN ḡN (θ, wN ), (14)

ẇ1 = k̄1(θ, w1), · · · , ẇN = k̄N (θ, wN ),

with initial conditions θ0, w1,0, . . . , wN,0.

Moreover, for any integers n′α such that αn′α → ∞ as
α → 0, there exist positive numbers {Tα}, with Tα → ∞
as α→ 0, such that for any ε > 0 lim supα→0 P{(Xα(n′α+
k)) /∈ Nε(Σ̄) for some k ∈ [0, Tα/α]} = 0, i =
1, . . . , N , where Nε(·) denotes the ε-neighborhood, while
Σ̄ = Σ̄θ × · · · Σ̄θ × Σ̄w1 × · · · Σ̄wN is the set of points
θ̄, . . . , θ̄, w̄1, . . . , w̄N satisfying

N∑
i=1

ψ̄iqiG
T
i w̄i = 0, (15)

G1θ̄ + b1 −H1w̄1 = 0, · · · , GN θ̄ + bN −HN w̄N = 0,

where Gi = ΦTΞi(P
(λi) − I)Φ, bi = ΦTΞir

(λi)
π , r

(λi)
π is

a constant M -vector in the affine function T (λi)(·), while
Hi = ΦTΞiΦ, i = 1, . . . , N .

Proof. Part 1. Iterating (13) back, one obtains

X(n+ 1) = Xα
0 + α

n∑
k=nα

diag{Ψ(k)⊗ Ip, INp}F (X(k), k)

+ α%α(n) + diag{[Ψ(n|0)−Ψ(nα|0)]⊗ Ip, INp}X0, (16)

where %α(n) =
∑n
k=0 diag{[Ψ(n|k) − Ψ(k)]⊗ Ip, INp}

F (X(k), k). A direct comparison of (16) with the anal-
ogous expression in the proof of Theorem 3.1 in (Kushner
and Yin, 1987), shows that the main formal difference lies
in the specific form of the model (13) and the replacement
of Ψ(k) by Ψ(k + 1). Having in mind general properties
of the matrix Ψ(k) (see also Stanković et al. (2016)),
it becomes evident that the results of Theorem 3.1 in
(Kushner and Yin, 1987) can be almost directly applied
to (13). What essentially has to be verified is whether or
not the basic assumptions from (Kushner and Yin, 1987)
concerning F (X(n), n) hold in our case. Coming back to
the preliminary part of this section, we can easily con-
clude that the exposed properties of the local transitions
formulated in Paragraph 2 of Subsection 3.1 imply that the
assumptions (C3.2) and C(3.3’) from Section 3 in (Kushner
and Yin, 1987) are satisfied in our case.

Furthermore, we introduce

Mf (t) = f(X(t))− f(X(0))+ (17)∫ t

0

f ′X(X(s))diag{Ψ̄⊗ Ip, INp}F̄ (X(s))ds

for each real valued function f(·) with compact sup-
port and continuous second derivatives. It is possible to
show that Mf (t) is a continuous martingale, and that,

in addition, Mf (t) = 0, implying that Ẋ = diag{Ψ̄ ⊗
Ip, INp}F̄ (X). By Lemma 1 and (A6), all the rows of Ψ̄
are equal, so that the p-dimensional vector components of
Θ must be equal, i.e., we obtain Θ(·) = [θ(·)T · · · θ(·)T ]T ,
∀θ(·) ∈ Rp. This implies that θ(·) satisfies the first ODE
from (14). The remaining ODE’s follow from the general
results in (Kushner and Yin, 2003, Theorem 8.2.2).

Part 2. We study the limit set of the ODE (14) using
the methodology from (Yu, 2017, Proposition 4.1). We
introduce

V (θ, w1, . . . wN ) =
1

2
‖θ− θ̄‖2 +

1

2

N∑
i=1

qiψ̄i‖wi−w̄i‖2, (18)

where θ̄ and w̄i are given by (15), giving

V̇ (θ, w1, . . . wN ) = −
N∑
i=1

qiψ̄i〈wi− w̄i, Hi(wi− w̄i)〉. (19)

Following (Yu, 2017), we infer that for initial conditions
wi(0) ∈ span{φ(s)} the limit set of ODE (14) is the set Σ̄
satisfying (15).

The remaining steps are standard for the stochastic ap-
proximation theory (Yu (2017), (Kushner and Yin, 2003,
Theorem 8.2.2)).

Remark 1. A theorem, analogous to Theorem 1, can be
formulated for D2-GTD2(λ), in which consensus is ap-
plied to both θi and wi. A detailed presentation will be
omitted. We shall note here only that consensus on wi
introduces the additional asymptotic constraint w̄1(θ) =
· · · = w̄N (θ) = w̄(θ) for any given θ. It is possible to show
that the algorithm converges weakly to the set of points
x̄ = [θ̄T w̄T ]T ∈ R2p defined by

Ḡθ̄ + ḡ − H̄w̄ = 0, ḠT w̄ = 0, (20)

where Ḡ =
∑N
i=1 ψ̄iqiΦ

TΞi(P
(λi)−I)Φ, b̄ = ΦT

∑N
i=1 ψ̄iqi

Ξi r
(λi)
π , r

(λi)
π is a constant M -vector in the affine function
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T (λi)(·) and H̄ =
∑N
i=1 ψ̄iqiΦ

TΞiΦ. This implies that the
convergence points of θ are, accordingly, different. When
all the agents have equal λ-parameters and equal behavior
policies, both algorithms provide the same solution for θ.

Remark 2. The proposed multi-agent algorithm can be
considered from two viewpoints: 1) as a tool for organizing
complementary actions of multiple agents contributing to
a common goal, and 2) as a parallelization tool, allowing
faster convergence and reduction of the noise influence
(by the averaging of the consensus scheme), especially in
the problems of large dimensions. In the first case, the
agents can have different behavior policies (in the sense
of different probabilities of visiting the MDP states), as
well as different ways of defining local λ-parameters. The
weighting factors ψ̄iqi can help to place more emphasis on
those agents that can provide more significant contribution
to the overall goal. Adequate weights, covering possibly
non-overlapping subsets of MDP states, can contribute
significantly to the overall rate of convergence. However,
one should have in mind that diffusion of information over
the network is a dynamic process: the higher the connect-
edness of the network, the higher the overall convergence
rate (Stanković et al., 2016, 2011)

Remark 3. The coefficients ψ̄i can be defined by appropri-
ate network design, including the network topology and
the numerical values of the convexification coefficients. If
one adopts a time invariant network with A(n) = A, the
problem reduces to the definition of the elements of an N×
N matrix A which provides ψ̄i = 1

N (having in mind the
freedom in selecting the weights qi). Then, one has the the
standard equation 1TA = 1T , where 1T = [1 · · · 1]T (see
(Stanković et al., 2016) for details). The adopted algorithm
formulation allows stochastic sequences A(n), and, there-
fore, adequate treatment of communication dropouts and
different forms of asynchronous gossip communications.

Remark 4. Estimation algorithms based on consensus
have, in general, nice “denoising” properties, consisting
of the reduction of additive noise influence obtained by
averaging over the network. In order to clarify this effect in
the case of the proposed algorithm, the asymptotic conver-
gence rate of the proposed algorithm can be studied using
the results from (Kushner and Yin, 1987, Section 6.1).
It is possible to show that, under additional assump-
tions, we have that asymptotically (when α → 0 and

n → ∞) the normalized errors Uα(n) = Y α(n)−Ȳ√
α

, where

Y α(n) = [x1(n)T · · ·xN (n)T ]T , xi(n) = [θi(n)Twi(n)T ]T

and Ȳ = [x̄T · · · x̄T ]T , x̄ = [θ̄T w̄T ]T converge (in the sense
of Theorem 1) to U(·) = [u(·)T · · ·u(·)T ]T , where u(·)
satisfies the following Ito stochastic differential equation

du = Mudt+ dv (21)

where v(·) is a Wiener process and M a Jacobian matrix.
By analyzing the stationary covariance of u one concludes
that the stationary error covariance of the proposed algo-
rithm is lower than the local stationary error covariance
in the single agent case, by the factor ΣNi=1E{ψi(n)2} < 1,
where ψi(n) are elements of each row of the matrix Ψ(n)
for n large enough. This is an important property due to
the large variance problem of the TD(λ) based algorithms.
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Fig. 1. Diagram of the simulated MDP
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Fig. 2. Value function approximation obtained using D1-
GTD2(λ); the agents’ behavior policies are such that
they can individually visit only a subset of the states.
True value function is shown using blue line.

4. SIMULATION RESULTS

In this section we illustrate the main properties of the
proposed algorithms by applying them to a version of the
Boyan’s chain, e.g. (Sutton et al., 2009; Stanković and
Stanković, 2016). The diagram of the underlaying Markov
chain is shown in Fig. 1 (Stanković and Stanković, 2016).

The discount factor is set to γ = 0.85. The policy that
can be chosen in each state is the probability of choosing
the exit action aexit at state s: π(s, aexit). The reward
for exiting is r(s, aexit, s′) = −4 for all s and s′, but the
probability of staying in the same state is fixed to 0.2. If we
choose action ah the reward is r(s, ah, s′) = −1 for all s and
s′, but the probability of staying in the same state grows
with the state number as 1− 1

s , where s it the state number.

The target policy is the stationary policy π(s, aexit) = 0.8.
We assume that there are 10 agents communicating only
with a few randomly chosen neighbors with equal weights.
They use 7-features Gaussian radial basis representations
of the state vector as functions of distances to the states 1,
3, 5, 7, 9, 11 and 13. Note that the chain has an absorbing
state; hence we run the algorithms in multiple episodes.

In the first experiment, we demonstrate the case in which
the agents, individually, are not able to estimate the value
function due to their behavior policies; however, they are
able to obtain convergent estimates using the proposed
algorithm. The agents can individually visit only a subset
of the states, with the following agents’ starting and stop-
ping states [(1,3),(2,4),(4,7),(5,15),(5,15),(3,14), (8,15),
(1,6),(5,10),(6,11)], with the following stationary be-
havior policies [π1(s, aexit), π2(s, aexit), ..., π10(s, aexit)] =
[0.64, 0.75, 0.5, 0.81, 0.85, 0.8, 0.3, 0.55, 0.45, 0.6]. In Fig. 2
the value function approximation obtained for this case,
using D1-GTD2(λ) algorithm, with different λ parameters
for each agent: [0.6, 0.1, 0.25, 0.5, 0.05, 0.01, 0.3, 0.5, 0.4, 0.7]
and for step sizes α = β = 0.5, is shown.

Observe that better approximation is obtained for the
latter states because the agents visit these states more
frequently (with higher probability).
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Fig. 3. Parameter estimates for all the agents using D2-
GTD2(λ) in the second experiment.
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Fig. 4. Parameter estimates obtained in single-agent case
using GTD2(λ) algorithm.

In the second experiment we demonstrate the denoising
effect of the proposed algorithms. We now assume that
the all agents start in state 1 and are able to advance
to the final state 15, using the above behavior policies.
Fig. 3 shows the parameter estimates θi(n) as functions of
the number of iterations n. Observe that 20 episodes were
needed for the obtained approximation, which is much less
compared to the single agent case (Fig. 4), which also has
much larger variance.
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