
Resilient Consensus against
Mobile Malicious Agents

Yuan Wang, Hideaki Ishii, François Bonnet, Xavier Défago ∗
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Abstract: This paper addresses consensus problems in the presence of adversaries that can move
within the network and induce faulty behaviors in the attacked agents. By employing mobile
adversary models from the computer science literature, we develop three protocols which can
mitigate the influence of malicious agents. The algorithms follow the class of mean subsequence
reduced (MSR) algorithms, under which agents ignore the suspicious values received from
neighbors during their state updates. Different from the static model, even after the adversaries
move away, the infected agents may remain faulty in their values for a short while, which must
be taken into account. We develop conditions on the network structures for both the complete
and non-complete graph cases, under which the proposed algorithms are guaranteed to attain
resilient consensus. An illustrative example is provided to verify the effectiveness of our approach.
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1. INTRODUCTION

In the domain of cyber-physical systems, security problems
have recently become a critical issue. Cyber attacks can
cause damages not only from having important informa-
tion stolen, but also from having physical equipments
manipulated, which may lead to serious faults and acci-
dents. Security related problems have been investigated in
a range of disciplines including computer science, control,
robotics, and power systems (Sandberg et al. (2015)).

In this paper, we follow the research on fault-tolerant
distributed algorithms and focus on resilient consensus
problems. Consensus forms a fundamental problem in
multi-agents systems (Lynch (1996); Mesbahi and Egerst-
edt (2010)), where agents communicate with each other
to reach the global objective to share a common value.
In uncertain environments, adversaries may attack other
agents to change their behaviors, which can potentially
keep the regular agents from reaching consensus. Hence,
it is important to guarantee such regular agents to remain
resilient from adversarial attacks.

In particular, we deal with adversaries that can switch the
target agents from time to time. Such mobile adversaries
can cooperate in a worst-case manner by communicating
with each other even if no direct link is present. On the
other hand, the attacked agents may recover and become
fault-free again though the agent’s value may still be
corrupted. Depending on the awareness of the agent itself,
it can take different actions. For example, it can use only
the neighbors’ values for starting new in the consensus
process. Such recovery may be performed by reboot or
reset of the system manually by the system operator or
automatically by devices such as watchdogs.

� This work was supported in the part by the JST CREST Grant
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For mobile adversaries, several models have been proposed
in the literature (Buhrman et al. (1995); Garay (1994);
Sasaki et al. (2013); Bonnet et al. (2016)). They are differ-
ent in terms of the timings of attacks for the adversaries
and the capabilities of the agents recovering from infec-
tions. Recently, by Bonomi et al. (2019), these studies have
been extended to the case where the agents’ states take
real values. However, all of these studies have been limited
to networks taking complete graph forms and moreover to
Byzantine adversaries. Such adversaries are the worst type
as they can freely manipulate their states and are capable
to send different messages to their neighbors.

The contribution of this work is threefold: First, we ex-
tend the mobile adversary model in the real-valued states
case to the socalled malicious adversary models. Malicious
agents form a subclass of the Byzantine in that they can
only broadcast data, that is, they send the same data
to all neighbors. Second, we propose novel protocols for
achieving resilient consensus under three different mobile
malicious models. The protocols follow the resilient ap-
proach known as the mean subsequence reduced (MSR)
algorithms (Kieckhafer and Azadmanesh (1994)). In up-
dating their state values, the agents ignore the suspicious
values sent by other agents. Third, we consider networks
taking non-complete graph forms and characterize the
necessary connectivity structures for the proposed MSR-
based protocols to guarantee resilient consensus.

The considered problem setting is natural from the view-
point of applications such as wireless sensor networks,
where agents communicate with a limited number of neigh-
boring agents and use broadcast transmissions. Moreover,
our results have been motivated by the recent advances
made in resilient consensus problems initiated by LeBlanc
et al. (2013) and Vaidya et al. (2012). There, for MSR
algorithms, tight characterizations on the network struc-
tures have been made by introducing the notion of graph
robustness. Further works can be found in, e.g., (Chen
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et al. (2018); Dibaji and Ishii (2015); Dibaji et al. (2018);
Wang and Ishii (2020, 2019); Zhang et al. (2015)).

Concerning mobile adversary agents, the early work by
Buhrman et al. (1995) has proposed a model where the
malicious agents can move and switch their identities;
when they move away, the recovering agents are cured
from infections immediately and can be treated as regular
in the next step. Another work by Garay (1994) discusses
a more general model where the cured agent can detect
the infection when they recover. Recently, other mobile
adversary models and resilient algorithms have been pro-
posed by Sasaki et al. (2013) and Bonnet et al. (2016),
where the detection of infection by the cured agents is not
possible. We extend these models to agents whose states
take real values under the malicious adversary model. In
this case, in fact, the two models in (Sasaki et al. (2013))
and (Bonnet et al. (2016)) coincide. When the adversaries
are mobile, the conventional MSR-based algorithms for
the static adversaries mentioned above cannot guarantee
resilient consensus. This is mainly because the recovering
agents require special attention as they may have cor-
rupted values.

This paper is organized as follows. In Section 2, the re-
silient consensus problem is formulated. We propose three
protocols for three mobile malicious models in Sections 3
to 5. In our analysis, we provide sufficient conditions on
required network structures. An example is provided in
Section 6 to illustrate the effectiveness of the algorithms.
We conclude this work in Section 7. Proofs of the results
are omitted for space reasons.

2. PROBLEM FORMULATION

2.1 Graph Notions

Denote by G = (V, E) a graph consisting of n nodes,
where the set of nodes is V = {1, 2, . . . , n} and the set of
edges is E ⊆ V × V. The edge (j, i) ∈ E indicates that
node j can send a message to node i and is called an
incoming edge of node i. Directed graphs are considered,
in which (j, i) ∈ E does not necessarily imply (i, j) ∈ E .
Let Ni = {j : (j, i) ∈ E} be the set of (in-)neighbors
of node i. The path from node i1 to node ip is denoted
as the sequence (i1, i2, . . . , ip), where (ij , ij+1) ∈ E for
j = 1, . . . , p − 1. The graph G is said to have a spanning
tree if there exists a node from which there are paths to all
other nodes in this graph. Moreover, the graph is said to be
complete, if for each pair of nodes, there is a bidirectional
edge (i, j) ∈ E connecting them.

2.2 Mobile Malicious Agents and Resilient Consensus

We consider a multi-agent system with n agents interact-
ing over the directed graph G = (V, E). Each node has
a state xi(k), which takes a real value. The objective
of consensus is that starting from initial values xi(0),
all agents update their states iteratively by communicat-
ing with their neighbors to arrive at the same value as
limk→∞ |xi(k)− xj(k)| = 0 for i, j ∈ V.
In this paper, we study multi-agent systems situated in
an uncertain environment, where some agents are faulty
and/or adversarial and do not execute the given algorithm

properly by updating their states arbitrarily. We introduce
a new class for such faulty agents, which is called mobile
malicious model. Informally, this class has the following
two features: (i) The adversary agents may transmit their
false states to their neighbors through broadcast, i.e., all
neighbors of a malicious agent receive the same data.
(ii) The identity of the malicious agents can switch over
time. That is, an attacker may turn a non-adversarial
agent to become malicious at some time. Also, a malicious
agent may recover and be cured at a later time. It is said to
be mobile to indicate that the attacker may switch between
different agents in infecting them. In this work, we treat
the mobile agents deterministically though they share
similarities with stochastic models studied for spreading
processes of infectious diseases (Nowzari et al. (2016)).

We provide more notations and notions for the mobile
models considered in this paper. At each time k, the set V
of nodes is partitioned into two subsets: The set R(k) of
regular agents and the set A(k) of adversarial agents. In
the static case, R(k) and A(k) remain invariant over time.
Their faulty and abnormal behaviors are defined below.

Definition 1. (Malicious): An adversarial agent i ∈ A(k)
is said to be malicious if it makes updates in its value xi(k)
arbitrarily and sends the same value to all of its neighbors
each time a transmission is made.

The notion of malicious agents is natural in many applica-
tions. For example, in wireless sensor networks, each sensor
node communicates by broadcasting its data, and hence its
neighbors receive the same state data.

Different from the static version of malicious models stud-
ied in, e.g., (LeBlanc et al. (2013)), the mobile adversaries
can exhibit more variety in their behaviors. As discussed
later, we will adopt three classes of such mobile adver-
sary models from the literature, which consider mainly
the Byzantine agents (Bonomi et al. (2019)). Under the
mobile adversary model, the identity of the adversaries
may switch, but we limit their influence by bounding the
total number of them in the network over time. This is
called the F -total model as defined below.

Definition 2. (F -total): The mobile adversarial set A(k)
follows the F -total model if |A(k)| ≤ F for all k.

For the multi-agent system in the presence of mobile adver-
sary agents, we provide the notion of resilient consensus.
Denote the maximum and minimum values among the
states of the regular agents by x(k) = max{xi(k) : i ∈
R(k)}, x(k) = min{xi(k) : i ∈ R(k)}, respectively. These
are the values that should eventually become the same in
our resilient setting. Note that these values are chosen only
among the regular agents in R(k) at time k.

Definition 3. (Resilient consensus): If for any possible sets
and behaviors of the mobile malicious agents and any
initial states of the regular agents, the following conditions
are satisfied, then the resilient consensus is reached:

1. Safety condition: There exists an interval S ⊂ R such
that xi(k) ∈ S for all i ∈ R(k), k ∈ Z+.

2. Consensus condition: The regular agents eventually
take the same value as limk→∞ x(k)− x(k) = 0.

This paper aims to develop distributed algorithms for the
regular agents in the system to reach resilient consensus.
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(a) Nodes (b) Buhrman’s mobile model (M1) (c) Garay’s mobile model (M2) (d) Bonnet’s mobile model (M3)

Fig. 1. Mobile adversary models for the malicious agents case

This problem is an extension of those studied in (Bouzid
et al. (2010); LeBlanc et al. (2013); Dibaji and Ishii
(2015)), which are limited to the static adversary models.
Under the mobile adversary model, the notion of resilient
consensus is slightly different from the static case. The
agents in the adversary status, and in some cases, those
in the recovering status, need not be in consensus with
others. As a consequence of the attacks and/or faults, the
adversary and recovering agents can take arbitrary values
even outside the safety interval S.
To mitigate the influence of the adversaries, we develop
modified versions of the socalled mean subsequence reduced
(MSR) algorithms. For the static case, such algorithms
are capable to realize resilient consensus. For each regular
agent i, the update rule of its state xi(k) is written as

xi(k + 1) = xi(k) +
∑

j∈Mi(k)

aij(k) (xj(k)− xi(k)) , (1)

where the weights must satisfy aij ∈ [γ, 1) with γ ∈
(0, 1/2) and

∑
j∈Mi(k)

aij(k) ≤ 1. Here, Mi(k) denotes

the subset of agent i’s neighbor set Ni, whose states do
not take extreme values; informally, among the neighbors,
the F largest and the F smallest values are removed
to mitigate the influence of the malicious agents. It is
known that to guarantee resilient consensus by the MSR
algorithm under the F -total model, it is necessary and
sufficient that the network topology satisfies a condition
expressed in terms of its connectivity. More specifically,
the network must have a property known as (F +1, F +1)-
robustness; see, e.g., (LeBlanc et al. (2013)).

However, we can show that mobile adversaries can easily
destroy resilient consensus if the conventional approach
for the static F -total model is directly applied. One issue
is related to the presence of recovering nodes. Suppose
that, at one time, the adversary moves to a different
normal agent, which becomes malicious. In the meantime,
the agent which was infected now recovers and becomes
normal. Such a recovering node might have a corrupted
value left from the attack. At this moment, there are more
agents taking abnormal values in the network even if the
attacker is capable to infect only one agent at a time. In
such circumstances, the conventional MSR algorithms for
the F -total model cannot guarantee resilient consensus.

In our analysis, it is more convenient to use an alter-
native expression of the update rule (1). Let the self-
weight aii(k) = 1 − ∑

j∈Mi(k)
aij(k) and the extended

neighbor set M+
i (k) = {i} ∪Mi(k) containing the index

of node i itself. Then, we can rewrite (1) as xi(k + 1) =∑
j∈M+

i
(k) aij(k)xj(k).

2.3 Models for Mobile Malicious Behaviors

Here, we introduce three classes of mobile malicious behav-
iors denoted as models M1, M2, and M3. The differences
are related to what happens when an adversary moves to
another agent and, especially, to whether the recovering
agent is aware that it was attacked and its state may be
corrupted during the attack. These models are taken from
the literature in computer science originally developed
for Byzantine adversaries. We propose versions adapted
for the malicious adversaries case below. The models are
illustrated in Figs. 1(b)–1(d).

It is noted that for the state update in the MSR algorithm,
each agent executes three basic steps (LeBlanc et al.
(2013)): Send, collect, and update. At time (or round) k,
first, a regular agent i broadcasts its current value xi(k)
to its neighboring agents. Second, it collects the values of
the neighbors xj(k) for j ∈ Ni. Third, after deleting some
of the neighbor values, the value is updated to xi(k + 1).

M1 Buhrman’s model (Buhrman et al. (1995)): The ad-
versary can move away from an attacked agent i
only at the sending step in each round k (Fig. 1(b)).
This means that agent i broadcasts its corrupted
state xi(k) to neighbors, but then becomes recovered
immediately. Hence, agent i can collect and update
its state as a regular node. For this reason, agent i
will be classified as regular in the this round k, i.e.,
i ∈ R(k). If the adversary moved from agent i to
another agent j after the send step, then we have
j ∈ A(k). It is important to note that at each round,
there are at most F faulty values in the network.

M2 Garay’s model (Garay (1994)): In this model, each
agent has an additional variable, the cured flag θi(k);
initially, it is set as θi(k) = 0. The adversary can move
away from an attacked agent i to agent j at any step
in each round k (Fig. 1(c)). In this model, agent i is
classified as adversarial at round k, i.e., i ∈ A(k), and
as regular in the next round k + 1, i.e., i ∈ R(k + 1).
In round k + 1, agent i is aware that it was infected
and sets its flag as θi(k) = 1. In this state, it does not
send its potentially corrupted value to neighbors nor
does it use its own value during its update; the flag is
set back to θi(k) = 0 after the update step in round
k. At each round, there are at most F faulty values
and F missing values in the network.

M3 Bonnet’s model (Bonnet et al. (2016)): As in M2
above, the adversary can move away from an attacked
agent i at any step during each round k (Fig. 1(d)).
Thus, we have i ∈ A(k) and i ∈ R(k + 1). At
round k + 1, agent i in the cured state is however
not aware that it was infected, and hence makes the
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next update as usual. There are at most 2F faulty
values in the network: F of them are due to attacks
and the remaining F from cured agents like agent i.

To deal with each of these models, we provide three
protocols in the following sections.

3. PROTOCOL 1 FOR THE M1 MODEL

Here, we present the first protocol for the mobile adver-
saries, which is a modified version of the MSR algorithm
from, e.g., (LeBlanc et al. (2013); Dibaji and Ishii (2015)).
It will be shown that this protocol is effective to deal with
mobile malicious agents under the model M1.

Protocol 1. At each round k, regular agent i ∈ R(k)
executes the following three steps:

1. (Send) It broadcasts its current value xi(k).
2. (Collect) It collects values xj(k) of neighbors j ∈ Ni.
3. (Update) It sorts the received values and its own value

in descending order. Agent i then deletes the F largest
and the F smallest values, which will not be used in
the update. The set of indices of agents whose values
remained is written as M+

i (k) ⊂ {i} ∪ Ni. Finally,
agent i updates its value by (1).

A unique feature of this algorithm is that agent i might
not use its own value. This is because in Step 3, 2F
values are deleted regardless of agent i’s value. By contrast,
in conventional algorithms for static adversary models
in (LeBlanc et al. (2013); Dibaji and Ishii (2015)), this
number depends on the current value of agent i.

We establish that with Protocol 1, we can achieve resilient
consensus under the M1 model (Buhrman et al. (1995)).
Here, we first present the result for networks in the
complete graph form.

Proposition 1. Consider the multi-agent system whose
network G forms a complete graph. Suppose that the
mobile malicious agents follow the F -total and M1 model.
Then, the regular agents using Protocol 1 reach resilient
consensus if and only if n ≥ 2F + 1. The safety interval is
given by S = [x(0), x(0)].

This proposition can be seen as an extension of a re-
sult given in (Bonomi et al. (2019)), which deals with
Byzantine-type mobile adversaries. The condition there
is n ≥ 3F + 1. Thus, fewer adversaries can be tolerated
in the network compared to the malicious-type case with
n ≥ 2F + 1 given in the proposition above. This is intu-
itive since Byzantine adversaries are more powerful. For
Proposition 1, we have proved using arguments similar to
those in (LeBlanc et al. (2013); Dibaji and Ishii (2015)).

The advantage of our approach is that it can be extended
to non-complete graphs as shown in the theorem below.

Theorem 1. Consider the multi-agent system under the
network G where the mobile malicious agents follow the
F -total and M1 model. Then, the regular agents using
Protocol 1 reach resilient consensus if

C1 n ≥ 4F + 4.
C2 For every agent i, the number of neighbors satisfies

|Ni| ≥ 2F + 1 + n/2.

The safety interval is given by S = [x(0), x(0)].

Note that condition C1 in the theorem is necessary for
condition C2 to hold. This can be shown by using complete
graphs. For the case n = 4F + 3, each agent clearly has
4F+2 neighbors. However, the condition C2 is |Ni| ≥ 2F+
1 + �n/2	 = 4F + 3, and thus there is a contradiction.
Further, when applied to complete graphs, this result also
exhibits some conservatism. The bound in Theorem 1 is
n ≥ 4F + 4 whereas in Proposition 1, it is n ≥ 2F + 1.

4. PROTOCOL 2 FOR THE M2 MODEL

We next show another protocol that is effective for the
M2 model. This model is different from M1 in that the
recovering agents do not send their values to neighbors
since they are aware of having been infected. Hence, in
the worst case under the M2 model, at each round, there
can be F -total malicious agents and, in addition, F agents
that do not send values.

Protocol 2. At each round k, regular agent i ∈ R(k)
executes the following three steps:

1. (Send) If agent i is not recovering with the cured flag
θi(k) = 0, then it broadcasts its current value xi(k).

2. (Collect) It collect values xj(k) of neighbors j ∈ Ni.
3. (Update) If the cured flag is θi(k) = 0, then agent i

sorts the received values and its own value in de-
scending order. Otherwise (i.e., θi(k) = 1), agent i is
recovering and sorts only the received values. Agent i
then deletes the F largest and the F smallest values.
Finally, agent i updates its value by (1).

Similar to Proposition 1, we have the following result for
networks in the complete graph forms.

Proposition 2. Consider the multi-agent system whose
network G forms a complete graph. Suppose that the
mobile malicious agents follow the F -total and M2 model.
Then, the regular agents using Protocol 1 reach resilient
consensus if and only if n ≥ 3F + 1. The safety interval is
given by S = [x(0), x(0)].

In the M2 model, there may be up to F cured agents
(with θi(k) = 1) that are not allowed to send their values
to neighbors. Hence, each regular node may not receive
data from some neighbors. Among the data received, up
to F of them may be faulty. Protocol 2 is effective for
this model since each regular agent deletes 2F neighbor
values in Step 3. In comparison with M1, to guarantee
its resilience for M2, F more neighbors for each agent are
needed. This argument also holds for the result extended
to non-complete graphs as shown in the following.

Theorem 2. Consider the multi-agent system under the
network G where the mobile malicious agents follow the F -
total and M2 model. Then, regular agents using Protocol 2
reach resilient consensus if

C1 n ≥ 6F + 4.
C2 For every agent i, the number of neighbors satisfies

|Ni| ≥ 3F + 1 + n/2.

The safety interval is given by S = [x(0), x(0)].

We discuss the differences between M1 and M2. Generally,
the graph condition for M2 is stricter than that for M1
because the agents in the cured status complicate the
system behavior. Moreover, adversary agents in M2 are
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Table 1. Properties of mobile adversary models

Timing Aware when Complete Non-complete
Model to move cured graph graph

M1 Send – n ≥ 2F + 1 n ≥ 4F + 4

M2 Any Yes n ≥ 3F + 1 n ≥ 6F + 4

M3 Any – n ≥ 4F + 1 n ≥ 8F + 4

more powerful as they can move at any step during the
update rounds while in M1, they switch only at send steps.

The main feature of M2 is that once an adversary agent
moves away, the recovering agent soon knows that it was
infected and then avoids sending its value to neighbors. In
practice, this feature may not be easy to attain as it re-
quires the implementation of fault detection. To deal with
such an issue, we discuss yet another mobile adversary
model M3 in the next section. In this case, detection of
cured agents is not needed. We propose another protocol
to solve the resilient consensus problem for M3.

5. PROTOCOL 3 FOR THE M3 MODEL

We outline the resilient protocol for the M3 model. Mo-
bile adversaries under this model are more powerful since
the recovering agents do not know about their infection.
Hence, they send their values during the cured round
though they can be corrupted. In this respect, the re-
covering agents can be considered as additional F -total
malicious agents in the network. Thus, at each round, the
regular agents may receive at most 2F corrupted values.

Protocol 3 copes with additional malicious data from
the M3 model. It is slightly modified from Protocol 1.
Specifically, in Step 3 at each round, 4F values (2F largest
and 2F smallest) are removed while in Protocol 1, this
number is 2F . We will show that this protocol is effective
to deal with the mobile malicious agents under M3.

Since more neighbors are deleted in Protocol 3, each reg-
ular agent needs more neighbors compared with networks
for Protocols 1 and 2. By an analysis similar to those in
previous sections, we have the following results. The first
is concerned with networks in the complete graph form.

Proposition 3. Consider the multi-agent system whose
network forms a complete graph. Suppose that the mo-
bile malicious agents follow the F -total and M3 model.
Then, the regular agents using Protocol 2 reach resilient
consensus if and only if n ≥ 4F + 1. The safety interval is
given by S = [x(0), x(0)].

We can further deal with the non-complete graph case as
shown in the theorem below.

Theorem 3. Consider the multi-agent system under the
network G where the mobile malicious agents follow the F -
total and M3 model. Then, regular agents using Protocol 3
reach resilient consensus if

C1 n ≥ 8F + 4.
C2 For every agent i, the number of neighbors satisfies

|Ni| ≥ 4F + 1 + n/2.

The safety interval is given by S = [x(0), x(0)].

We highlight the differences of the M3 model and the
related results from those for M1 and M2. First, we discuss
the relation to M1. Both M1 and M3 do not require the

Fig. 2. Network structure in the simulations

functionality to detect agents in cured status. However,
the M3 model is more powerful since in M1, the adversary
agents can move only at the send step, while in M3, they
can move at any step. This difference results in a more
restrictive condition on the network structure to guarantee
resilient consensus. We observe that each agent needs
2F more neighbors in M3 compared with M1. Next, we
compare the M3 model with M2. In both M2 and M3,
the adversary agents can move at any step. The difference
comes from the detection ability in the regular agents,
and the agents in M2 are more capable in this respect.
In M2, if a regular agent is infected by an adversary, it
becomes aware as soon as the adversary moves away. In
contrast, the regular agents in M3 will never be aware of
the infection. As discussed above, we can find that the
graph conditions are related to the power of adversaries
and defenders. Table 1 presents the models’ properties.

6. ILLUSTRATIVE EXAMPLE

We consider the network of 14 agents in Fig. 2. The
subgraph consisting of agents 2 to 13 form a clique (a
complete subgraph). All of them have edges to agent 1,
whereas agent 1 has no outgoing edge to any agents and is
a sink. Agent 14 is an incoming/outgoing neighbor of all
nodes in the clique of agents 2 to 13, but not with agent 1.

All agents have 12 neighbors, implying that resilient con-
sensus can be attained under the three mobile adversary
models. For the M1 model, Protocol 1 can tolerate up
to two mobile malicious agents by Theorem 1. On the
other hand, in the M2 and M3 models, Protocols 2 and 3
can handle one mobile malicious agent, respectively, by
Theorems 2 and 3. Note that under the static model, this
network may have up to F = 4 malicious agents because
the network is (5, 5)-robust. This difference indicates the
difficulty to deal with mobile malicious agents.

In all simulations, we introduce one mobile malicious agent
in the network and set F = 1. The agents’ initial states are
taken randomly from the interval [0, 8]. Thus, the safety
interval S should be nonnegative. The mobile adversary
agent moves from agent 1 to agent 14 in a round robin
fashion. At each agent, during the infection, the state will
switch to the same negative number −5.

We first demonstrate the limitations of the conventional
MSR algorithms from, e.g., (LeBlanc et al. (2013); Dibaji
and Ishii (2015)) under the mobile adversary models. Here,
the case for the M1 model is examined. The time responses
of the agents’ values are shown in Fig. 3(a). Though all
regular agents eventually reach consensus, the value is −5.
Hence, the mobile adversary agent is successful in leading
all regular agents to a value that it specified. For the other
two mobile adversary models, we obtain similar results.
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(a) Conventional MSR algorithm under M1

(b) Protocol 1 under M1

(c) Protocol 3 under M3

Fig. 3. Time responses of agent values

Next, we check the effectiveness of the proposed protocols.
We first examine Protocol 1 under the M1 model. The time
responses are depicted in Fig. 3(b). Observe that each time
the adversary agent moves away, the agent can recover in
the next round and go back to take a state value as other
regular agents. For Protocol 2 under the M2 model, we
can obtain similar responses (not shown here).

For Protocol 3 under the M3 model, each regular agent
removes more neighbor values at updates, so that the
detection of cured agents is not needed. The results are
displayed in Fig. 3(c), where resilient consensus is clearly
reached. Notice that this plot is different from the one
in Fig. 3(b) in that the values of each agent that turned
malicious are kept at −5 for two time steps in a row. As a
result, there are two agents taking false values at a time.

7. CONCLUSION

In this paper, we have considered resilient protocols for the
multi-agent consensus problem to mitigate the influence of
mobile misbehaving agents. By restricting mobile adver-
saries to malicious types, we have proposed three novel
protocols for three mobile adversary models. We have
derived conditions on the network structures for achieving
resilient consensus for both complete and non-complete
graphs. Future works will focus on formulating a more
detailed model for mobile adversary behaviors.
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