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Abstract: We consider a discrete nonlinear control time-varying system x(k + 1) =
f
(
k, x(k), u(k)

)
, k ∈ N, x ∈ Rn, u ∈ Rr. A control process of this system is a pair

(
x̂(k), û(k)

)
k∈N

consisting of a control
(
û(k)

)
k∈N and some solution

(
x̂(k)

)
k∈N of the system with this control. We

assume that the control process is defined for all k ∈ N. We have obtained sufficient conditions
for uniform and non-uniform (with respect to the initial moment) exponential stabilization of
the control process with any pregiven decay of rate. Exponential convergence to zero of the
deviation of both the state vector and the control vector is guaranteed. The result is based on
the property of uniform complete controllability (in the sense of Kalman) for a system of linear
approximation.
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1. INTRODUCTION

The problem of stability by the linear approximation
has been intensively investigated for continuous-time sys-
tems since the fundamental Lyapunov’s paper (Lyapunov
(1956)). He proved that if the system of the first ap-
proximation is regular and all its Lyapunov exponents
are negative, then the solution of the original system is
asymptotically stable. In 1930, it was stated by O. Perron
that the requirement of regularity of the first approxi-
mation is substantial. He constructed an example of the
second-order system of the first approximation, which has
negative characteristic exponents along a zero solution of
the original system but, at the same time, this zero solution
of the original system is Lyapunov unstable. Furthermore,
in a certain neighborhood of this zero solution almost all
solutions of the original system have positive characteristic
exponents. A very exhausting review of results obtained in
this area may be found in Izobov (2001). Another approach
to this problem is presented in Dai (2006). For discrete-
time systems in (Agarwal, 2000, Theorem 5.6.2), it is
shown that uniform exponential stability of

x(k + 1) = A(k)x(k), k ∈ N, x ∈ Rn,
implies uniform exponential stability of

y(k + 1) = A(k)y(k) + f(k, y(k)),

for all f ∈
⋃
m>1

Fm, where the class Fm consists of all

functions g : N×Rn → Rn for which there exists a constant
Cg such that

‖g(k, x)‖ ≤ Cg ‖x‖m

for all k ∈ N and x ∈ Rn. The converse theorem has been
shown in (Gyori and Pituk, 2001, Theorem 4). A natural
continuation of this research is a problem of stabilizing
a nonlinear time-varying control system on the base of
the linearized system. This area is, however in very early
stage and some preliminary results and approaches may
by found in Cai et al. (2012); Byrnes et al. (1993); Fu
and Abed (1991). In this paper we investigate a discrete
nonlinear time-varying system and analyzing its linear
approximation. We obtain sufficient conditions for uniform
and non-uniform exponential stabilization with any given
rate of decay. The paper is organized as follows. In the next
section we introduce necessary notations and definitions.
The main result is formulated in Section 3. In Section 4
an illustrative example is presented.

2. DEFINITIONS

Let us introduce some denotations. Suppose Rn =
{
x =

col(x1, . . . , xn) : xi ∈ R
}

is the linear space of column

vectors over R; ‖x‖ =
√
xTx is the (Euclidean) norm in

Rn, where T denotes the transposition; Bnh(x̂) := {x ∈
Rn : ‖x − x̂‖ < h}; Rn×m denotes the space of all real
n × m-matrices with the spectral norm, i.e., with the
operator norm induced in Rn×m by the Euclidean norms
in Rn and Rm; I ∈ Rn×n is the identity matrix. For
any sequence ψ =

(
ψ(k)

)
k≥k0

⊂ R which is not equal

to zero finally, denote by λ[ψ] = lim sup
k→∞

k−1 ln |ψ(k)| the

Lyapunov exponent of ψ, by β[ψ] = lim sup
k,s→∞

s−1 ln |ψ(k +

s)/ψ(k)| denote the Bohl exponent of ψ.
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Consider a linear discrete time-varying system

x(k + 1) = A(k)x(k), k ∈ N, x ∈ Rn. (1)

Denote by X(k, s) the transition matrix of (1), i.e.,

X(s, s) = I,

X(k, s) = A(k − 1) · · ·A(s) for k > s.

Additionally, when A =
(
A(k)

)
k∈N consists of invertible

matrices we define X(s, k) :=
(
X(k, s)

)−1
for k > s.

A bounded sequence
(
D(k)

)
k∈N ⊂ Rn×n of invertible

matrices such that
(
D−1(k)

)
k∈N is bounded is called a

Lyapunov sequence. If
(
D(k)

)
k∈N is a Lyapunov sequence,

then the transformation which transforms a sequence(
x(k)

)
k∈N ⊂ Rn into a sequence

(
y(k)

)
k∈N ⊂ Rn according

to the formula
y(k) = D(k)x(k)

is called a Lyapunov transformation. It reduces (1) to

y(k + 1) = C(k)y(k), k ∈ N, y ∈ Rn, (2)

where
C(k) = D(k + 1)A(k)D−1(k). (3)

Systems (1) and (2) connected by (3) where
(
D(k)

)
k∈N

is a Lyapunov sequence are called dynamically equivalent,
see Popova (2018) (or kinematically similar, see Gohberg
et al. (1996)).

Consider a discrete nonlinear time-varying system

x(k + 1) = f
(
k, x(k), u(k)

)
, k ∈ N. (4)

Here x ∈ Rn is a state vector, u ∈ Rr is a control vector.
Suppose that for any k ∈ N the function (x, u) 7→f(k, x, u)
and its derivatives with respect to x and with respect
to u are continuous on Rn × Rr (or, at least, in some
neighborhood of the admissible control process, see below).

Definition 1. We call by an admissible control process
of system (4) any sequence

(
x̂(k), û(k)

)
k∈N such that(

û(k)
)
k∈N ⊂ Rr is some control sequence, and

(
x̂(k)

)
k∈N ⊂

Rn is a solution sequence of the system

x(k + 1) = f
(
k, x(k), û(k)

)
, k ∈ N,

with some initial condition.

Let an admissible control process
(
x̂(k), û(k)

)
k∈N of sys-

tem (4) be fixed. We consider the problem of exponen-
tial stabilization of this process by state feedback control
u(k) = u

(
k, x(k)

)
.

Definition 2. We say that the admissible control process(
x̂(k), û(k)

)
k∈N of system (4) is exponentially stabilizable

with the decay rate κ > 0 by state feedback control if for
any k0 ∈ N there exist δ > 0, c > 0 such that for any
x0 ∈ Bnδ

(
x̂(k0)

)
there exists a control ũ =

(
ũ(k)

)
k≥k0

=(
ũ
(
k, x(k)

))
k≥k0

satisfying inequality

‖ũ(k)− û(k)‖ ≤ ce−κ(k−k0), k ≥ k0,
and such that the solution x̃(k) of the system (4) with
u(k) = ũ(k) and with the initial condition x(k0) = x0
satisfies the inequality

‖x̃(k)− x̂(k)‖ ≤ ce−κ(k−k0), k ≥ k0.
If δ > 0 and c > 0 do not depend on k0, then we
say that the admissible control process

(
x̂(k), û(k)

)
k∈N of

system (4) is uniformly exponentially stabilizable with the
decay rate κ > 0 by state feedback control.

Remark 3. Note that along with exponential stability of
the state vector, the definition requires exponential stabil-
ity of the control vector. This explains why we say about
exponential stabilization of the control process.

In problems of stabilization of linear time-varying systems,
the property of uniform complete controllability plays an
important role. Consider a linear control system

y(k + 1) = A(k)y(k) +B(k)v(k), k ∈ N, (5)

here y ∈ Rn is a state vector, v ∈ Rr is a control
vector. Denote by Y (k, s) the transition matrix of the
corresponding free system

y(k + 1) = A(k)y(k), k ∈ N.
For system (5), let us construct the following gramian

W (k, τ) =

k−1∑
s=τ

Y (k, s+ 1)B(s)BT (s)Y T (k, s+ 1). (6)

Definition 4. System (5) is said to be uniformly completely
controllable (Kwakernaak and Sivan, 1972, Definition 6.3)
if there exists a ϑ ∈ N and there exist αi = αi(ϑ) > 0,
i = 1, 2, 3, 4, such that for all τ ∈ N the following
inequalities hold:

W (τ + ϑ, τ) > 0,

0 < α1I ≤W−1(τ + ϑ, τ) ≤ α2I,

0 < α3I ≤ Y T (τ + ϑ, τ)W−1(τ + ϑ, τ)Y (τ + ϑ, τ) ≤ α4I.

This definition goes back to the definition of Kalman
(1960) for linear systems with continuous time. The fol-
lowing criterion holds (the proof is given, e.g., in (Zaitsev
et al., 2014, Theorem 4)).

Proposition 5. System (5) is uniformly completely control-
lable iff the following conditions hold:

(a) A =
(
A(k)

)
k∈N is a Lyapunov sequence;

(b) B =
(
B(k)

)
k∈N is bounded, i.e., sup

k∈N
‖B(k)‖ <∞;

(c) there exist a natural ϑ and a positive ` such that for
any τ ∈ N and for any x1 ∈ Rn there exists a control
u(k), k = τ, . . . , τ + ϑ − 1, that transfers the solution
of system (5) from the point x(τ) = 0 into the point
x(τ + ϑ) = x1, and the inequality ‖u(k)‖ ≤ `‖x1‖ holds
for all k = τ, . . . , τ + ϑ− 1.

Remark 6. In Babiarz et al. (2017), the property of uni-
form complete controllability was used in the sense of
fulfilling conditions (a), (b), (c). Due to Proposition 5 all
statements of Babiarz et al. (2017) holds for the definition
of uniform complete controllability in the sense of Defini-
tion 4.

3. MAIN RESULT

The main result of the paper is Theorem 9. The similar re-
sult (on non-uniform exponential stabilization) was proved
for continuous-time systems in Zaitsev et al. (2010).

First, let us give some auxiliary propositions. The following
lemma is a discrete analog of the Bihari Lemma (see Bihari
(1956)).

Lemma 7. Let p(k), q(k), k = 0, 1, 2, . . ., be non-negative
number sequences such that 0 ≤ p(0) ≤ σ,
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p(k) ≤ σ +

k−1∑
j=0

q(j)ω
(
p(j)

)
, k ∈ N,

where σ > 0, ω(τ) is continuous on [0,∞), monotonically
increasing and positive function for τ > 0. Suppose that
k−1∑
j=0

q(j) < Ω(∞) for all k ∈ N, where Ω(τ) =

∫ τ

σ

ds

ω(s)
.

Then p(k) ≤ Ω−1

k−1∑
j=0

q(j)

, here Ω−1(s) is the inverse

function to Ω(τ).

The proof of Lemma 7 is given, e.g., in (Gaishun, 2001,
§ 11). Let us give a corollary from Lemma 7 for the function
ω(τ) = τm, m > 1 (see Demidovich (1969)). In that case

Ω(τ) =
σ1−m − τ1−m

m− 1
, Ω(∞) =

σ1−m

m− 1
,

Ω−1(s) = σ(1− (m− 1)σm−1s)
1

1−m , s ∈
[
0,
σ1−m

m− 1

)
.

Corollary 8. Let p(k), q(k), k = 0, 1, 2, . . ., be non-
negative number sequences such that

0 ≤ p(0) ≤ σ,

p(k) ≤ σ +

k−1∑
j=0

q(j)
(
p(j)

)m
, k ∈ N, (7)

where σ > 0, m > 1. Suppose that
∞∑
j=0

q(j) <
1

(m− 1)σm−1
. (8)

Then

p(k) ≤ σ

1− (m− 1)σm−1
k−1∑
j=0

q(j)

 1
1−m

, k ∈ N.

Theorem 9. Let
(
x̂(k), û(k)

)
k∈N be an admissible control

process of system (4) such that:

(1) the system (5) with A(k) :=
∂f(k, x, u)

∂x

∣∣∣∣(
x̂(k),û(k)

),
B(k) :=

∂f(k, x, u)

∂u

∣∣∣∣(
x̂(k),û(k)

) is uniformly completely

controllable;

(2) the following equality holds:

f
(
k, x̂(k) + y, û(k) + v)− f(k, x̂(k), û(k)

)
= A(k)y +B(k)v + ϕ(k, y, v),

(9)

where

‖ϕ(k, y, v)‖ ≤ ψ(k)

∥∥∥∥( yv
)∥∥∥∥m , (10)

for all k ∈ N, (y, v) ∈ Bnh(0) × Brh(0), where λ[ψ] ≤ 0,
m > 1.

Then for an arbitrary κ > 0 the admissible control
process

(
x̂(k), û(k)

)
k∈N is exponentially stabilizable with

the decay rate κ by state feedback control.

Additionally, if β[ψ] ≤ 0, then for an arbitrary κ > 0
the admissible control process

(
x̂(k), û(k)

)
k∈N is uniformly

exponentially stabilizable with the decay rate κ by state
feedback control.

Proof. Let us consider system (4) in a neighborhood of
the admissible control process

(
x̂(k), û(k)

)
k∈N. Denote

y = x− x̂, v = u− û.
Taking into account (9), we can rewrite system (4) in
deviations in the following form:

y(k + 1) = A(k)y(k) +B(k)v(k) + ϕ
(
k, y(k), v(k)

)
(11)

on the set k ∈ N, (y, v) ∈ Bnh(0)× Brh(0), where ϕ(k, y, v)
satisfies condition (10).

Let an arbitrary κ > 0 be given. Using the property
of uniform complete controllability of the system (5) of
the first approximation for (11) and (Babiarz et al., 2017,
Theorem 4.3), we construct the control

v(k) = V (k)y(k), k ∈ N, (12)

such that sup
k∈N
‖V (k)‖ ≤ v0 and the closed-loop system

y(k + 1) =
(
A(k) +B(k)V (k)

)
y(k)

is dynamically equivalent to the system

z(k + 1) = e−κz(k)

by means of some Lyapunov transformation

z(k) = D(k)y(k), (13)

where sup
k∈N
‖D(k)‖ ≤ d, sup

k∈N
‖D−1(k)‖ ≤ d for some d ≥ 1.

Denote ϕ1

(
k, y(k)

)
= ϕ

(
k, y(k), V (k)y(k)

)
. The sys-

tem (11) with the control (12) has the form

y(k + 1) =
(
A(k) +B(k)V (k)

)
y(k) + ϕ1

(
k, y(k)

)
. (14)

Let k0 ∈ N be some initial time. Set h1 = min{h, h/v0}.
Let k ≥ k0, ‖y(k)‖ ≤ h1. Then ‖y(k)‖ ≤ h and
‖V (k)y(k)‖ ≤ v0h1 ≤ h, therefore from (10) we obtain

‖ϕ1

(
k, y(k)

)
‖ = ‖ϕ

(
k, y(k), V (k)y(k)

)
‖ ≤

ψ(k)

∥∥∥∥( y(k)
V (k)y(k)

)∥∥∥∥m = ψ(k)
(
‖y(k)‖2 + ‖V (k)y(k)‖2

)m/2
≤ ψ(k)

((
1 + v20

)
‖y(k)‖2

)m/2
= ψ(k)

(
1 + v20

)m/2‖y(k)‖m

=: ψ1(k)‖y(k)‖m.
It follows that λ[ψ1] = λ[ψ], β[ψ1] = β[ψ].

Let us apply the transformation (13) to the system (14).
We obtain the following system:

z(k + 1) = e−κz(k) + g
(
k, z(k)

)
, (15)

where g
(
k, z(k)

)
= D(k + 1)ϕ1

(
k,D−1(k)z(k)

)
. Set h2 :=

h1/d. Let k ≥ k0, ‖z(k)‖ ≤ h2. Then ‖D−1(k)z(k)‖ ≤
dh2 = h1. Hence, we have

‖g
(
k, z(k)

)
‖ = ‖D(k + 1)ϕ1

(
k,D−1(k)z(k)

)
‖ ≤

≤ dψ1(k)‖D−1(k)z(k)
)
‖m ≤ dm+1ψ1(k)‖z(k)‖m =:

=: φ(k)‖z(k)‖m.
It follows that λ[φ] = λ[ψ1], β[φ] = β[ψ1].

Let us choose the number ε > 0 so small that the inequality
ε < κ(m− 1) holds. Denote γ := κ(m− 1)− ε > 0. Since
λ[φ] = λ[ψ1] = λ[ψ] ≤ 0, it follows that there exists a
c1 > 0 (which, in general, depend on k0) such that for all
j = 0, 1, 2, . . . the inequality

φ(k0 + j) ≤ c1eεj (16)
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holds. Moreover, if β[ψ] ≤ 0, then β[φ] ≤ 0, and therefore
there exists a c1 > 0, which does not depend on k0, such
that (16) holds for all j = 0, 1, 2, . . .. We set

δ = min

{
h2
d
,

1

2d

(
1− e−γ

(m− 1)c1eκ

) 1
m−1

,

1

d

(
(1− (1/2)m−1)

c1eκ
· 1− e−γ

m− 1

) 1
m−1

}
. (17)

Then the following inequalities hold

dδ ≤ h2,

dm−1δm−1 <
1− e−γ

(m− 1)c1eκ
, (18)

(m− 1)dm−1δm−1
c1e

κ

1− e−γ
≤ 1−

(
1

2

)m−1
. (19)

Let x0 ∈ Bnδ
(
x̂(t0)

)
. Set y0 = x0− x̂(t0). Then y0 ∈ Bnδ (0).

Take z0 = D(k0)y0. Then ‖z0‖ ≤ dδ ≤ h2. Consider
the initial value problem for the system (15) with the
initial condition z(k0) = z0. By virtue of the Cauchy
formula (Gaishun, 2001, p. 20), for any k > k0, we have

z(k) = e−κ(k−k0)z0 +

+

k−k0−1∑
j=0

e−κ(k−k0−1−j)g
(
k0 + j, z(k0 + j)

)
. (20)

Denote s := k − k0, ν(j) := z(k0 + j), φ1(j) := φ(k0 + j),
g1
(
j, ν(j)

)
:= g

(
k0 + j, z(k0 + j)

)
. Then we have

‖g1
(
j, ν(j)

)
‖ = ‖g

(
k0 + j, z(k0 + j)

)
‖ ≤

≤ φ(k0 + j)‖z(k0 + j)‖m = φ1(j)‖ν(j)‖m,
and φ1(j) ≤ c1eεj , j = 0, 1, 2, . . .. By (20), we have

ν(s) = e−κsz0 +

s−1∑
j=0

e−κ(s−1−j)g1
(
j, ν(j)

)
for all s ∈ N. Hence

‖ν(s)‖ ≤ e−κs‖z0‖+

s−1∑
j=0

e−κ(s−1−j)‖g1
(
j, ν(j)

)
‖ ≤

≤ e−κs‖z0‖+

s−1∑
j=0

e−κ(s−1−j)c1e
εj‖ν(j)‖m. (21)

Multiplying (21) by eκs, we obtain

‖ν(s)‖eκs ≤ ‖z0‖+

+

s−1∑
j=0

c1e
κej(ε−(m−1)κ)

(
‖ν(j)‖eκj

)m
.

Denoting ξ(j) = ‖ν(j)‖eκj , we have

ξ(s) ≤ ‖z0‖+

s−1∑
j=0

c1e
κe−γj

(
ξ(j)

)m
for all s ∈ N. Moreover,

ξ(0) = ‖ν(0)‖ = ‖z(k0)‖ = ‖z0‖. (22)

We see that conditions (7) of Corollary 8 are fulfilled for
p(j) = ξ(j), σ = ‖z0‖, and

q(j) = c1e
κe−γj . (23)

It follows from (23) that
∞∑
j=0

q(j) = c1e
κ
∞∑
j=0

e−γj =
c1e

κ

1− e−γ
. (24)

Using (18), we have

‖z0‖m−1 = ‖D(k0)y0‖m−1 ≤

≤ dm−1δm−1 < 1− e−γ

(m− 1)c1eκ
.

Hence,
c1e

κ

1− e−γ
<

1

(m− 1)‖z0‖m−1
. (25)

From (24) and (25) it follows that
∞∑
j=0

q(j) <
1

(m− 1)‖z0‖m−1
.

It follows that condition (8) of Corollary 8 is fulfilled. By
Corollary 8, for all s ∈ N, we have

ξ(s) ≤ ‖z0‖

1− (m− 1)‖z0‖m−1
s−1∑
j=0

q(j)

 1
1−m

. (26)

Using (24) and (19), for all s ∈ N, we have

(m− 1)‖z0‖m−1
s−1∑
j=0

q(j) ≤

≤ (m− 1)dm−1δm−1
c1e

κ

1− e−γ
≤ 1− (1/2)m−1. (27)

From (26) and (27) it follows that

ξ(s) ≤ 2‖z0‖ (28)

for all s ∈ N. By (22), inequality (28) holds for s = 0 as
well. Making reverse replacements from ξ to ν and then to
z, we obtain

‖z(k)‖ ≤ 2‖z0‖e−κ(k−k0) ≤ 2h2e
−κ(k−k0), k ≥ k0.

Then the solution y(·) of the initial value problem for the
system (14) with the initial condition y(k0) = y0 is defined
by the equality y(k) = D−1(k)z(k), and the following
estimation holds:

‖y(k)‖ ≤ ‖D−1(k)‖‖z(k‖ ≤ 2dh2e
−κ(k−k0), k ≥ k0.

Finally, the solution x(·) of the initial value problem for
the system (4) with the initial condition x(k0) = x0 and
with control u(k) = û(k) + v(k) is defined by the equality
x(k) = x̂(k) + y(k) and

‖x(k)− x̂(k)‖ ≤ 2dh2e
−κ(k−k0), k ≥ k0.

For the control sequence u(·), we have the estimation

‖u(k)− û(k)‖ = ‖v(k)‖≤‖V (k)‖‖y(k‖≤2v0dh2e
−κ(k−k0),

k ≥ k0. Setting c = 2dh2 max{1, v0}, we obtain the
required inequalities. The constant c > 0 does not depend
on k0. If β[ψ] ≤ 0, then c1 does not depend on k0, therefore
δ > 0 defined by (17) does not depend on k0. The theorem
is proved. �

4. EXAMPLE

Example 1. Let
(
B(k))k∈N ⊂ R be an arbitrary Lya-

punov sequence; sup
k∈N
|B(k)| ≤ `, sup

k∈N
|B−1(k)| ≤ `, where

` ≥ 1. Consider a scalar nonlinear equation

x(k + 1) =
1

x(k)
+B(k)u(k), k ∈ N. (29)
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Let us choose û(k) = −B−1(k), k ∈ N. The equation (29)
with u(k) = û(k) takes the form

x(k + 1) =
1

x(k)
− 1, k ∈ N. (30)

Note that this equation has two equilibria: the unstable

one x1 =

√
5− 1

2
and the locally asymptotically stable

one x2 = −
√

5 + 1

2
. For an arbitrary x0 6= x1 the solution

x(k) of (30) with the initial condition x(1) = x0 is either
defined for all k ∈ N, and in this case lim

k→∞
x(k) = x2, or

defined not for all k ∈ N.

−2

0

2

10 20 30 40 50

 1
 2

x

x1

x2

k

Fig. 1. Solutions of equation (30). 1 is a breaking solution
with the initial condition x0 = w38. 2 is a non-
breaking solution with the initial condition x0 = x1 +
10−8.

We say that a solution of (30) is breaking if it is defined
not for all k ∈ N. Initial conditions of breaking solutions

are numbers of the form ws =
Ps
Qs

, s ∈ N, where Ps = zs,

Qs = zs+1, and z1, z2, z3, . . . is the sequence of Fibonacci
numbers, i.e., z1 = 1, z2 = 1, zs = zs−2+zs−1 for s ≥ 3. A
solution x(k) of (30) with the initial condition x(1) = ws
is defined for k = 1, 2, . . . , s+ 1, and

x(k) =

{
ws+1−k, for k = 1, . . . , s,
0, for k = s+ 1,

and the solution does not exist for k ≥ s+ 2.

The sequence ws converges to x1, and it is known from
the number theory (see, e.g., (Vorobiev, 2002, p. 107, Leg-

endre’s Theorem)) that |x1 − ws| ≤
1

QsQs+1
=

1

zs+1zs+2
.

From this estimation, it follows that for any δ > 0 the
neighborhood B1

δ(x1) contains infinitely many initial con-
ditions of breaking solutions of (30).

The only solution of the equation (30) satisfying condition
lim
k→∞

x(k) = x1 is the equilibrium x1. Let us set x̂(k) ≡ x1,

k ∈ N. Thus, we have the admissible control process(
x̂(k), û(k)

)
k∈N for the equation (29). From the above it

follows that this process is unstable.

We pose the problem of exponential stabilization of this

process. Denote f(k, x, u) :=
1

x
+B(k)u. Let us construct

A :=
∂f(k, x, u)

∂x

∣∣∣∣(
x̂(k),û(k)

)= − 1

x21
= −3 +

√
5

2
.

The equation of the first approximation for (29) in the
neighborhood of the control process

(
x̂(k), û(k)

)
k∈N has

the form

y(k + 1) = Ay(k) +B(k)v(k), k ∈ N. (31)

Let us consider the gramian (6) for the equation (31):

W (k + 1, k) = B2(k), k ∈ N.
Since

(
B(k))k∈N is a Lyapunov sequence, it follows that

conditions of Definition 4 are fulfilled, i.e., the equa-
tion (31) is uniformly completely controllable. Thus, condi-
tion (1) of Theorem 9 is fulfilled. Now check condition (2)
of Theorem 9. Take h = x1/2. Then for all k ∈ N and
(y, v) ∈ B1

h(0)× B1
h(0) the residual

ϕ(k, y, v) := f
(
k, x̂(k) + y, û(k) + v

)
−

− f
(
k, x̂(k), û(k)

)
−Ay −B(k)v

satisfies inequality

‖ϕ(k, y, v)‖ =
∣∣∣ 1

x1 + y
+B(k)

(
û(k) + v

)
−

− 1

x1
−B(k)û(k) +

y

x21
−B(k)v

∣∣∣ =

=
y2

x21(x1 + y)
≤ 2y2

x31
≤ 2(y2 + v2)

x31
.

Hence, inequality (10) holds, where ψ(k) =
2

x31
, m =

2. Note that λ[ψ] = β[ψ] = 0. Thus, all conditions
of Theorem 9 are fulfilled. From Theorem 9 it follows
that for an arbitrary κ > 0 the admissible control pro-
cess

(
x̂(k), û(k)

)
k∈N is uniformly exponentially stabilizable

with the decay rate κ by state feedback control. Let us
construct stabilizing control.

Let an arbitrary κ > 0 be given. Let us construct

control v(k) in the form (12), where V (k) =
e−κ −A
B(k)

.

Then |V (k)| ≤ `

(
1 +

3 +
√

5

2

)
=

`
(
5 +
√

5
)

2
=: v0.

Set h1 = h/v0 = x1/(2v0). Take ψ1(k) = ψ(k)(1 +

v20) =
2(1 + v20)

x31
=: c1. We have φ(k) = ψ1(k) and

h2 = h1. Note that estimation (16) holds for ε = 0, hence
we can take γ = κ(m − 1) = κ. From (17) it follows

that δ = min

{
h1,

1− e−κ

2c1eκ

}
. It is easy to check that

δ =
1− e−κ

2c1eκ
for any κ > 0. Let x0 ∈ B1

δ(x1) and k0 ∈ N.

Then control

ũ(k) = ũ(k, x(k)) := û(k) + V (k)
(
x(k)− x1

)
, k ≥ k0,

provides inequalities ‖x̃(k) − x̂(k)‖ ≤ 2h1e
−κ(k−k0) and

‖ũ(k) − û(k)‖ ≤ 2v0h1e
−κ(k−k0) for all natural k ≥ k0,

where x̃(·) is the solution of (29) with u(k) = ũ(k) with
the initial condition x(k0) = x0. Hence, the admissible
control process

(
x̂(k), û(k)

)
k∈N is uniformly exponentially

stabilized by means of constructed control ũ(·).
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Fig. 2. Solutions of equation (29), where B(k) = 1, u(k) =

−1+V (k)
(
x(k)−x1

)
, V (k) = e−κ−A, A = −3 +

√
5

2
,

κ = 0.05, corresponding δ = 2.8 · 10−4. 1 is a solution
with the initial condition x0 = w10. 2 is a solution
with the initial condition x0 = x1 + 2.5 · 10−4.
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Fig. 3. Graphs of controls for equation (29), where B(k) =
1, u(k) = −1+V (k)

(
x(k)−x1

)
, V (k) = e−κ−A, A =

−(3 +
√

5)/2, κ = 0.05: line 1 is a stabilizing control
for solution with the initial condition x0 = w10; line
2 is a stabilizing control for solution with the initial
condition x0 = x1 + 2.5 · 10−4.

ACKNOWLEDGEMENTS

The research of the first author was funded by the Na-
tional Science Centre in Poland granted according to de-
cision DEC-2017/25/B/ST7/02888. The research of the
third author was supported by the Rector’s Grant in
the research area and development, Silesian University of
Technology, grant number 02/010/RGJ19/0147 (Micha l
Niezabitowski). The research of the fourth author was
funded by RFBR (project number 20–01–00293) and by
the Ministry of Science and Higher Education of the Rus-
sian Federation in the framework of state assignment No.
075-00232-20-01 (project 0827-2020-0010 “Development of
the theory and methods of control and stabilization of
dynamical systems”) and was performed using computing
resources of the collective use center of IMM UB RAS
“Supercomputer center of IMM UB RAS”. The research
of the fifth author was done as part of the project funded
by the Polish National Agency for Academic Exchange
granted according to decision of the director of the Pol-
ish National Agency for Academic Exchange (NAWA)
No. PPN/ULM/2019/1/00287/DEC/1. The authors are
grateful to professor Leonid E. Tonkov for the numerical
simulation of Example 1.

REFERENCES

Agarwal, R.P. (2000). Difference Equations and Inequali-
ties. Theory, Methods, and Applications. Marcel Dekker,
New York.

Babiarz, A., Czornik, A., Makarov, E., Niezabitowski, M.,
and Popova, S. (2017). Pole placement theorem for
discrete time-varying linear systems. SIAM Journal on
Control and Optimization, 55(2), 671–692.

Bihari, I. (1956). A generalization of a lemma of Bellman
and its application to uniqueness problems of differential
equations. Acta Mathematica Academiae Scientiarum
Hungaricae, 7(1), 81–94.

Byrnes, C.I., Lin, W., and Ghosh, B.K. (1993). Stabiliza-
tion of discrete-time nonlinear systems by smooth state
feedback. Systems & Control Letters, 21(3), 255–263.

Cai, G.-B., Hu, Ch.-H., and Duan, G.-R. (2012). Design of
stabilizing controllers for nonlinear systems. Proceedings
of the 31st Chinese Control Conference, July 25-27,
Hefei, China, 589–594.

Dai, X. (2006). Exponential stability of nonautonomous
linear differential equations with linear perturbations by
Liao methods. Journal of Differential Equations, 225(2),
549–572.

Demidovich, V.B. (1969). A certain criterion for the
stability of difference equations. Differ. Uravn., 5(7),
1247–1255.

Fu, J.H. and Abed, E.H. (1991). Linear feedback stabiliza-
tion of nonlinear systems. Proceedings of the 30th IEEE
Conference on Decision and Control, 58–63.

Gaishun, I.V. (2001). Discrete-Time Systems. Institut
Matematiki NAN Belarusi, Minsk.

Gohberg, I., Kaashoek, M.A., and Kos, J. (1996). Classifi-
cation of linear time-varying difference equations under
kinematic similarity. Integral Equations and Operator
Theory, 25(4), 445–480.

Gyori, I. and Pituk, M. (2001). The converse of the
theorem on stability by the first approximation for
difference equations. Nonlinear Analysis, 47(7), 4635–
4640.

Izobov, N.A. (2001). Exponential stability by the linear
approximation Differential Equations, 37(8), 1057–1073.

Kalman, R.E. (1960). Contributions to the theory of
optimal control. Boletin de la Sociedad Matematika
Mexicana, 5(1), 102–119.

Kwakernaak, H. and Sivan, R. (1972). Linear Optimal
Control Systems. Wiley Interscience.

Lyapunov, A.M. (1956). General Problem of Stability of
Motion, Collected Works, 2. Izdat. Akad. Nauk SSSR,
Moscow.

Popova, S.N. (2018). Assignability of certain Lyapunov
invariants for linear discrete-time systems. IFAC-
PapersOnLine, 51(32), 40–45.

Zaitsev, V.A., Popova, S.N., and Tonkov, E.L. (2010).
Exponential stabilization of nonlinear control sys-
tems. Vestnik Udmurtskogo Universiteta. Matematika.
Mekhanika. Komp’yuternye Nauki, (3), 25–29.

Zaitsev, V.A., Popova, S.N., and Tonkov, E.L. (2014).
On the property of uniform complete controllabil-
ity of a discrete-time linear control system. Vest-
nik Udmurtskogo Universiteta. Matematika. Mekhanika.
Komp’yuternye Nauki, (4), 53–63.

Vorobiev, N.N. (2002). Fibonacci Numbers. Springer Basel
AG.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4823


