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Abstract: A nonlinear model of heat transfer in a solid structure controlled by a Peltier
element is considered. The thermoelectrical converter in between two cylindrical bodies regulates
temperature distribution in one cylinder, while the other body is used as the thermal capacitor.
An optimal control problem is stated to minimize heat losses in the electrical circuit of the Peltier
element in a given time interval. A feedforward piecewise constant control signal is designed to
reach the vicinity of a desired steady state by using the a-priori prediction of variations of
the external temperature. Additionally, feedback loops are designed for model linearization,
trajectory stabilization, and compensation of changes in the ambient air temperature.
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1. INTRODUCTION

The control of heat transfer in solid structures sometimes
employs well-known physical phenomena but involves orig-
inal implementation. In this paper, a nonlinear model of
processes in thermally conductive bodies controlled by a
thermoelectric converter is considered. In such control el-
ements, flow of electric charge influenced by electromotive
force can transfer a part of thermal energy from colder area
to the hotter one, Goupil et al. (2011). The phenomenon
is based on the effect stated by J. Peltier. And vice versa,
temperature differences cause electric currents according
to the Seebeck effect. The reliable modeling of such pro-
cesses is important for design and optimization of precise
control laws. Thus, a set of interrelated phenomena, such
as recuperation of heat flux into electric energy, thermal
conductivity of semiconductor material, Joule heat losses,
and heat exchange between the system and the environ-
ment, have to be taken into account. These phenomena
are often ignored or simplified in control problems, Chavez
et al. (2000). Frequently, only one-dimensional models are
used or the steady-state case is supposed, Cernaianu and
Gontean (2013). Not rare, a system with lumped parame-
ters is applied for control design, Felgner et al. (2014).

In our previous studies, simplified thermoelectrical models
of heat transfer in solids were considered and control
strategies for them were constructed, see Kostin et al.
(2018) and Gavrikov and Kostin (2018). The nonlinear
model for a structure controlled by a Peltier element

? The study was financially supported partly by the Russian Foun-
dation for Basic Research (19-01-00173), and the RAS Presidium
(program AAAA-A17-117121120031-8), Russia.

(PE) was proposed, steady state solutions were studied in
Kostin et al. (2019), the model was verified in Gavrikov
et al. (2019a) as well as in Knyazkov et al. (2019),
and feedforward control with feedback linearization was
proposed in Gavrikov et al. (2019b).

In the current paper, the previous feedforward control
laws are modified and enhanced by accounting for external
disturbances, namely, the varying ambient temperature.
Such a modification is a necessary feature for the exper-
imental validation of possible control strategies. A new
feedforward control law exploiting the a-priori prediction
of the ambient temperature is proposed. The linearization
with respect to internal and external temperatures in the
vicinity of the feedforward control trajectory is used to
design a feedback control consisting of two loops. One aims
at the stabilizing the temperatures along the feedforward
trajectory, whereas the other suppresses the mean value of
the disturbance. As a result, the composed control law is a
sum of four components: the feedback linearization signal,
the feedforward piecewise constant control, the stabilizing
feedback signal, and the compensating feedback term.

2. THERMOELECTRIC MODEL OF THE PELTIER
ELEMENT FOR THE CYLINDRICAL STRUCTURE

In our study, the following experimental setup constructed
at the Chair of Mechatronics of the University of Rostock,
Germany, is considered. It consists of two identical alu-
minum cylinders arranged vertically with a PE located
in between them, see Fig. 1. The overall structure is
thermally insulated on the top and bottom surfaces. On
its lateral surface, heat transfer w.r.t. the ambient air
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Fig. 1. Schematic representation of the experimental setup.

takes place. The PE is supplied with the chosen input
voltage, and the temperature is measured by means of
PT100 resistance sensors on the surface of the cylinders.
The ambient temperature, which is changing during the
experiment, is measured at several points near the setup.

The physical parameters for the cylinders and the PE
have been determined in Rauh et al. (2015), Kostin et al.
(2019), Gavrikov et al. (2019a), Knyazkov et al. (2019). For
the cylinders, the parameters are as follows: the thermal
conductivity λa = 254.4 W/m/K, the density ρa =
2700 kg/m3, the specific heat capacity ca = 896 J/kg/K,
the height h = 0.1 m, the radius r1 = 0.031 m. As
for the PE, its parameters are: λp = 0.517 W/m/K,
ρp = 300 kg/m3, cp = 500 J/kg/K, the height z0 =
0.00195 m; its radius is identical to the one of the cylinders,
the Seebeck coefficient S = 0.0427 W/K/A and the
resistance R = 6.03 Ω. The electrical control circuit is
characterized by the threshold voltages u+ = 1.115 V and
u− = −1.29 V. Addressing the convective heat exchange
on the circumferential surface, the heat transfer coefficient
α is given by 8.4 W/m2/K. The volume of the PE is
|Vp| = 2πr21z0, and its cross-section area is Ap = πr21.

Taking into account only the integral behavior of the PE,
we assume that

• the heat exchange of the PE with the surrounding air
is negligibly small;
• the inner structure of the PE is homogeneously

transversal isotropic with respect to both electrical
and thermal conductivities;
• the conductivity coefficient along the z-axis is much

larger than those along the other axes, as the PE is
oriented in the z direction, see Fig. 1;
• the Seebeck coefficient is constant as a general char-

acteristic of the thermoelectric properties.

According to the design of the experimental setup, the
cylindrical coordinates are utilized further: x = (r, φ, z).
The corresponding domains are defined as Vp = Ir×Iπ×Ip
for the PE and Vk = Ir × Iπ × Ik for the upper (k = 1)
and lower (k = 2) cylinders. Here, Ir = [0, r1], Iπ = [0, 2π],
Ip = [−z0, z0], I1 = [z0, z1], I2 = [−z1,−z0]. Let us denote
the temperature relative w.r.t. θ0 as θ(t,x), the electric
current as J(t) and the control voltage as U(t). Then, the
following nonlinear model was validated in Kostin et al.
(2019), Gavrikov et al. (2019a), Knyazkov et al. (2019):

cpρpθ̇ = λpθ
′′
zz +

RJ2(U, θ)

|Vp|
, x ∈ Vp, (1)

caρaθ̇ = λa∆θ, x ∈ Vk, k = 1, 2, (2)

θ′z||z|=z1 = 0, αθ + λaθ
′
r|r=r1,|z|>z0 = αθA, (3)

θ||z|=z0±0 = θ||z|=z0∓0, (4)

−λaθ′z||z|=z0+0 =

[
(θ + θ0)

SJ(U, θ)

Ap
− λpθ′z

]
|z|=z0−0

,(5)

with the initial condition θ(0,x) = Θ(x). In the first
heat equation (1), the quadratic term w.r.t. the current
J corresponds to the Joule heating of the PE. The second
heat equation (2) describes the usual heat transfer in the
cylinders. The first equation in (3) corresponds to the
insulation on the cylinders’ ends and the last equation
reflects the heat exchange with the ambient air. The forth
and the fifth lines (4), (5) define the continuity of the
temperature and the heat flux, respectively, whereas the
term in (5) with the current J reflects the heat flux
generated due to the Peltier effect.

In practical implementations of thermoelectric converters,
the input voltage often has threshold levels. Thus, the
voltage provided to the PE is supposed to be equal to

RJ = RJ(U, θ) =

{ E − u−, E < u−,
0, u− ≤ E ≤ u+,
E − u+, E > u+,

(6)

where E = U − S[θ̃] is the electromotive force, u± are the

threshold voltages, θ̃ is the mean temperature averaged
over its cross-section, and the square brackets denote the
jump of the temperature between the top and bottom
surfaces of the PE: [θ̃] = θ̃|z=z0 − θ̃|z=−z0 .

3. FEEDBACK LINEARIZATION AND
MODEL-ORDER REDUCTION

The considered system contains terms nonlinear w.r.t.
both the control voltage and the temperature distribution.
To simplify the problem (1)–(6), the following feedback
control

U = u0 + Uf , Uf = S[θ̃] (7)

is introduced, see Gavrikov et al. (2019b). Then, we obtain
an initial-boundary value problem (IBVP)

cpρpθ̇ = λpθ
′′
zz +

u2

R|Vp|
, x ∈ Vp,

caρaθ̇ = λa∆θ, x ∈ Vk, k = 1, 2,
θ′z||z|=z1 = 0, αθ + λaθ

′
r|r=r1,|z|>z0 = αθA,

θ||z|=z0±0 = θ||z|=z0∓0,

−λaθ′z||z|=z0+0 =

[
(θ + θ0)

Su

RAp
− λpθ′z

]
|z|=z0−0

,

θ(0,x) = Θ(x),

u(t) =

{
u0(t)− u− for u0 < u−
0 for u− ≤ u0 ≤ u+ .
u0(t)− u+ for u0 > u+

(8)

3.1 Separation of variables for model order reduction

Although the problem (8) is still nonlinear w.r.t. the
control input, it is possible to analyze it explicitly by
using some simplifications. Due to linearity of the problem
(8) w.r.t. the temperature, the Fourier analysis can be
implemented for a constant control function u. Note that,
in this case, the overall control signal U according to (7) is
non-constant and still depends on the temperature because
of the component Uf . In what follows, the ansatz functions

Θ = eνtΞ(r, φ, z), Ξ(r, φ, z) = Jn(µr/r1) cos(nφ)ψ(z), (9)
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with n = 0, 1, . . . , are utilized to obtain an analytical
solution. Here, Jn is the Bessel function of the first kind of
the order n. The substitution of (9) into (8) leads to the
corresponding eigenproblem

ψ′′ = −ξ
2

r21
ψ, z ∈ Z±a ; ψ′′ =

νcpρp
λp

ψ, z ∈ Zp;

ψ′(−z1) = ψ′(z1) = 0, ψ(±z0 + 0) = ψ(±z0 − 0),

λaψ
′|z=±z0±0 =

[
λpψ

′ − Suψ

RAp

]
z=±z0∓0

,

(10)

where ψ = ψn,m,k are eigenfunctions (EFs), ξ = ξn,m,k are
the eigenvalues (EVs) w.r.t the z variable, and

ν(ξ) = νn,m,k = −λa(µ2 + ξ2)

caρar21
(11)

denotes the EVs w.r.t. time with n,m, k ∈ {0, 1 . . .}.
The EVs w.r.t. the radial axis µ = µn,m are consecutive
positive roots of the equation

αJn(µ) +
λa
r1

(nJn(µ)− µJn+1(µ)) = 0. (12)

The solution of (10) is found explicitly using the piecewise-
defined EFs

ψ(z) =

{
ψ±(z) for z ∈ Z±a ,
ψP (z) for z ∈ Zp,

(13)

with ψ±,P taken as combinations of trigonometric and
exponential functions, see Gavrikov et al. (2019b).

These EFs are orthogonal w.r.t. the following dot product

(w, v) =

∫
I1∪I2

caρaw(z)v(z)dz +

∫
Ip

cpρpw(z)v(z)dz,(14)

which is used further for all the expansions involved.

It is worth noting that the EFs ψ depend here on the
control u. Nevertheless, due to simplicity of the involved
computations, these EFs can be used for the solution of
the problem for any given u(t) at the current time instant.

3.2 Approximation of a steady-state solution

Similarly, the steady-state solution for the problem (8) is

obtained by using the ansatz functions Ξ and taking θ̇ = 0.
The corresponding boundary value problem for θA = 0 is

ψ′′ =
µ2

r21
ψ, z ∈ Z±a ; ψ′′ =

ω1

λp

u2

R|Vp|
, z ∈ Zp;

ψ′(−z1) = ψ′(z1) = 0, ψ(±z0 + 0) = ψ(±z0 − 0),

λaψ
′|z=±z0±0 =

[
λpψ

′ − Suψ

RAp
− ω1Sθ

0u

RAp

]
z=±z0∓0

.

(15)

Its solution is found in a standard way by the method of
undetermined coefficients by employing

ψ±(z) = C1,2 cos(µ(z ∓ z1)/r1),

ψP (z) = C3 + C4z + z2
ω1

2λp

u2

R|Vp|
, ω1 =

(
∫ r1
0
rJndr)∫ r1

0
rJ2
ndr

.
(16)

Further, we consider a non-zero ambient temperature θA.
In this case, the temperature distribution has the same
shape but is shifted up to the value θA. The constants

C1, C2, C3 in (16) are calculated by taking θ0 + θA instead
of θ0 in (15).

The analytical representation of the steady state solution
involves the expansion w.r.t. the obtained EFs. However,
we consider further only its four-modes approximation
related to µ0,0. The significance of the lowest EVs w.r.t.
to the radial axis µ0,0 is discussed in Kostin et al. (2019),
Gavrikov et al. (2019a), Gavrikov et al. (2019b). It turns
out that only the four lowest eigenmodes with m = n = 0,
k = 0, . . . , 3 are sufficient for modeling on time intervals
greater than several seconds. That can be illustrated by a
comparison of the characteristic times τ = τn,m,k (inverse
of decay rates ν) for several lowest eigenmodes given in
Table 1 for u = 1 V (first row) and u = 20 V (second
row). Also, it is worth mentioning that the shape of the
EFs does not change significantly with the change of the
input voltage except for the zeroth eigenmode.

4. FEEDFORWARD CONTROL

In this section, feedback linearization is utilized for a
simplification and the subsequent design of feedforward
control.

4.1 Modal representation with four ODEs

Having in mind the previous remarks on the EFs, we
restrict ourselves to the case m = n = 0, k = 0, . . . , 3
and expand the solution of the problem (8) as

θ(t, r, φ, z) =
∑3

k=0
θ0,0,k(t)J0(µ0,0r/r1)ψ0,0,k(z). (17)

After substituting (17) into (8) and projecting the results
onto the EFs, the following ODE system is obtained (the
zeroth subindices m and n are omitted)

˙̄θ = Aθ̄ + F (u, θA, θ
0), θ̄(0, z) = Θ̄,

θ̄ = (θ0, . . . , θ3)T , Θ̄ = (Θ0, . . . ,Θ3)T ,

Θi =

∫
V

Θ(x̄)Ξi(x̄)dx̄, Ξi = J0 (µ0,0r/r1)ψ0,0,i

(18)

Here, V = Vp ∪ V1 ∪ V2, the diagonal (due to the orthog-
onality of the EFs) matrix A = diag(ν0, . . . , ν3) and the
vector F = (F0, . . . , F3)T are introduced with

Fi =
u2ω1

R|Vp|

∫
Ip

ψidz +
Suθ0ω1

RAp
[ψi] +

αθAr1J0(µ0,0)∫ r1
0
rJ2

0dr

∫
I1∪I2

ψidz,

where the ambient temperature θA is supposed to be
constant w.r.t. spatial variables.

4.2 Piecewise constant control processes

Suppose that the predicted ambient temperature θp has
an analytical expression (e.g., polynomial). Then, the

Table 1. Characteristic times in sec.

τ0,0,0 τ0,0,1 τ0,0,2 τ0,0,3 τ0,0,4 τ1,0,0 τ0,1,0
4467 778.6 9.61 9.42 2.41 0.62 2.69
5248 760.2 9.62 9.41 2.41 0.62 2.69
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ODE system (18) can be solved for any given constant
u explicitly. If u(t) is a piecewise step function with values
ui, i = 0, . . . , N and switching instants Ti, then (18) can be
solved on each time interval [Ti, Ti+1] by using the matrix
A and the vector F that correspond to the EFs obtained
for the current value ui.

At the switching instants Ti, the current temperature

distribution θ =
∑
θjψ

(i−1)
j should be re-expanded w.r.t.

the new EFs: θ =
∑
θjψ

(i)
j , and the new values Θ̄i of θ(Ti)

serve as initial conditions for the system (18).

In such a way, we can calculate analytically the distribu-
tion and the behavior of the temperature w.r.t. time for
any given piecewise step function u(t) and the predicted
ambient temperature θp(t).

4.3 Terminal temperature distribution

As an objective, we consider an approximate steady-state
solution θst of (8) obtained by means of (15). However,
any steady state depends on the input voltage and the
ambient temperature as parameters. We aim at a steady-
state solution that has a prescribed average temperature
θav in the upper cylinder( 1

V1

∫
V1
θstdV − θav

)2
→ min

u
(19)

for a given (predicted) behavior of the ambient tempera-
ture θp(t). Thus, the lower cylinder is considered as a heat
capacitor and the upper one as the controlled subsystem.

The minimization problem (19) is solved explicitly because
the dependence of a steady-state solution on the control
voltage u is available according to Sec. 3.2.

4.4 Optimal feedforward control

Let us consider the following cost function

Φ =
γu
T

∫ T

0

u2(t)dt+
γθ
|V|
‖θ|t=T − θst‖2L2

, (20)

where θst is the solution of (19). The optimal control
problem

Φ[u, θ]→ min
u

(21)

for some fixed T can be solved numerically by applying
the gradient descent method. For simplicity, we suppose
that u(t) is sought in the space of piecewise step functions
defined on [0, T ] with switches at Ti = iT/4, i = 1, 2, 3:
u(t) = uFF (t) = {uFF0, uFF1, uFF2, uFF3}. We consider
4 switches since such a choice allows to transfer a linear
4-mode system into the desired state, although this is
not guaranteed in the studied nonlinear case. Since uFFk,
(k = 0, . . . , 3) are constants, the corresponding tempera-
ture behavior θFF is calculated analytically according to
Sec. 4.2. Therefore, each iteration of the gradient descent
method is also executed analytically, which guarantees the
fast performance of the method’s steps.

5. FEEDBACK COMPENSATION OF AMBIENT
TEMPERATURE DISTURBANCES

Although the feedforward control law allows to reach a
vicinity of the desirable state, the resulting accuracy can
be affected by undesirable disturbances. For the studied
experimental setup, the ambient temperature θA(t) serves
as such a disturbance, which can vary up to several degrees
during the test. Thus, its compensation should be provided
by the controller.

At first, let us denote the feedforward control law and
the corresponding temperature distribution according to
Sec. 4.4 as uFF (t) and θFF (t,x), respectively. Suppose
that the ambient temperature θA(t) deviates from the
predicted value θp(t) by a small value δθA(t) : θA = θp +
δθA, ‖δθA‖ � ‖θp‖. We assume that θp(t) is given a priori
and not estimated during the process. Then, the overall
control voltage is decomposed into the following parts

U = u0 + Uf , Uf = S[θ̃], u0 = uFF + v ± u±, (22)

where v corresponds to the compensation of the ambient
temperature. The related temperature distribution is rep-
resented as

θ = θFF + y, ‖y‖ � ‖θFF ‖. (23)

Now, the IBVP (8) is linearized w.r.t. uFF , θFF and θp :

cpρpẏ = λpy
′′
zz +

2uFF v

R|Vp|
, x ∈ Vp,

caρaẏ = λa∆y, x ∈ Vk, k = 1, 2,
y′z||z|=z1 = 0, αy + λay

′
r|r=r1,|z|>z0 = αδθA,

y||z|=±z0±0 = y||z|=±z0∓0, −λay′z||z|=z0+0 =[
(θFF + θ0)

Sv

RAp
+
SuFF y

RAp
− λpy′z

]
|z|=z0−0

,

y(0,x) = 0.

(24)

Note that these equations have the same structure as (8).
Thus, the corresponding eigenproblems for (24) and (8)
coincide if u = uFF in (10). Therefore, we use the same
EFs ψ and EVs ν for the expansion of the solution of (24)
that are utilized for finding uFF (see Sec. 4)

y = J0(µ0,0r/r1)
∑3

i=0
yi(t)ψi(z). (25)

By taking the integral form of (24) and projecting on the
EFs, the following ODE system is obtained

˙̄y = Bȳ + bv + fδθA. (26)

Here, the vectors and matrices are given by

ȳ = (y0, . . . , y3)T , B = A+ C, A = diag(ν0, . . . , ν3),

Cij = −SuFF
RAp

[ψiψj ], fi =
αr1J0(µ0,0)∫ r1

0
rJ2

0dr

∫
I1∪I2

ψidz,

bi =
2uFFω1

R|Vp|

∫
Ip

ψidz +
Sθ0

RAp
[ψi] +

S

RAp
[θFFψi],

b = (b0, . . . , b3)T , f = (f0, . . . , f3)T .

Since we are interested in reaching the state with a certain
average temperature, let us introduce a new variable ỹ(t)
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Fig. 2. Predicted vs. real behavior of the ambient temper-
ature.

which characterizes the variation of the average value of
the temperature in the upper cylinder

ỹ =

3∑
i=0

aiyi(t), ai =
1

V1

∫
V1
J0ψidV. (27)

After averaging (26) according to (27) with the weights ai,
the following ODE is obtained

˙̃y = aTAȳ + aT bv + aT fδθA, a = (a0, . . . , a3)T , (28)

where the ODE (28) should be controllable, i.e., aT b 6= 0.

Now, the control function v is split into two parts

v = vc + vFB ,

where vc is should compensate for the deviation of the
ambient temperature from the predicted value, and vFB
should counteract other possible disturbances. Given ˙̃y = 0
in (28), the compensating feedback control results in

vc = − 1

aT b

(
aTAȳ + aT fδθA

)
. (29)

The additional feedback is taken as

vFB =
κ

aT b
ỹ, κ < 0, (30)

where κ ∼ ν1/2. This choice keeps the transient phase
shorter than the interval between control jumps and pre-
vents from exciting the highest modes.

Note that the implementation of (29) requires an appropri-
ate state and disturbance observer to restore the vector ȳ
by using the temperature measurements on the cylindrical
surface.

6. NUMERICAL RESULTS

In this section, the implementation of the compensating
feedback control is simulated and corresponding results
are presented.

As an example, suppose that the a-priori prediction of the
ambient temperature is given by the polynomial

θp(t) = 10−7t2 + 5 · 10−4t,

whereas the unknown real change of this temperature is

θA(t) = 0.9 · 10−7t2 + 1.3 · 5 · 10−4t+ 0.3 + 0.2 sin(πt/102),

which should be measured or estimated during an experi-
ment, see Fig. 2. Then, δθA is the difference between the
true and expected ambient temperature, which is exploited
to check the robustness of the proposed control law.
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Fig. 3. Distribution of the relative temperature along the
z-axis at the terminal time instant T .
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Fig. 5. Comparison of different control actions.
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Fig. 6. Voltages provided.

We fix the terminal time instant T = 1 h and the desired
average temperature in the upper cylinder θav = 5.5 K.
The corresponding approximate steady state θst is ob-
tained analytically by solving the minimization problem
(19). If the related control input ust ≈ 0.96 V is provided
for 1 h, then the resulting distribution θnac(T ) is rather
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Fig. 7. The behavior of the relative temperatures at the
selected points.

distinct from the desired one, see Fig. 3. Here, the pre-
dicted behavior of the ambient temperature is supposed.

Next, the time interval [0, T ] is divided into four equal
parts and the feedforward control uFF law is calculated
according to Sec. 4. The corresponding final distribution
of the optimized temperature θFF (T ) is rather close to the
desired one θst, see Fig. 3, where the corresponding curves
almost coincide.

However, the real ambient temperature behavior differs
from the predicted one. If only the feedforward law is uti-
lized, then the resulting temperature distribution θFFR(T )
has the form shown in Fig. 3 and the steady-state error
θFFR(T ) − θst is depicted in Fig. 4. See also the error
θFFR(T )− θFF (T ) there.

Suppose that the compensating feedback signal v is added
to the feedforward signal uFF . The resulting distribution
θ(T ) is rather close to θst, see Figs. 3 and 4, although it
relates only to the upper cylinder due to the objective of
the proposed control as described in Sec. 5, where only the
disturbances in the upper cylinder are suppressed.

In Fig. 5, the control actions are shown: the reference signal
ust without active control, the feedforward control uFF ,
and the corrected control input uFF + v. According to the
proposed feedback linearization, the overall control voltage
includes a part that is proportional to the temperature
drop on the PE as shown in Fig. 6, where UFF corresponds
to uFF and U to uFF + v.

The disturbed ODE system (18) is solved numerically
on the time interval [tn, tn+1] with a horizon of 1 sec.
The terminal mode amplitudes from the previous step
are provided as current initial conditions at tn. For an
experimental implementation, a model-based low-pass fil-
tering can be applied using measurements on the cylin-
ders’ surface by, e.g., a Luenberger-type observer, moving-
horizon estimation over past measurements, or higher-
order sliding mode techniques. The simulated behavior of
the temperature at several points is shown in Fig. 7, where
the feedback compensation is applied. In the absence of
the compensation, the temperature changes similarly, al-
though the influence of the ambient temperature results in
gradually growing difference between these cases.

7. CONCLUSIONS AND OUTLOOK

The extension of a feedforward control law, proposed in
Gavrikov et al. (2019a), is developed to take into account

the long-term a-priori prediction of the ambient tempera-
ture. For an effective compensation of such disturbances,
an appropriate feedback compensator is designed. The
terminal state θ(T ) is close but not equal to the desired
steady state θst with the prescribed average temperature
θav. After the first stage [0, T ], the state of the system
should be kept as close as possible to a proper steady-state
corresponding to θav. It is possible to use at this stage a
prediction of the ambient temperature θA(t), t > T, for
the calculation of a new control over a fixed horizon. It
can be achieved by solving a minimization problem based
on the proposed feedback compensator. The next stage of
our research will focus on a state and disturbance observer.
Moreover, an experimental validation of the overall control
strategy at the test rig is planned.
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