
Cooperative decentralized reactive
circumnavigation of unpredictably moving and

deforming speedy extended objects ?

A. Matveev ∗,∗∗ V. Magerkin ∗

∗ Department of Mathematics and Mechanics, Saint Petersburg University,
Saint Petersburg, Russia (e-mail: almat1712@yahoo.com).

∗∗ Department of Control Systems and Industrial Robotics, Saint-Petersburg
National Research University of Information Technologies Mechanics and

Optics (ITMO), Saint Petersburg, Russia.

Abstract: A team of speed- and acceleration-limited robots travel in a plane that hosts an unpredictably
moving and deforming extended targeted object. In its local frame, every robot has access to its own
velocity and is able to identify the relative coordinates of the objects within a given finite visibility range,
as well as the nearest point of the object. A sliding mode communication-free sensor-based strategy is
presented that drives the robots to a desired distance from the targeted object and ensures its subsequent
circumnavigation with maintaining this distance and effective self-distribution around the object. The
proposed control law individually operates at any robot and is reactive, i.e., it directly converts the current
sensory data into the current control in a reflex-like fashion. The performance of the proposed navigation
law is rigorously justified by a global convergence result and is confirmed via computer simulation tests.
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1. INTRODUCTION

Over the past decades formation control has become a mature
research field, and its focus has been much shifted to the decen-
tralized control paradigm and the issue of communication and
sensorial limitations. In this area, much effort has been devoted
to the problem of driving multiple mobile robots into a for-
mation encircling a targeted object, see, e.g., (Kim and Sugie,
2007; Kawakami and Namerikawa, 2009; Kim et al., 2010;
Kobayashi and Hosoe, 2011; Yamaguchi, 2003; Kothari et al.,
2013; Tsumura et al., 2011; Ceccarelli et al., 2008; Guo et al.,
2010). Motivation of this problem comes from many sources,
such as rescue operations, exploration and surveillance, min-
imization of security risks, deployment of mobile sensor net-
works (Savkin et al., 2015), escorting missions, etc. Within this
diversity, the targeted object has various incarnations, e.g., this
may be a single body or a group of them, the concerned body
can be treated as a point in some cases, whereas in others it
should be handled as a moving and deforming 2D entity.

In such missions, the robots should approach the object and ar-
rive at positions that are advantageous for mission running. The
locus of them is often the equidistant curve, i.e., the set of points
at a given distance from the object. After arrival at this curve,
the robots should repeatedly trace it, thus circumnavigating the
object. Typically, they should also surround the object from all
sides and distribute themselves somewhat uniformly.

Up to now, research on robotic circumnavigation was mostly fo-
cused on point-wise targets. A single moving target is treated in
(Kobayashi and Hosoe, 2011) for fully actuated robots, assum-
ing access to the velocity vector of the target. For Hilare-type
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robots, (Yamaguchi, 2003) provides an evidence of the team’s
local stability in closed-loop, but no rigorous convergence result
is given. Assuming that the target obeys a known escaping rule,
(Tsumura et al., 2011) gives conditions under which a linear
control law drives identical linear agents with full actuation and
observation into a target-centric formation. The cyclic pursuit
pattern is used in (Kim and Sugie, 2007) to ensure capturing
a moving target in 3D at a given altitude provided that there
is an access to the target’s velocity vector. For a steady target,
basic findings of (Kim and Sugie, 2007) are extended to stable
identical under-actuated vehicles in (Kim et al., 2010).

Cyclic-pursuit involves a steady ring-like information-flow
graph. More general graphs are treated in (Kawakami and
Namerikawa, 2009) for a moving target with measurable ve-
locity. In (Kothari et al., 2013; Sato and Maeda, 2010), similar
research is reported, with assuming uncertainties in data on
the target or transmitted information, whereas the information-
flow is independent of robots’ motion. A more realistic case is
examined in (Guo et al., 2010), where every robot observes its
current predecessor and follower in the angular order around
a moving target. Unlike the above papers, (Ceccarelli et al.,
2008) deals with a finite range of visibility and justifies local
stability of the uniform formation around a steady target. For an
unpredictable speedy target and speed- and acceleration-limited
robots with a finite visibility range, it is proved in (Matveev and
Ovchinnikov, 2019) that the proposed decentralized control law
drives the robots to a pre-specified distance to the target and
ensures their even distribution around the target and a given
common angular velocity of rotation about the target.

Circumnavigation of multiple targets has been studied only for
point-wise ones and a single pursuer. In (Deghat et al., 2015),
the simple-integrator robot is driven to and then along a circle
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centered at the mean of the targets’ positions. For a Dubins-
car-like robot, the controller from (Matveev et al., 2016) drives
the root mean square distance (RMSD) to speedy targets to
a given value. In (Matveev et al., 2017), a similar result is
obtained in the case where RMSD is replaced by the distance
to the nearest target. As for extended targets, circumnavigation
of a steady 2D body by Dubins-car-like robots, along with their
even self-distribution, is treated in (Ovchinnikov et al., 2015);
circumnavigation of an arbitrarily moving and deforming object
by a single such a robot is studied in (Matveev et al., 2012).

Meanwhile, the problem of circumnavigating a dynamic ex-
tended object by many robots lies in an uncharted territory.
To fill this gap, we consider a speedy and unpredictably mov-
ing and deforming planar body. There is a team of point-wise
robots, each driven by the acceleration vector. This vector and
robot’s velocity are upper bounded in magnitude. In its local
frame, any robot has access to the positions of the peers within a
finite visibility range, the nearest point of the body, and robot’s
own velocity, but cannot assess the speeds of any other elements
in the scene or distinguish between the peers; the robots do
not communicate. They should approach the body to a given
distance, then trace the associated equidistant curve, and ulti-
mately achieve an effective distribution over it.

We unveil conditions necessary for the mission to be feasi-
ble. A decentralized control law is then presented that under
a slight enhancement of these conditions, solves the mission
and excludes collisions of the robots with one another and the
targeted body. This is shown via a rigorous global convergence
result and is confirmed by computer simulation tests. That law
combines event-based switching among discrete modes with
nonlinear regulation within every mode, is reactive, but nev-
ertheless is endowed with the capacity of global convergence.

The body of the paper is organized as follows. Sect. 2 describes
the problem. Sect. 3 offers necessary conditions for the mission
feasibility and assumptions. The control law and main results
are given in Sects. 4 and 5, respectively. Sect. 6 reports on
computer simulations, Sect. 7 offers conclusions. Due to the
paper length limitation, the proofs of the presented results will
be given in its full version.

2. PROBLEM FORMULATION

We consider a team of N robots moving in a plane and labeled
1 through N . Robot i is actuated by the acceleration, whose
magnitude and the robot’s speed do not exceed given bounds
ai > 0 and vi > 0, respectively. In its local frame, the robot
has access to its own velocity and is able to identify the relative
coordinates of the objects within a given finite visibility range.
Meanwhile, the robots are anonymous to one another (i.e.,
cannot distinguish between the peers) and cannot communicate.

There is an unpredictably moving 2D continuum D = D(t) ⊂
R2. Its moving pattern may be arbitrary; e.g., D(t) may not
only translate and rotate but also deform, i.e., change its shape
via, e.g., stretching, skewing, motions of some parts relative to
the others, etc. Starting from occasional locations, all robots
should approach D(t) to a common and given distance d0, then
maintain it, encircle D(t) in a common pre-specified direction
(clockwise/counterclockwise), and achieve an effective self-
distribution around D(t), e.g., an even one, thus building a
dynamic barrier around D(t). In its local frame, every robot
can find the nearest point of D(t) and so the distance to D(t).

We use the double integrator model of robot i:
r̈i = ai, ai := ‖ai‖ ≤ ai, ‖vi(0)‖ ≤ vi. (1)

Here ri is the position of the robot, vi is its velocity, the
acceleration ai is the control input, and ‖w‖ :=

√
〈w;w〉 and

〈·; ·〉 are the Euclidean norm and inner product, respectively.
The equation in (1) holds if the speed vi := ‖vi‖ ≤ vi. The
controller must respect this condition; so discussion of effects
above this bound or when trespassing it is of no relevance.

We do not specify whether the body is rigid, elastic, or plastic,
or liquid, etc.; moreover, it may be a non-physical body, like
an estimated area of potential threats. So we adopt only a
few minimal conventions, typical for the continuum mechanics
(Spencer, 2004). To state them, we follow the Lagrangian
approach and so introduce a reference configuration D∗ ⊂ R2

and a time-dependent configuration map Φ(·, t) that converts
D∗ into the current configuration D(t) = Φ[D∗, t].
Assumption 1. The reference configuration D∗ is compact and
bounded by a C2-smooth and C3-piece-wise smooth Jordan
curve; Φ(·, t) isC3-smooth, one-to-one, and defined on an open
vicinity O∗ of D∗, its Jacobian matrix is everywhere invertible.

The velocity and acceleration of a moving particle q = q(t) ∈
D(t) are defined as V (q, t) := ∂Φ

∂t [q∗, t] and A(q, t) :=
∂2Φ
∂t2 [q∗, t], where q∗ ∈ D∗ is the “seed” of this particle q(t) =
Φ(q∗, t) (Spencer, 2004). We also use the following notations:

• distA[r] := inf
r′∈A
‖r′ − r‖, distance from r to the set A;

• %i(t) := π[ri(t), t], where π(r, t) is the projection of r
onto D(t), i.e., the point of D(t) nearest to r;

• di(t) := distD(t)[ri(t)], distance from robot i to D(t);
• ∂A, boundary of the set A ⊂ R2;
• w⊥, vector w rotated through π/2 counterclockwise;
• [τ (%, t),n(%, t)], right-handed Frenet frame of ∂D(t) at
% ∈ ∂D(t), the unit normal n is directed inside D(t);

• Wτ (%, t) := 〈W ; τ (%, t)〉 ,Wn(%, t) := 〈W ;n(%, t)〉,
tangential and normal projections of vector W ;

• κ(%, t), signed curvature of ∂D(t) at point % ∈ ∂D(t);
• V ′r(r, t), spatial velocity gradient tensor;
• Ω(r, t), spin (angular velocity of the rigid-body rotation)

of the continuum D(t), i.e., 1
2 [V ′r − (V ′r)>] =

(
0 −Ω
Ω 0

)
;

• E(r, t) := 1
2 [V ′r + (V ′r)>], strain-rate tensor of D(t);

• λ(r, t) := 〈Eτ ;n〉 + Ω =
〈
V ′%τ ;n

〉
, rotational velocity

of an infinitesimally small arc of ∂D(t) that is due to both
the rigid-body rotation of the continuum (the addend Ω)
and its shear deformation (the addend 〈Eτ ;n〉);

• η(r, t) := 〈Eτ ; τ 〉, rate of stretch of such an arc;
• σ = ±1 gives the desired direction of circumnavigating

the targeted body (counterclockwise/clockwise).

3. NECESSARY CONDITIONS AND ASSUMPTIONS

The control objective includes regulation of the output di to
the targeted value d0. Local controllability of the output is a
classic prerequisite for feasibility of this goal: the output di can
be both decreased and increased via proper controls. Since they
directly affect only d̈i, this means that the sign of d̈i can be
arbitrarily manipulated whenever ḋi = 0. We assume this only
for motion at the maximal speed and in the operational zone,
which is defined in terms of the distance d to D(t):
Zop :=

{
(r, t) : d− < d < d+

}
, where d− < d0 < d+ (2)

are given. As is discussed in (Matveev et al., 2012), this as-
sumption includes (up to tiny details) the following part.
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Assumption 2. At any time t and for any point % ∈ ∂D(t),
0 < 1 + κ(%, t)d−sgn κ . (3)

Also, the zone Zop does not contain points r for which the
distance to D(t) is furnished by multiple points of D(t).

Further, we omit the argument (%, t) in κ, Vτ , Vn, An.
Lemma 1. Let Asm. 2 hold. The output di is locally control-
lable in Zop when moving at the maximal speed if and only if
at any time t and for any % ∈ ∂D(t) and d ∈ [d−, d+],

|Vn| < vi, (4)∣∣∣∣An +
2λξ + κξ2 − dλ2

1 + κd

∣∣∣∣ < ai

√
1− V 2

n /v
2
i , (5)

where ξ := −Vτ ±
√
v2
i − V 2

n . (6)

The posed control objective consists of two parts: regulating
the distance to D(t) and that between the robots, respectively.
These parts are concerned with the normal vi,n and tangential
vi,τ velocities, respectively. (The latter is true if all robots
have attained the first goal and so are traveling near the d0-
equidistant curve E(t) := {r : distD(t)[r] = d0}.) In order
that the two regulated distances be independently controllable,

we highlight the bounds vi,τ ∈ [−
√
v2
i − v2

i,n,
√
v2
i − v2

i,n]

that vi,n imposes on vi,τ . We demand that via these bounds,
vi,n cannot induce an insurmountable trend in vi,τ : the gap
between vi,τ and both the upper and lower bound can be driven
to any direction via a feasible acceleration without prejudice to
di-controllability if ‖vi‖ < vi. We request this only on E(t).

Meanwhile, vi,n and vi,τ are directly affected by the respective
components ai,n and ai,τ of the control ai. To not leave E,
these components should neutralize the matching parts of the
centripetal and Coriolis accelerations and the own acceleration
of the curve E. With the formulas for these accelerations in
mind, we see that allotment of the available control effort a
among normal ai,n and tangential ai,τ directions depends on
the speeds and accelerations of the points of E. However, their
evaluation is often a hard challenge in practical setting. This
motivates control solutions that do not call for resolving this
challenge and are based on a situation-independent allocation
of the control effort. To sum up, we denote the above gap by

g±,i := vi,τ ±
√
v2
i − v2

i,n. (7)

Definition 1. Robot i is said to be locally controllable at a
distance of d0 from D(t) with situation-independent allotment
of the control effort if there are ai,τ , ai,n > 0 such that
a2
i,τ + a2

i,n ≤ a2
i and whenever the robot travels over E (i.e.,

ri(t) ∈ E(t) ∀t) with a speed of vi < vi, the following holds:

i) The signs of d̈i and ġ±,i (with any sign drawn from±) can
be freely manipulated via normal ani ∈ [−ai,n, ai,n] and
tangential aτi ∈ [−ai,τ , ai,τ ] accelerations, respectively, if
the other acceleration is in the indicated interval.

Lemma 2. Suppose that robot i has the trait introduced by
Defn. 1. Then there are ai,τ , ai,n > 0 such that a2

i,τ+a2
i,n ≤ a2

i ,
(5) is true with ai := ai,n, d := d0, <7→≤, and for any time t
and point % ∈ ∂D(t), the following two conditions hold:

2
|λ− κVτ |+ |κ|

√
v2
i − V 2

n

1 + d0κ
|Vn|+

ai,n|Vn|√
v2
i − V 2

n

≤ ai,τ , (8)

|λ2/κ −An| < ai,n if |λ− κVτ | < |κ|
√
v2
i − V 2

n . (9)

Conversely, if all these conditions are true with ≤7→< every-
where, the above trait does appear.

Now we slightly enhance the above necessary conditions.
Assumption 3. There are ∆d,∆v,∆a,∆

τ
a,∆

n
a > 0 such that

for any robot, (3), (4), (5) remain true if their r.h.s. are decreased
by ∆d, ∆v , ∆a, respectively. The conditions from Lem. 2 are
true even if ai,n is replaced by ai,n−∆n

a and ai,τ by ai,τ −∆τ
a.

Here the constants ∆ (with various indices) are taken common
for all robots only for ease of notation. This does not limit
generality since passing to the minimum (over all robots) of
the eponymous individual constants keep Asm. 3 true.

Asm. 3 is true if vi, ai,n, ai,τ , ∆v,∆a,∆
τ
a,∆

n
a are slightly and

coherently reduced. We do this to ensure that vi is a feasible
speed and a2

i,n + a2
i,τ ≤ a2

i −∆aa with some ∆aa > 0.
Assumption 4. The map Φ(·) from Asm. 1, its derivatives up to
the third degree, and the inverse to the spatial Jacobian matrix
Φ′q(·) are bounded on the domain of definition O∗ × [0,∞).

In its local frame, robot i can determine its own projection
%i(t) onto the body D(t) and so can find %i(t) − ri(t) =
di(t)n[%i(t), t], di(t) = ‖%i(t)− ri(t)‖, and

%d0i (t) := %i + d0/di(t)[ri(t)− %i(t)] ∈ E(t). (10)
Assumption 5. The visibility ranges of the robots are such that
there exist ∆d

vis,∆
s
vis > 0 for which the following claim holds:

• Whenever |di(t)− d0|, |dj(t)− d0| ≤ ∆d
vis and the arc of

E(t) between %d0i (t) and %d0j (t) does not exceed ∆s
vis in

length, robot i “sees” robot j and the entirety of this arc.

The main part of the maneuver, where the proposed control law
is put in use, is prefaced by a surely performable preliminary
part. We drop discussion of rather trivial details of its imple-
mentation and merely state the needed outcome of this part.
Assumption 6. The following claims hold initially. Every robot
i 1) has been pushed up to the maximal speed vi, 2) has been
steered far enough from the targeted domain: D(0) and ri(0)
are separated by a straight line Li and distLi

[ri(0)] > (3π +
2)v2

i /ai + d0, and 3) the disc with a radius of 2v2
i /ai centered

at ri(0) remains in Zop from t = 0 to t = 3πvi/ai. Also, 4) the
robots have been moved to locations that are far enough from
one another: ‖ri(0)− rj(0)‖ > 6πmaxk v

2
k/ak ∀i 6= j.

The relation (4) implies that it suffices to move with a constant
velocity and top speed to ultimately get in 2). Distinct orienta-
tions of the velocities for various robots yield 4). The claim 3)
is in fact about the choice of d± in (2).

4. PROPOSED NAVIGATION LAW

The controllers of various robots implement a common rule and
are hybrid. They pass through two discrete states:

Go·to
|di−d0|≤d↓−−−−−−−→ Cir. (11)

The state Go · to is initial and d↓ > 0 is a parameter of the
controller. In Go ·to, the robot should arrive at the distance d0

to D(t) with the desired direction σ of motion around D(t).
In Cir, the robot should circumnavigate D(t) over E(t) in this
direction and take measures aimed at achieving and maintaining
an effective distribution of the robots over E(t).

Discrete state “Go·to”. The control input ai is given by
ai = σai ·sgn {ḋi+µχ[di]}u⊥i , where ui := vi/vi. (12)
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(a) Function b(·)
1

1

0

(b) Functions ϑk(·)

Fig. 1. Auxiliary functions used by the controller

Here µ > 0 and a map χ(·) ∈ R → R is to be chosen by the
designer of the controller, is smooth and such that

χ(z) < 0 ∀z < 0, χ(z) > 0 ∀z > 0,

χ := sup
z∈R
|χ(z)| <∞, χ′ := sup

z∈R
|χ′(z±)| <∞. (13)

To assess the time derivative ḋi of the reading di(t) any method
is welcome; there is numerical differentiation among them.

Discrete state “Cir”. Whenever |di(t) − d0| ≤ ∆d
viz, Asm. 5

guarantees that robot i can compute the signed (and counted in
the direction of σ) length si→j(t) of the arc of E(t) between
%d0i (t) and %d0j (t) for any close enough |si→j(t)| ≤ ∆s

viz robot
j with |dj(t)−d0| ≤ ∆d

viz. We pick a special parameter ∆s > 0
and subject it, along with d↓ from (12), to the bounds:

0 < d↓ ≤ ∆d
viz, 0 < ∆s ≤ ∆s

viz. (14)
Definition 2. A close neighbor of robot i is robot j 6= i such
that |dj − d0| < d↓ and |si→j | < ∆s. Such a neighbor is said
to be forward/backward if si→j > 0/si→j ≤ 0, respectively.

By the foregoing, robot i can identify its close neighbors and
find si := minj si→j > 0. Here minj is over all close forward
neighbors j of i if they exist; otherwise, si := ∆s.

Apart from ∆s > 0, the designer should pick an, aτ ,κb > 0
and a smooth map Ξ(·) : [0,∆s]→ R for which

Ξ(0) ≥ 0, Ξ′ := min
s∈[0,∆s]

Ξ′(s) > 0. (15)

The control input ai is given by
ai = ani ei − aτi e⊥i , where ei = (%i − ri)/‖%i − ri‖,

ani := āi,n · sgn [ḋi + µχ(di)],

aτi := −āi,τ · sgnΣi(si, t)− bΣi , (16)

Σi(s, t) := ϑ1 ṡi + ϑ2vi,τ − σ
[
ϑ3

√[
v2
i − v2

i,n

]
+

+ ϑ4Ξ(s)
]
,

bΣi := ζb
∑
j

b (sj) , (17)

where [b]+ := max{b, 0} and ϑk = ϑk(|di|/d↓). (18)

Here ṡi :=
〈
%̇d0i (t); τ [%i(t), t]

〉
is the tangential speed of

%d0i (t). The smooth maps b(·), ϑk(·) are to be chosen subject
to the features displayed in Fig. 1, where δb > 0 and 0 < δ1 <
δ2 < 1 are arbitrary. The forward close neighbors j of robot i
are enumerated according to the remoteness of %j from %i; the
robots with a common %j (if exist) are numbered in ascending
order of dj . If rk 6= rj ∀k 6= j, such an enumeration is unique.
In (17), the sum

∑
j is from the least index to the first zero

addend. (Any sum over the empty set is defined to be 0.)

Robot i can evaluate its own tangential vi,τ = 〈vi; τ (%i, t)〉
and normal vi,n = 〈vi;n(%i, t)〉 velocities since τ (%i, t) =

−ei(%i, t)⊥,n = ei(%i, t). Evaluation of ṡi :=
〈
%̇d0i ; τ [%i, t]

〉
may be based on numerical differentiation of the computed

projection %d0i . However if %i and τ are computed in the local
frame Fi of robot i and the upper index l signals about attribu-
tion to Fi, then ṡi =

〈
%̇d0,li ; τ l[%i, t]

〉
+ vi,τ − $i(di − d0),

where $i is the angular velocity of Fi. If the robot is close to
E, then di ≈ 0,%li ≈ 0 and, often similarly, %̇li ≈ 0. Then
ṡi ≈ vi,τ and in (17), the sum of the first two addends ≈ vi,τ .

The state x = {(ri,vi)}Ni=1 of the closed-loop system obeys
an ODE ẋ = f(x, t), where the r.h.s. is discontinuous; we
consider Filippov’s solutions of this ODE. Since ‖f(x, t)‖ ≤
k(1 + ‖x‖) ∀x, t with some k > 0, any solution is extendible
to all t ≥ 0 (Filippov, 1988). We do not discuss the more
intricate issue of its uniqueness and address all solutions, except
for unviable ones. The latter are those going on a repelling
discontinuity manifold. Any state from this manifold gives
rise to a solution going away from the manifold, also almost
all arbitrarily small perturbations of this state cause inevitably
“going away”. So the solutions that go on the manifold do not
occur in practice due to their utmost finite-horizon instability.

5. MAIN RESULTS

Theorem 1. Let Asm. 1—6 hold. Then the control law can be
tuned so that the following is true for the closed-loop system:

i) The robots respect the speed and acceleration bounds from
(1), i.e., ‖vi(t)‖ ≤ vi and ‖ai(t)‖ ≤ ai for all i and t;

ii) The robots do not collide with one another and D(t);
iii) Every robot reaches the desired distance to the targeted

body: di(t)→ d0 as t→∞ for all i;
iv) Eventually, every robot travels along the d0-equidistant

curve E(t) in the desired direction: σvi,τ (t) ≥ α, where
the constant α > 0 does not depend on t and i;

v) Eventually, the robots maintain a certain order on E(t):
after their proper enumeration from 0 to N − 1 and since
some time, the projection %d0i (t) of robot i onto E(t) is
different from %d0i⊕1(t) and immediately precedes this point
on the loop E(t), where ⊕ is addition modulo N ;

vi) Suppose in addition that the body D(t) is steady and
the visibility zone of any robot contains a peer under
even deployment of the robots over the equidistant curve:
∆s

vis > P/N . Here ∆s
vis is taken from Asm. 5, P is the

perimeter of E and N is the number of the robots. Also, let
∆s > P/N in (14). Then the robots’ distribution over E
is asymptotically even: si→i⊕1 → P/N as t → ∞. Also,
they sweep E with a speed that goes to Ξ(P/N) as t→∞.

Here v) means non-clustering. Harsh violation ∆vis < P/N
of the assumption ∆vis > P/N from vi) implies that adjacent
robots are invisible to each other under even deployment over
E. This makes the objective of even distribution hardly feasible
since coming close to such distribution is inevitably accompa-
nied by the loss of feedback from the inter-robot distances.

The reminder of the section is devoted to recommendations on
controller tuning. In brief, it suffices to pick the parameters
d↓,∆

s, µ, δb, ζb > 0 small enough and the function Ξ(·) from
(15) with sufficiently small slope and magnitude to ensure
i)—v) in Thm. 1, whereas vi) additionally needs the lower
bound ∆s > P/N . These can be viewed as guidelines for
experimentally tuning the controller. Now we specify them by
giving specific quantitative bounds. They refer to dL from 2)
in Asm. 6, d± from (2), ∆d,∆v,∆

τ
a,∆

n
a > 0 from Asm. 3, as

well as to the following bounds, which are finite due to Asm. 4:
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|ζ(%, t)| ≤ ζ ∀% ∈ ∂D(t),∀t
0 < p ≤ Perimeter of ∂D(t) ≤ p ∀t. (19)

Here ζ assumes the following values κ, λ, η, V,A, λ′%,κ′%, A′%,
the symbol ′% refers to the derivative in the tangential direction,
and |ζ| should be replaced by ‖ζ‖ for ζ = V,A,A′%.

Thresholds d↓ for (11) and ∆s in Defn. 2 are such that (14) is
true and for any robot i, the following inequalities hold, where
α ∈ (0, 1) is arbitrarily chosen prior to d↓ and ∆s:

d↓ < dL − (3π + 2)v2
i /ai − d0, d0 − d−, d+ − d0,

d↓ <
∆3
d∆

n
a

2
[
λ+ κ(V + vi)

]2 , (1− α)
∆d

κ
,

d↓ <
α∆d

√
vi∆v −∆2

v/4

2δ2[λ+ κ(V + vi)]
, d↓

{
ai + 2

λ+ κ(V + vi)

α∆d
vi

}
<
α∆τ

a∆d

6κ

√
vi∆v −∆2

v/4

vi +
√
vi∆v −∆2

v/4
,

d↓(B0 +B1d↓ +B2d
2
↓) <

α∆τ
a∆d

6δ2
, where

B0 := A
′
ρ + κA+ κ2V

2
+ [λ

′
ρ + κ(λ+ η)]V +B♦vi∆d

+
λ(η + d0λ

′
ρ) + κ′ρV

2
+ (ηκ + λ

′
ρ + κ′ρλd0)V

∆d
,

B1 := B∗vi∆d +B♦(λ+ κV ), B2 := B∗(λ+ κV ), and

B∗ :=
[λ+ κ(V + vi)]κ′ρ

α2∆4
d

,

B♦ :=
(2λ
′
ρ + 2κη + κ2V )∆d + κ′ρ[V (1 + ∆d) + vi + λd0]

α∆3
d

.

Due to 2) in Asm. 6, these are met by taking d↓ small enough.

Function Ξ(s) of s ∈ [0,∆s] is smooth and such that

Ξ := max
s∈[0,∆s]

Ξ(s) <
1

2

√
vi∆v −∆2

v/4,

Ξ
′

:= max
s∈[0,∆s]

Ξ′(s) <
α∆τ

a∆d

6[2(vi∆d + (λ+ κV )d↓) + αpκ vi]
.

These are met by, e.g., any nonnegative linear ascending func-
tion with sufficiently small slope and range.

Parameter µ is chosen by using χ from (13) and upper bounds
ϑ
′
k on |ϑ′k(ζ)|, ζ ∈ [0, 1] for the maps from Fig. 1b. This

parameter is chosen so small that

2µχ ≤ ∆v,

[
ai
√
χ√
vi

+ 2
(λ+ κV )

√
vi χ

∆2
d

]√
2µ

+2
κ vi χ

∆2
d

µ+ χχ′µ2 < ∆a,

2viχ

[(
1 +

viµχ

∆2
v

)
κ +

λ+ κV
∆v∆d

]
µ+ χχ′µ2 <

∆n
a

2
,

κ(vi + Ξ)ϑ
′
3

(1− α)∆d
+
v3
i [ai,n∆d + λ+ κ(V + vi)vi]

∆d(vi∆v −∆2
v/4)3/2

+
(ϑ
′
1 + 2)[λ+ κ(V + vi)]

α2∆d

+

[
κ +

λ+ κ(V + 2vi)√
vi∆v −∆2

v/4

]
v2

∆d

√
vi∆v −∆2

v/4
<

∆τ
a

6µχ
.

Parameter δb from Fig. 1a is chosen so small that

20 metres 

(a) 0.0s (b) 25.0s (c) 50.0s (d) 100.0s (e) 150.0s (f) 200.0s

(g) 250.0s (h) 300.0s (i) 350.0s

20

40
m

0 300 600 sec

(j) Inter-robot distances

Fig. 2. A moving, bending, and resizing continuum.

δb < ∆s/N, p/N, where p is taken from (19).

Parameter ζb from (17) is chosen by using ∆aa (introduced in
the second paragraph after Asm. 3)and is picked so small that

0 < ζb < ∆τ
a/(6N), 2aiNζb +N2ζ2

b < ∆aa.

Theorem 2. Let the assumptions of Thm. 1 hold and the pa-
rameters of the control law be chosen subject to the above
recommendations. Then the claims i)—v) of Thm. 1 are true.
If the additional assumptions of the claim v) from Thm. 1 hold
and ∆s := ∆vis, the claim vi) is true as well.

6. RESULTS OF COMPUTER SIMULATION TESTS

The numerical values of the basic parameters used in the tests
are listed in Table I, where τ is the control update period and
the index i is dropped since the parameters are common for
all robots i. The sensor readings were corrupted by noises
evenly distributed over [−0.01m, 0.01m]. The two-point New-
ton quotient was used to estimate time-derivatives. Multimedia
of extended versions of the tests are available at
https://drive.google.com/drive/folders/1jwoZW17Pd-_DCLVUUDyAFa20GahAqUEU?usp=sharing

Table I: Parameters used for simulation

d0 = 10.0m a = 3.0 m
s2

v = 5.0m
s

∆s
viz = 50.0m

∆d
viz = 10.0m τ = 0.05s µ = 3.0m

s
χ(d) = arctan d

20

an = 2.0m
s2

aτ =
√

5m
s2

d↓ = 3.5m ∆s = 14π m

Ξ(z) = 4z
∆s δb = 0.2m δ1 = 1

2
δ2 = 1

4
ζb = 0.002 m

s2

In Fig. 2–4, the robots are depicted as colored discs with short
segments (to show the orientation of the velocity). The targeted
body D(t) is shown in blue; the path of its characteristic point
is displayed as a dashed blue line in Fig. 2, 4. The targeted d0-
equidistant curve E(t) is depicted as a black dashed curve.

In Fig. 2, the targeted body moves, bends and resizes. The path
of its characteristic point is fully displayed in Fig. 2(a), only
parts of this path are shown in Fig. 2(b–i). From the initial
deployment in Fig. 2(a), the robots reach E(t) (in Fig. 2(b)) in≈
25.0s, while not colliding with the body and one another. Then
the robots trace the moving and deforming curve E(t) with a
high accuracy, as is illustrated by Fig. 2(b)–(i). Meanwhile,
Fig. 2(b) shows that nearly a half of E(t) remains unattended
at t = 25.0s. Not later than in Fig. 2(c), the distribution of the
robots becomes more uniform, with no unattended half-curve;
so the body becomes surrounded from all sides. Since Fig. 2(c),
the distribution is close to even, as can be seen in Fig. 2(c–
j). The inter-robot distance under even distribution over the
equidistant curve is set by its perimeter, which varies with time
in this experiment. This is the reason for relatively large and
joint oscillations of those distances in Fig. 2(j).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9383



(a) 0.0s (b) 25.0s (c) 50.0s (d) 100.0s (e) 150.0s

(f) 200.0s (g) 200.0s (h) 300.0s

20

40m

0 200 400sec

(i) Inter-robot distances

Fig. 3. A body composed of rigid moving parts.

(a) 0s (b) 25s (c) 50s (d) 100s (e) 150s

(f) 200s (g) 200s (h) 300s (i) 350s (j) 400s

Fig. 4. Escorting a convoy.

Fig. 3 is concerned with a case whereD(t) is composed of rigid
parts, which rotate with respect to one another. In Fig. 3, D(t)
is a rhombus with a fixed center and side length; the angles
between adjacent sides alter with time subject to a periodic
schedule. Fig. 3(a) shows the initial scene, Fig. 3(a)–(h) demon-
strate snapshots taken along the subsequent maneuver. As can
be seen, the control law copes with the mission and exhibits
a good performance. Moreover, the final mismatch with the
uniform distribution is even smaller than in Fig. 2.

Fig. 4 is inspired by the situation where several vehicles travel
in a convoy one after another, and every vehicle traces the path
of its predecessor at a constant distance from it. A team of
escort robots should approach the convoy to a given distance
and then should repeatedly encircle its entirety at this distance,
not intervening between the vehicles. In Fig. 4, the convoy
is modeled as a snake-like structure with a constant length.
This structure traces a self-intersecting blue dashed path. As
can be seen in Fig. 4, the control law copes with the mission.
Meanwhile, due to frequent turns of the convoy, the distribution
of the robots over the equidistant curve differs from the even
one more markedly than in Fig.2,3. Nevertheless, the convoy is
eventually surrounded from all sides, as is required.

7. CONCLUSIONS

The paper presented a distributed communication-free hybrid
control law that drives a group of speed- and acceleration-
limited robots to a desired common distance from an unpre-
dictably moving continuum and then ensures both tracking the
respective equidistant curve in a common pre-specified direc-
tion and cluster-free distribution of the robots over this curve;
this distribution is asymptotically even if the curve is steady.
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