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Abstract: Online reliability assessment based on system model and operational data is crucial for all the 

safety critical systems. Since system reliability can be calculated directly from failure-rate, the central in 

online reliability assessment is the determination of failure-rate. In fact, the deviation of actual responses 

from its expectation can be utilized for disturbance observation which can further determine the failure-

rate. In this paper, an extended state observer (ESO) is proposed for general nonlinear dissipative sys-

tems, which provides globally bounded observations for not only state-vector but also total disturbance 

and its differentiation. By assuming that the failure-rate is given by the estimated differentiation of total 

disturbance, the reliability can be evaluated. This ESO-based online reliability assessment method is then 

applied to a nuclear heating reactor, and simulation results show the feasibility and effectiveness. 
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

1. INTRODUCTION 

Reliability assessment is highly concerned for condition 

monitoring and maintenance decision, which is meaningful to 

enhance the operation availability and efficiency of complex 

engineering systems such as the nuclear plants, chemical pro-

cesses and aircrafts (Zio, 2009). Usually, reliability estima-

tion can be given by not only the models from physics or 

experiments but also the condition monitoring (CM) data, 

where the former leads to the model-based method, and the 

latter leads to the data-driven method. 

Model-based method gives reliability estimations based on 

the system models either governing failure mechanism or 

regressed from experiment data. In Di Maio et al. (2015), a 

multi-state physics model describing the degradation process 

for nuclear piping systems was proposed, which can be used 

for mapping the operational condition of nuclear piping sys-

tems into discrete states such as no damage, micro-crack, 

flaw and rupture. In Santhosh et al. (2018), the data from the 

accelerated life testing based on the samples of instrument 

and control (I&C) cables was adopted to give a regression 

model taking the form as an artificial neural network (ANN) 

for reliability prediction.  

Data-driven method is based on the fact that the exacted fea-

tures of condition monitoring data vary with the degradation 

process, and can be beneficial when a model is too expensive 

to be obtained accurately. In Zio et al. (2010), a fuzzy model 

is proposed for predicting the remaining useful life (RUL) in 

dynamic failure scenarios, which can be updated online by 

measurements. In Tao et al. (2018), statistical failure data and 

condition monitoring (CM) data are combined so as to tune a 

Bayesian model for dynamic risk assessment. In Zeng et al. 

(2018), a support vector machine (SVM) based RUL online 

assessment method is given, where the SVM is regressed by 

historical data offline, and is updated online by CM data. 

Similar to Zeng et al. (2018), deep convolution networks are 

applied for RUL estimation (Li, et al., 2018).  

Sometimes, the cost in model regression from historical data 

is also expensive, especially for safety-critical systems. Since 

modeling uncertainty can be suppressed online by data, it is 

meaningful to combine the model-based and data-driven 

methods for hybrid method. In Baptista, et al. (2019), data-

driven methods are coupled with Kalman filtering technique 

for a higher RUL prediction performance. Further, since the 

mismatch between actual and expected responses of a given 

dynamic system is caused by the exterior and interior dis-

turbances, which can directly reflect the deterioration of op-

eration reliability. This mismatch can be estimated by a 

properly-designed observer combining system model and 

operation data.  

In this paper, an extended state observer (ESO) is given for 

general nonlinear dissipative systems, which can provide 

globally bounded estimations for not only state-variables but 

also the total disturbance and its differentiation. By defining 

the failure-rate from the differentiation of total disturbance, 

the system operation reliability can then be calculated direct-

ly. This ESO-based reliability estimation method is applied to 

a nuclear heating reactor (NHR) which is a typical integral 

pressurized water reactor (iPWR) with a series of advanced 

design features. After checking the dissipation characteristics 

of PWR dynamics, numerical simulation results in the cases 

of normal power maneuver, injection of disturbances and 

load rejection are given, which show the feasibility and satis-

factory performance of this ESO-based reliability estimator. 
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2. PROBLEM FORMULATION 

Consider nonlinear systems taking the form as 
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where  
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is the state-vector with y∈Rm measurable and z ∈Rn-m un-

measurable, u∈Rl is the control input, fo∈Rm, fi∈Rn-m and G 

∈Rm×l are given norm-bounded functions, ξ∈Rm is the total 

disturbance satisfying 
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ξ, d∈Rm, and D is a given bounded positive constant. 

Furthermore, suppose that nonlinear system (1) is strictly 

dissipative, i.e. there exists a positive storage function S(x) so 

that  
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is also norm-bounded, and function Q is positive-definite.  

Total disturbance ξ is mainly induced by the deterioration of 

process equipment as well as sensors and actuators, which is 

tightly related to operation reliability R determined by  
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with rf being the failure-rate. Suppose that the failure-rate rf 

is given by the differentiation of total disturbance ζ through  
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is a deadzone function, bk and lk are given positive constants. 

Then, from equations (7) and (8), operation reliability R can 

be evaluated online by estimating of ξ, which leads to the 

following problem. 

3. EXTENDED-STATE OBSERVER FOR DISSIPATIVE 

NONLINEAR SYSTEM 

In this section, an extended state-observer (ESO) is newly 

proposed for nonlinear system (1) satisfying conditions (3), 

(4) and (5) so as to give a globally bounded estimation of the 

extended state-vector defined by  

 
T

T T T   χ x ξ ζ .  (10) 

The design and performance analysis of the ESO for online-

reliability evaluation is summarized as the following theo-

rem, which is the main result of this paper. 

Theorem. For nonlinear system (1) satisfying conditions (3), 

(4) and (5), design the corresponding ESO as 
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where ŷ , ẑ , ξ̂ and ζ̂ are respectively the estimations of y, z, ξ 

and ζ, K∈Rm×m is positive-definite and symmetric, function V 

is the storage function satisfying (5), ˆ
y  e y y , ˆ

z  e z z , 
ˆ e ξ ξ , ˆ e ζ ζ , 
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and αi>0, i=1, 2, 3. ESO (11) can provide globally bounded 

estimations of state-vector x, total disturbance ξ and its varia-

tion-rate ζ if the following conditions are well satisfied: 
(A) Algebraic equation 

 3 2
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is Hurwitz, i.e. every root has a strictly negative real parts. 

(B) Storage function S satisfies 
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where T(∙) is positive-definite.  

Proof: From equations (1), (3) and (11), the dynamics of ob-

server error can be written as  
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where functions ho(ex, x) and hi(ex, x) come respectively from 

the Taylor expansion of functions fo and fi around ex, i.e.  
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Since fo and fi are norm-bounded, it can be seen from equa-

tions (17) that ho and hi are norm-bounded. Moreover, define 
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Then error dynamics can be rewritten as 
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Choose the Lyapunov function of error dynamics (21) as 
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ey,k, eξ,k and eζ,k are respectively the kth element of ey, eξ and 

eζ. Further, define  
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Then, it can be seen that  
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where U is an orthogonal matrix given by   

 
T

T T

1 3, ,m k k
    U U U U I υ ,  (27) 

 
, ,1

1, ,

0, .
k k i k im

i k

i k
 




     

υ   (28) 

Differentiate function V along the trajectory of (21), 
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Since algebraic equation (13) is Hurwitz, matrix A is strictly 

negative-definite, which is equivalent to the fact that for arbi-

trary positive-definite matrix Q, there exists P so that  
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Moreover, from conditions (14) and (15),  
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where γ and θ are positive constants, and o(∙) denotes the high 

order terms. Substitute (33), (34) and (35) to (29),  
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where 

 .m Q I Q   (37)  

From (36), the estimation error converge globally asymptoti-

cally to a bounded neighborhood of origin which is tighter if 

scaling factor ε is smaller.  This completes the proof. 

Remark 1. Usually it is easy to choose positive constants αi 

(i=1, 2, 3) so that condition (A) can be satisfied. The difficul-

ty in applying ESO (11) is to check dissipation condition (5) 

and condition (B) given by (14) and (15). For mechanical, 

electrical and electromechanical systems, total energy can be 

adopted as the storage function. For thermodynamic systems, 

energy cannot be feasible, and shifted-ectropy is usually used 

to construct storage functions.  

Remark 2. From equations (7), (11) and (8), the operational 

reliability can be estimated by  
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Moreover, based on the relationship between failure-rate and 

lifetime, the RUL L(t) is given by 
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where L0 is the initial useful life. 

4. APPLICATION TO NUCLEAR REACTORS 

In this section, ESO (11) is applied to evaluate the operation 

reliability of general pressurized water reactors (PWRs). 

Based on giving the dynamic model, both dissipation condi-

tion (11) and condition (B) given by (14) and (15) are veri-

fied, and the expression of a special ESO for PWRs is given. 

4.1 State-Space Model 

The PWR dynamic model for ESO design is the point kinet-

ics with one equivalent delayed neutron group and tempera-

ture feedback from both the fuel and coolant temperature, 

which is given as follows [29, 6-8]: 
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where nr and cr are respectively the normalized neutron flux 

and concentration of delayed neutron precursor, β is the frac-

tion of delayed neutrons, Λ is the effective lifetime of prompt 

neutron, λ is the decay constant of delayed neutron precursor, 

Tf is the average fuel temperature, Tcav and Tcin are the aver-

age and inlet primary coolant temperatures respectively, Tf,m 

and Tcav,m are the initial equilibrium values corresponding to 

Tf and Tcav respectively, αf and αc are the reactivity feedback 

coefficients of the fuel and coolant temperatures respectively, 

Ω is the heat transfer coefficient between fuel and coolant, M 

is the mass flow rate times heat capacity of the primary cool-

ant, P0 is the rated thermal power, ρr is the exterior reactivity, 

μf is the total heat capacity of fuel, μc is the total heat capacity 

of primary coolant, γf is the fraction of reactor power deposit-
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ed in the fuel, and 0<γf <1. Here, it is not loss of generality to 

suppose that both αf and αc are strictly negative. 

Let nr0, cr0, Tf0, Tcav0, Tcin0 and ρr0 be respectively the expected 

steady values of nr, cr, Tf, Tcav, Tcin and ρr. Define the devia-

tions as δnr=nr-nr0, δcr=cr-cr0, δTf=Tf-Tf0, δTcav=Tcav-Tcav, Tcin 

=Tcin-Tcin0 and δρr=ρr-ρr0.  

Choose  
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where  
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Then, the state-space model of PWRs can be written as  
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4.2 Verification of Conditions 

To apply ESO (11) for online operational reliability analysis, 

it is central to verify that PWR dynamics (43) is strictly dis-

sipative under a proper storage function. The verification of 

dissipativity is summarized as the following proposition. 

Proposition. PWR dynamics (43) with negative temperature 

reactivity feedback coefficients αf and αc is strictly dissipative 

under storage function S given by  
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if inequality 
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is well satisfied. 

Proof: Since both αf and αc are strictly negative, function 

S(x) is strictly positive definite. Moreover, from (46), there is 

a positive constant σ∈(0, 1) so that  
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From dissipation condition (5), it can be derived that  
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Fig. 1. The schematic diagram of NHR. 

From equations (47) and (48), dissipation condition (5) is 

satisfied with Q given by  
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  (49) 

which completes the proof of this proposition. Moreover, it 

can be also verified that  
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From (50), (51) and the above proposition, it can be seen that 

ESO can be applied to PWRs satisfying (46) for online relia-

bility estimation.  

4.3 ESO for PWRs 

From state-space model of PWRs (43), it can be seen that 

m=2, and then the ESO for PWRs can be given as  
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where 

  
T

1 1 2 2
ˆ ˆ

y x x x x  e   (53) 

ξ̂ , ζ̂ ∈R2, and positive constants αi (i =1, 2, 3) satisfy condi-

tion (A) in the theorem. 

5. SIMULATION RESULTS AND DISCUSSIONS 

In this section, ESO of PWRs given by (52) is applied to the 

online operational reliability estimation of a nuclear heating 

reactor (NHR) that is a typical integral pressurized water re-

actor (iPWR) with a series of advanced features such as the 

integral primary circuit, full-power-range natural circulation, 

self-pressurization, passive removal of residual heat and hy-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13780



 

 

     

 

draulically control rod driving (Dong, Pan, 2019). The sche-

matic diagram of NHR with a rated thermal power of 

200MWth is shown in following Fig. 1. The cold water leav-

ing from the primary side of primary heat exchangers (PHEs) 

enters to the reactor core from its bottom, which is then heat-

ed up by the fission power. The output hot water flows up-

ward along the riser, and enters to the primary sides of PHEs 

so as to transfer its heat to the secondary coolant. The prima-

ry circulation is naturally driven by coolant density difference. 

The secondary coolant flows of PHEs combine together to 

form two intermittent circuits (ICs) each of which drives a U-

tube steam generator (UTSG) for power generation or heat 

supply.  

5.1 Simulation Results 

In this numerical simulation, ESO (52) is applied to estimate 

the unmeasurable states and disturbances so as to evaluate its 

operation reliability of NHR online by equation (38). The 

parameters of ESO are chosen as α1=3a, α2=3a2, α3=a3, a=1, 

κ=1 and ε=0.01, and the parameters of failure-rates are cho-

sen as b1=0.005, b2=0.05 and l1=l2=1. To verify the feasibility 

and to show the performance, the following cases are consid-

ered, where the initial condition is that the NHR steadily op-

erates at its full power (FP). 

A. Normal power maneuver 

The setpoint of NHR thermal power start at 3000s to decrease 

from 100% to 20%FP in a rate of 20%FP/min, and the re-

sponses of key variables are shown in Fig. 2. 

B. Disturbance of reactivity  

A step decrease of reactivity with the amount of 0.2$ occurs 

at 3000s, and the responses are shown in Fig. 3. 

C. Disturbance of IC flowrate 

A step decrease of IC flow with an amplitude of 200kg/s oc-

curs at 3000s. The responses are shown in Fig. 4. 

D. Load Reject 

At 3000s, the setpoint of thermal power steps down from 

100% to 40% FP, and the responses are shown in Fig. 5. 
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Fig. 2. Reponses in Case A, nr: normalized neutron flux, Tf: 

averaged fuel temperature, Tcav: averaged temperature of 

primary coolant, nrδρr=ξ1. 

Fig. 3. Reponses in Case B, nr: normalized neutron flux, Tf: 

averaged fuel temperature, Tcav: averaged temperature of 

primary coolant, nrδρr=ξ1. 
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Fig. 4. Reponses in Case C, nr: normalized neutron flux, Tf: 

averaged fuel temperature, Tcav: averaged temperature of 

primary coolant, nrδρr=ξ1. 

Fig. 5. Reponses in Case D, nr: normalized neutron flux, Tf: 

averaged fuel temperature, Tcav: averaged temperature of 

primary coolant, nrδρr=ξ1. 
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Fig.6. Deterioration of reactor operational reliability in cas-

es A, B, C and D. 

5.2 Discussions 

From Figs. 2-5, we can see that ESO (52) for PWRs can give 

satisfactory observation for the unmeasurable state-variables 

as well as disturbances. The reactor reliability deterioration 

calculated by equation (38) based upon the disturbance ob-

servation provided by ESO (52) is shown in Fig. 6, from 

which it can be seen that there exists reliability deterioration 

in all the cases except case A. From the responses of cases B-

D shown in Figs. 3-5, disturbance injections and load rejec-

tions can induce larger overshoots of state variables ζ1 and ζ2 

which surpasses the limitation of deadzone function and in-

duces reliability deterioration. Since the load rejection trig-

gers the fast and large-range variations of all the process var-

iables, the reliability decrease in case D is much larger than 

those in cases B and C. Based on the above discussion, the 

ESO-based operation reliability estimation method is feasible 

for the online evaluation of reliability of nuclear reactors. It is 

easy to implement ESO (52) on the digital control system 

platforms, which shows that the method proposed in this pa-

per is deployable. 

6. CONCLUSIONS 

The mismatch between the desired and actual responses of a 

dynamical system can be adopted to estimate the correspond-

ing total disturbance and its differentiation that can be uti-

lized for operational reliability evaluation. In this paper, a 

novel ESO is proposed for general nonlinear dissipative sys-

tems which can provide globally bounded estimations for the 

state-variables as well as the total disturbance and its differ-

entiation. Then, the evaluation of system operational reliabil-

ity is given based on the failure-rate defined on the estimated 

differentiation of total disturbance. To verify this ESO-based 

reliability evaluation method, it is applied to a NHR. After 

checking the dissipativity of general PWRs, numerical simu-

lation results in the cases of normal power operation, injec-

tions of reactivity and IC flowrate disturbances as well as 

load rejection are all given, and the reactivity deterioration in 

the four cases are also shown, which strongly show the feasi-

bility and satisfactory performance of the ESO-based reliabil-

ity estimation method.  
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