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Abstract: The problem of dissipative proportional-integral (PI) output-feedback control for a
class of semilinear heat equations with actuator disturbance is addressed. Sufficient conditions
for strict dissipativity in the state and thus exponential stability of the closed-loop system are
derived which are stated in terms of the dissipavity properties of the nonlinearity, the controller
gains and the actuator and sensor shape functions (i.e., their form and localization). Based on
these conditions a dissipation maximization procedure is proposed to appropriately choose the
degrees of freedom using optimization algorithms. Numerical simulation results illustrate the
performance of the proposed controller.
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1. INTRODUCTION

Control of partial differential equations with nonlinear-
ities has received increasing attention during the last
decades. Most of the common approaches like the modal
(or spectral) decomposition (Curtain and Zwart, 1995) or
backstepping based control (Krstic and Smyshlyaev, 2008)
apply only to linear or linearized models, with few ex-
ceptions (Vazquez and Krstic, 2008a,b). Lyapunov-based
techniques (Bastin and Coron, 2016; Hagen and Mezic,
2003; Hagen, 2006; Hasan, 2015; Hu et al., 2015; Hasan,
2016) offer a way to extend these approaches to explicitely
account for the destabilization potential of the nonlinear
terms. Dissipativity-based approaches (Hagen and Mezic,
2003; Schaum and Meurer, 2019b,a) allow a characteri-
zation to include both stabilizing as well as destabilizing
nonlinear components, e.g. by means of sector conditions
(Lur’e and Postnikov, 1944; Popov, 1959; Khalil, 1996;
Sepulchre et al., 1997).

The dissipative approach presents a general framework
closely connected to Lyapunov’s direct method and ba-
sically exploits the particular dissipativity properties of
each component of the system and its particular inter-
action with the other parts. By specific characterization
of dissipation properties it is thus possible to determine
(sufficient) conditions under which a multi-system inter-
connection has some desired stability properties. In the
case that according stabilizability features are ensured
the required dissipation properties can be introduced or
improved through feedback control.

The dissipativity-based approach has been sucessfully im-
plemented e.g. in (Schaum and Meurer, 2019b) for the
exponential stabilization of a class of heat equations with
a nonlinear (destabilizing) globally (in space) acting dis-

tributed output-feedback term by means of a local in-
domain stabilizing linear output-feedback injection. The
key design degrees of freedom herein are the localization
of the collocated sensor-actuator pair and the control gain.
In a similar fashion in (Schaum and Meurer, 2019a) a
dissipative boundary backstepping controller is proposed
for the global stabilization of a semi-linear first-order
partial integro-differential equation. In both scenarios the
nonlinear terms are explicitely accounted for in the design
by means of sector conditions, which are equivalent to
quadratic dissipation inequalities.

The above results did not consider the effects of actuator
disturbances, measurement noise or other kind of model
and parameter uncertainties. Thus some open question
with respect to the stabilization capabilities and associated
sufficient conditions for exponential stability or input-
to-state stability have still to be answered. Motivated
by this fact, in the present work a first extension of
the result in (Schaum and Meurer, 2019b) is developed
to explicitely account for actuator disturbances in the
form of a constant offset. From finite-dimensional linear
control theory it is quite well known that these kind
of perturbations can in principle be compensated by a
proportional-integral (PI) controller. Nevertheless, even
though intuitively appealing, an explicit proof as well as
sufficient conditions for the choice of controller gains to
ensure the exponential stability of a distributed parameter
nonlinear system model with actuator offset is still an
open task. This gap is filled in the present study by
establishing sufficient conditions for exponential stability
using dissipative PI control.

The results extend the ones presented in (Schaum and
Meurer, 2019b) in the sense that (i) actuator offset is
included, (ii) integral action is combined with proportional
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one, (iii) the functioning assessment includes conditions
on the collocated actuator-sensor position and shape, and
(iv) the restriction to symmetric (sector) dissipativity
conditions is revealed.

The paper is organized as follows. In Section 2 the problem
set-up is formulated. Some basic notions, concepts and re-
sults from dissipativity theory are recalled in Section 3. In
Section 4 the main results on the exponential stabilization
using dissipative PI control are presented and related to
the optimal sensor and actuator location problem. Section
5 contains numerical simulation results and discussions for
the application of the presented theory to a representative
case example. Conclusions are drawn in Section 6.

Notation

The space of square integrable functions over the domain
[0, 1] is given by L2(0, 1). For a given space S the inner
product is denoted by 〈·, ·〉S and the induced norm by

‖v‖S =
√
〈v, v〉. In particular for x,y ∈ S = Rn one has

〈x,y〉Rn = xᵀy and for functions u, v ∈ S = L2(0, 1) one

has 〈u, v〉L2(0,1) =
∫ 1

0
uv dz. Correspondingly, for the prod-

uct space S = L2×R it holds that for any [u, x]ᵀ, [v, y]ᵀ ∈
L2(0, 1) × R one has 〈[u, x]ᵀ, [v, y]ᵀ〉S = 〈u, v〉L2(0,1) +

〈x, y〉R and the induced norm is given by ‖[u, x]ᵀ‖S =√
‖u‖2L2(0,1) + |x|2 with | · | denoting the absolute value

of a real number. The arguments of functions are provided
only when necessary to improve the comprehensibility.

2. PROBLEM STATEMENT

Consider a heat equation with globally (in space) dis-
tributed nonlinear output injection ϕ ∈ C1 and locally
acting control disturbed by a constant offset w, i.e.,

∂tx(z, t) = D∂2zx(z, t) + gϕ(σ(t)) + b(z)(u(t) + w) (1a)

x(0, t) = x(1, t) = 0 (1b)

σ(t) = Hx(z, t) = 〈h, x〉L2(0,1) (1c)

x(z, 0) = x0(z) (1d)

y(t) = σ(t) (1e)

with time t ∈ [0,∞), the state x ∈ L2(0, 1), space
z ∈ [0, 1], the diffusion coefficient D > 0, a distributed
constant gain g ∈ R, the actuator shape function b ∈
L2(0, 1), the control input u : [0,∞) → R and the output
y = σ with σ being a weighted integral of the state x with
the weight given by the function h ∈ L2(0, 1).

In the following only the collocated set-up is analyzed, i.e.,
the case that sensor and actuator shape functions h and b
are identical so that∫ 1

0

bxdz =

∫ 1

0

hxdz = Hx = σ. (1f)

The control design task for (1) amounts to achieve expo-
nential stability of the zero profile x = 0. For this purpose
the following PI control scheme is proposed

u(t) = −ky(t)− l
∫ t

0

y(τ) dτ. (2)

The problem of determining k and l is solved by means of
ensuring a desired dissipativity property of the closed-loop

system. To further address this point, first some notions
and results from dissipativity theory are briefly recalled.

3. DISSIPATIVITY CONCEPTS

The focus on dissipativity theory used in the sequel fol-
lows the general ideas presented in the early considera-
tions for finite-dimensional systems (Willems, 1972a,b; Hill
and Moylan, 1976, 1980), and extensions to the infinite-
dimensional setup (Pandolfi, 1998; Brogliato et al., 2007).

In the following denote by Σ(A,G,H) a system described
by the abstract differential equation

dx(t)

dt
= Ax(t) + Gν(t) (3a)

σ(t) = Hx(t). (3b)

with the state x ∈ X with inner product 〈·, ·〉X, the
operator A : D(A) → X, the matrix G ∈ Rn×p, input
ν ∈ U, and output σ ∈ S associated to the output operator
H : X→ S.

Definition 1. Σ(A,G,H) is called strictly state dissipative
with dissipation rate κ if there exist a storage functional
S : X → R with S � 0 and a supply rate ω : S × U → R,
so that

dS
dt
� ω(σ,ν)− κ‖x‖2. (4)

For the case of a quadratic supply rate

ω(σ,ν) = 〈σ, Qσ〉S + 2 〈σ, Sν〉S + 〈ν, Rν〉U . (5)

with operators Q : S → S, S : U → S and R : U → U the
following notions are given:

(a) The system Σ(A,G,H) is called (Q,S,R)-strictly
state dissipative with dissipation rate κ if (4) holds
with ω given in (5).

(b) The static map ϕ(σ) is (Q,S,R)-dissipative if it holds
that ω(ϕ,σ) � 0.

�
In many situations it is possible to show that the particular
nonlinearity at hand is contained in a linear sector, i.e. that
there exist constants k1, k2 so that

(k2σ − ϕ(σ))(ϕ(σ)− k1σ) ≥ 0 (6)

holds true for all σ ∈ R (see Figure 1 for an illustration).
In this case the nonlinearity is said to belong to the sector
[k1, k2] (see, e.g., (Khalil, 1996; Sepulchre et al., 1997)),
denoted by ϕ(σ) ∈ [k1, k2].

The sector condition (6) can be rewritten as

− ϕ2(σ) + (k1 + k2)ϕ(σ)σ − k1k2σ2

= 〈ϕ,−ϕ〉R + 〈σ, (k1 + k2)ϕ〉R + 〈σ,−k1k2σ〉R ≥ 0

implying that any ϕ ∈ [k1, k2] is (Q,S,R)-dissipative with

Q = −1, R = −k1k2, S =
1

2
(k1 + k2).

For a symmetric sector (i.e., for k1 = −k2) it holds that
S = 0 and R = k21. The converse is only valid under some
conditions on Q (see e.g. Schaum and Meurer (2019a)).

For the case of the quadratic storage functional

S(x) = 〈x, Px〉X (7)

with a symmetric positive definite operator P : X → X
satisfying

P (z) = P ∗(z) � 0∀ z ∈ [0, 1]
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Fig. 1. Sector condition for ϕ(σ) = k0σ(1− σ)/(1 + σ2).

the following lemma is a straight-forward consequence of
Definition 1 and has been stated in the literature muliple
times (with slight modifications) (Hill and Moylan, 1976),
(Hill and Moylan, 1980), (Pandolfi, 1998) and (Schaum
and Meurer, 2019b).

Lemma 1. Σ(A,G,H) is (Q,S,R)-strictly state dissipative
with dissipation rate κ if there exists P = P ∗ > 0
satisfying the inequality

〈Ax, Px〉X + 〈x, PAx〉X + 2 〈x, PGν〉X
� − κ‖x‖2 + 〈σ, Qσ〉S + 2 〈σ, Sν〉S + 〈ν, Rν〉U .

3

Note that in order to simplify the calculations in ap-
plication examples the operators P,Q,R, S are typically
chosen as constant matrices or even scalars, e.g., for one-
dimensional sector conditions.

4. DISTURBANCE REJECTION BY DISSIPATIVE PI
CONTROL

With the PI controller (2) the closed-loop dynamics are
given by

∂tx = D∂2zx+ gϕ(σ)− b(kσ +$ − w) (8a)

x(0, t) = x(1, t) = 0 (8b)

$̇ = lσ (8c)

σ = Hx (8d)

x(z, 0) = x0(z), $(0) = $0. (8e)

Introducing the disturbance compensation error

w̃ = $ − w (9)

the associated error dynamics are given by

∂tx = D∂2zx+ gϕ(σ)− bkσ − bw̃ (10a)

x(0, t) = x(1, t) = 0 (10b)

˙̃w = lσ (10c)

σ = Hx (10d)

x(z, 0) = x0(z), w̃(0) = w̃0. (10e)

In order to put the stability analysis of the preceding
error dynamics into the dissipativity framework (10) is
rewritten in the form of the Lur’e type two-subsystem
interconnection

∂tx = D∂2zx− bkσ − bw̃ + gν (11a)

x(0, t) = x(1, t) = 0 (11b)

˙̃w = lσ (11c)

σ = Hx (11d)

x(z, 0) = x0(z), w̃(0) = w̃0 (11e)

ν = ϕ(σ). (11f)

To show the exponential stability along the lines of the
dissipativity-based approach outlined in Section 3 the
dissipation properties of the linear subsystem (11a)-(11e)
have to be determined. Note that this subsystem can
be written in the abstract form (3) with x = [x, w̃]ᵀ ∈
L2(0, 1)× R and

A =

[
D∂2z − bkH −b

lH 0

]
, G =

[
g
0

]
, H = [H 0]

D(A) = {[v, w]ᵀ ∈ L2(0, 1)× R | v(0) = v(1) = 0}.
According to Lemma 1, assuming that the nonlinearity is
(q, s, r)-dissipative for some q < 0, s, r ∈ R the exponential
stability of the closed-loop system is ensured if the linear
system Σ(A,G,H) is (−r,−s,−q)-strictly state dissipative
with dissipation rate κ . To establish sufficient conditions
for this property consider the particular storage functional

S(x, w̃) =

∫ 1

0

(
1

2
x2 + αxw̃

)
dz +

1

2
w̃2 (12)

with α ∈ C2(0, 1) being a degree of freedom satisfying
α(z) ≥ 0 for all z ∈ [0, 1] and

α2(z) ≤ α+ < 1 ∀z ∈ [0, 1] (13)

so that

S(x, w̃) � 0

holds true. From the definition of S in (12) it follows that

1

2
‖x‖2 +

1

2
|w̃|2 −

∣∣∣∣∫ 1

0

αxw̃ dz

∣∣∣∣
≤ S(x, w̃)

≤ 1

2
‖x‖2 +

1

2
|w̃|2 +

∣∣∣∣∫ 1

0

αxw̃ dz

∣∣∣∣ .
The integral term on the other hand satisfies∣∣∣∣∫ 1

0

αxw̃ dz

∣∣∣∣ ≤ α+

∣∣∣∣∫ 1

0

xw̃ dz

∣∣∣∣
≤ α+

∫ 1

0

|x| |w̃|dz

≤ α+

∫ 1

0

1

2

(
|x|2 + |w̃|2

)
dz

=
α+

2

(
‖x‖2 + |w̃|2

)
.

In consequence it follows that

β1
(
‖x‖2 + |w̃|2

)
≤ S(x, w̃) ≤ β2

(
‖x‖2 + |w̃|2

)
, (14a)

with

β1 =
1− α+

2
, β2 =

1 + α+

2
(14b)

showing that S is quadratically bounded with respect to
the norm of the product space L2(0, 1)× R.

Taking the time derivative of S, substituting the system
dynamics (11), integrating by parts and substituting (1f)
it follows that
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dS
dt

=

∫ 1

0

(
x∂tx+ α∂txw̃ + αx ˙̃w

)
dz + w̃ ˙̃w

=

∫ 1

0

(x+ αw̃)
(
D∂2zx− bkσ − bw̃ + gν

)
dz

+

∫ 1

0

αxlσ dz + w̃lσ

=

∫ 1

0

(x+ αw̃)D∂2zxdz −
∫ 1

0

xbkσ dz

− k
(∫ 1

0

αbdz

)
w̃σ +

∫ 1

0

(x+ αw̃) (−bw̃ + gν) dz

+

∫ 1

0

αxlσ dz + w̃lσ

= (x+ αw̃)D∂zx
∣∣∣1
0
−
∫ 1

0

(∂zx+ α′w̃)D∂zx dz − kσ2

− k
(∫ 1

0

αbdz

)
w̃σ +

∫ 1

0

(x+ αw̃) (−bw̃ + gν) dz

+

∫ 1

0

αxlσ dz + w̃lσ.

Substituting the homogeneous boundary conditions (11b)
and integrating by parts once more one obtains

dS
dt

= (αw̃D∂zx− α′w̃Dx)
∣∣∣1
0
−
∫ 1

0

D (∂zx)
2

dz

+

∫ 1

0

Dα′′w̃xdz − kσ2 −
(
k

∫ 1

0

αbdz + 1− l
)
w̃σ

−
∫ 1

0

αbdzw̃2 +

∫ 1

0

(x+ αw̃)gν dz +

∫ 1

0

αxlσ dz

Taking into account the homogeneous Dirichlet boundary
conditions again, choosing 0 ≤ α < 1 so that

α(0) = α(1) = 0, (15)

and applying Wirtinger’s inequality (Hardy et al., 1952)
(given the homogeneous Dirichlet boundary conditions)

−
∫ 1

0

D (∂zx)
2

dz ≤ −Dπ2

∫ 1

0

x2 dz (16)

it follows that

dS
dt
≤ −Dπ2‖x‖2 +Dw̃

∫ 1

0

α′′xdz −
(∫ 1

0

αbdz

)
w̃2

−
(
k

∫ 1

0

αbdz + 1− l
)
w̃σ − kσ2 + lσ

∫ 1

0

αxdz

+

∫ 1

0

xgν dz + w̃

∫ 1

0

αgν dz.

Accordingly, the (−r,−s,−q) strict state dissipativity with
dissipation rate κ > 0 is ensured if

−Dπ2‖x‖2 +Dw̃

∫ 1

0

α′′xdz −
(∫ 1

0

αbdz

)
w̃2

−
(
k

∫ 1

0

αbdz + 1− l
)
w̃σ − kσ2 + lσ

∫ 1

0

αxdz

+

∫ 1

0

xgν dz + w̃

∫ 1

0

αgν dz

≤ −κ
(
‖x‖2 + w̃2

)
− rσ2 − 2s

∫ 1

0

ν dzσ − q
∫ 1

0

ν2 dz

or equivalently

− (Dπ2 − κ)‖x‖2 +Dw̃

∫ 1

0

α′′xdz

−
(∫ 1

0

αbdz − κ
)
w̃2 −

(
k

∫ 1

0

αbdz + 1− l
)
w̃σ

− (k − r)σ2 + lσ

∫ 1

0

αxdz +

∫ 1

0

xgν dz + w̃

∫ 1

0

αgν dz

+ 2sσ

∫ 1

0

ν dz + q

∫ 1

0

ν2 dz ≤ 0

Given that b is zero outside a compact sub-domain in [0, 1]
the above inequality cannot be satisfied pointwise for all
x ∈ [0, 1] but only in an integral manner over the complete
domain [0, 1]. Thus note that in virtue of the Cauchy-
Schwarz inequality a sufficient condition is given by

− (Dπ2 − κ)‖x‖2 +D|w̃|||α′′|| ||x||

−
(∫ 1

0

αbdz − κ
)
|w̃|2 +

(
k

∣∣∣∣∫ 1

0

αbdz

∣∣∣∣+ |1− l|
)
|w̃| |σ|

− (k − r)|σ|2 + |l| |σ|‖α‖ ‖x‖+ |g| ‖x‖ ‖ν‖
+ |w̃| |g| ‖α‖ ‖ν‖+ 2|s| |σ|‖ν‖+ q‖ν‖2 ≤ 0.

Introducing the vector ξ = [‖x‖ |w̃| |σ| ‖ν‖]ᵀ and the
matrix

M =


−Dπ2 + κ D‖α′′‖

2
‖α‖|l|

2
|g|
2

D‖α′′‖
2 −

∫ 1

0
αbdz + κ

|1−l|+k
∣∣∫ 1

0
αb dz

∣∣
2

‖α‖|g|
2

‖α‖|l|
2

|1−l|+k
∣∣∫ 1

0
αb dz

∣∣
2 −k + r |s|

|g|
2

‖α‖|g|
2 |s| q


the preceding inequality is compactly written as

ξᵀMξ � 0

and holds true if

M � 0. (17)

The matrix M can be written in compact form as

M =

[
M11 M12

M21 M22

]
, M11 =

[
−Dπ2 + κ D‖α′′‖

2
D‖α′′‖

2 −
∫ 1

0
αbdz + κ

]
,

M12 =

[ ‖α‖|l|
2

|g|
2

|1−l|+k
∣∣∫ 1

0
αb dz

∣∣
2

‖α‖|g|
2

]
, M21 = Mᵀ

12,

M22 =

[
−k + r |s|
|s| q

]
.

For tr (M22) < 0,det (M22) > 0 it holds that M22 ≺ 0.
This, in turn, is ensured if

q < 0, k > r +
|s|2
|q| . (18a)

Provided this holds true, it follows from standard argu-
ments using the Schur complement (Dym, 2007) that

M � 0 ⇐ ∆21 = M11 −M12M
−1
22 M21 � 0. (18b)

Note that the remaining degrees of freedom to satisfy this
condition are κ, l, α and b = h. Thus, the condition can
be interpreted in terms of dissipation optimization, i.e.
maximization of κ in terms of the sensor (and actuator)
placement and shape. In accordance with the conditions
on M22, the condition (18b) on ∆21 holds true if

tr (∆21) < 0 (18c)

det (∆21) > 0. (18d)

This is summarized in the following theorem.
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Theorem 1. Consider the semilinear heat equation (1)
with constant actuator offset. Let the nonlinearity ϕ be
(q, s, r)-dissipative with q < 0. If there exists a function
α ∈ C2([0, 1], [0, 1)) with α(0) = α(1) = 0, a collocated
sensor-actuator shape function b (or h) and controller gains
k, l > 0 so that (18a),(18c) and (18d) hold true for a
positive κ, then the linear subsystem Σ(A − bkH, g,H)
is (−r,−s,−q)-strictly state dissipative with dissipation
rate κ and the closed-loop semilinear system (11) is
exponentially stable. �

Remark: Note that for a given triplet (q, s, r) the search
for appropriate functions α, b (or h) and the determination
of the controller gains (k, l) to ensure the conditions of
Theorem 1 can be carried e.g. using an optimization of the
dissipation rate κ. Considering e.g. the particular (typical)
functions

α(z) = z(1− z) (19)

b(z) =

{
1
2ε , z ∈ [ζ − ε, ζ + ε]

0, else
(20)

this can be implemented in the form of the constrained
static optimization problem

min
k,l,ζ,ε

1

κ

s.t. κ > 0, k > r +
|s|2
|q| ,

tr (∆21) < 0, det (∆21) > 0,

which can be solved using standard algorithms. Note
that this interpretation enables a numerical approach to
maximizing the dissipation rate κ by choosing the sensor
and actuator position ζ, length 2ε and the control gains
k, l.

5. CASE STUDY

Consider the semilinear heat equation (1) with

ϕ(σ) =
k0σ(1− σ)

1 + σ2
, k0 = 2.0. (21a)

The graph of this function is shown in Figure 1 and
contained in the sector [k1, k2] = [−0.42, 2.5]. The initial
condition is chosen as x0(z) = 0.05 sin2(πz) and the
following parameters and constant actuator offset are set

D = 0.1, g = 1.5, w = 0.5. (21b)

The control gains (k, l) and the sensor-actuator size 2ε
and position ζ, as well as the predicted dissipation rate
κ have been determined following the optimization pro-
cedure described in Remark 1 set with α and b given in
(19) and using the sequential least squares programming
algorithm SLSQP that is implemented as a standard solver
in scipy.minimize. The optimized values are given by

ζ = 0.5, ε = 0.01, k = 2.132, l = 3.433, κ = 0.31. (22)

To illustrate the controller performance numerical simula-
tions have been carried out based on a finite difference
approximation of the system dynamics with N = 400
discretization points and solving the resulting ode system
using the standard algorithm dopri5 implemented in the
package scipy.integrate.

In Figure 2 the open-loop behavior is shown. It can be
seen that in spite of the small initial deviation the profile

converges to the non-zero stationary profile in about 2 time
units, illustrating that in open-loop the solution x = 0 is
repulsive.

0
1

2
3

4 0.0
0.2

0.4
0.6

0.8
1.0
0.0
0.2

0.4

0.6

0.8

1.0

t
z

x

Fig. 2. Open-loop profile evolution for the semilinear heat
equation (1) with (21).

The behavior of the closed-loop system with the dissipative
PI control (2) using the optimized parameters (22) is
shown in Figure 3. It can be seen that the actuator
disturbance is completely attentuated and the exponential
stability of the solution x = 0 is achieved with convergence
in about 2 time units.
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Fig. 3. Closed-loop profile evolution for the semilinear heat
equation (1) with (21) and dissipative PI control (2).

The associated control input is shown in Figure 4 where
it can be seen that the constant actuator offset of w = 0.5
is completely compensated while the control action stays
within considerable small amplitudes.

6. CONCLUSIONS

The problem of stabilization of a semilinear heat equation
with actuator disturbance has been resolved using a dissi-
pative PI output feedback control. Sufficient conditions for
strict dissipativity in the state and thus exponential stabil-
ity of the closed loop system have been derived, depending
on the dissipativity characteristics of the nonlinearity (e.g.,
in form of a sector condition), the controller gains and
the actuator and sensor shape functions and localization.
The sensor and actuator positioning problem has been
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Fig. 4. Closed-loop control input signal for the parameters
given in (22).

reformulated as a dissipation maximization problem that
can be solved using standard tools for static constrained
optimization. Numerical simulations illustrate the perfor-
mance of the proposed approach.
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