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Abstract: Reinforcement learning is a model-free optimal control method that optimizes a
control policy through direct interaction with the environment. For reaching tasks that end in
regulation, popular discrete-action methods are not well suited due to chattering in the goal
state. We compare three different ways to solve this problem through combining reinforcement
learning with classical LQR control. In particular, we introduce a method that integrates LQR
control into the action set, allowing generalization and avoiding fixing the computed control
in the replay memory if it is based on learned dynamics. We also embed LQR control into
a continuous-action method. In all cases, we show that adding LQR control can improve
performance, although the effect is more profound if it can be used to augment a discrete
action set.

Keywords: Reinforcement learning, actor-critic methods, learning control, linear quadratic
regulator.

1. INTRODUCTION

Reinforcement Learning (RL, Sutton and Barto (2018))
is an optimal control method that estimates control poli-
cies from direct interaction with a (real or simulated)
environment. It has been sucessfully applied in such di-
verse areas as robotics (Akkaya et al. (2019)), game play-
ing (Vinyals et al. (2019)), and medication dosing (Nemati
et al. (2016)). RL methods can be divided in two broad
categories: those that directly optimize the parameters of
an explicit control policy (called policy search methods),
and those that estimate the reward-to-go (value) function
and implicitly derive a control policy from that (value-
based methods).

Value-based methods are better for tasks that inherently
contain many local optima (“maze-like tasks”). However,
they struggle in problems with continuous action spaces
such as robotics, because the policy is defined as taking
the action with the highest reward-to-go, which is usually
implemented by iteration over a discrete set of possible
actions. This is especially relevant for regulation or reach-
ing tasks, because a controller using discrete actions can
never maintain a stable dynamic position.The resulting
chattering is undesirable and can lead to system damage
(Meijdam et al. (2013)).

One solution is to use a lower-level (continuous-action)
stabilizing controller at the goal state, while reinforcement
learning optimizes the trajectory towards that goal. This
can for example be implemented by defining a “capture re-
gion” in which the stabilizing controller is active (Randløv
et al. (2000)), or by making it one of the possible discrete
actions (Abramova et al. (2019)). The first case requires
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manual fine-tuning of this region, while the second requires
learning the value of a new action. In this paper, we
propose using the stabilizing controller’s action one of the
sampling points of the discrete action set, thus taking
advantage of the action-space generalization provided by
modern deep reinforcement learning methods.

In addition, we investigate the use of the same approach in
an actor-critic setting. Actor-critic methods are a hybrid
of policy-based and value-based RL methods. They use a
value function to inform the adaptation of an explicitly
represented policy. Although they do not suffer from a
discrete action set, the intuition is that the inclusion of the
action suggested by a (model-based) stabilizing controller
could increase the learning speed, as it provides near-
optimal actions in at least part of the state space.

The paper is organized as follows. Sections 2 and 3
introduce the basic theory and our specific methods of
combining RL with LQR control, respectively. Sections 4
and 5 present the experiments, results and their analysis.
Finally, section 6 concludes the paper and discusses future
work.

2. THEORY

2.1 Reinforcement Learning

A Markov Decision Process (MDP) is a 4-tuple <
S,A, T,R > where S is the (possibly continuous) state
space, A the (possibly continuous) action space, T :
S,A,S → R a function specifying the state transition
probabilities and R : A,S → R a reward function. The
goal of reinforcement learning is to find a control policy
π : S → A that maximizes, for every state s ∈ S the
expected discounted return Rt of executing that policy
starting from s at the current timestep t:
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Rt =

∞∑
k=0

γkrt+k (1)

where rk is the reward received at timestep k and γ ∈
[0, 1] is a discount factor that determines the optimization
horizon.

In value-based reinforcement learning, the expected re-
turns are stored in a state-value function V π : S → R,
or an action-value function Qπ : S,A → R. In the latter
case, the stored values Q(s, a) indicate the return of taking
action a in state s and following π afterwards. The optimal
policy π∗ always takes the action with the highest expected
return, and its value functions are therefore related:

π∗(s) = arg max
a∈A

Q∗(s, a) (2)

V ∗(s) = max
a∈A

Q∗(s, a). (3)

Q∗ is the unique solution to the Bellman optimality
equation

Q∗(s, a) =
∑
s′

T (s, a, s′) (R(a, s′) + γV ∗(s′)) . (4)

Note that it is not necessary to define V ∗ in terms of Q∗,
as Eqs. 3 and 4 may be combined into a single equation.
However, in that case the transition probabilities T must
be known in order to derive π∗ in Eq. 2.

We consider model-free reinforcement learning, in which
the transition probabilities T are unknown. In that case,
the value functions are usually estimated by sampling
experienced transitions (st, at, rt, st+1). Each transition
gives a sample of the Bellman optimality equation (4):

Q(st, at) = rt + γV (st+1) (5)

= rt + γ arg max
a′∈A

Q(st+1, a
′) (6)

Deep Q learning In deep Q learning (DQN, Mnih et al.
(2013)), the sampled transitions, gathered under an ex-
ploratory policy based on π, are stored in a replay memory
which is used to approximate the action-value function
with a deep neural network Q̂(s, a|θQ) with parameters θQ.
Iteratively (generally after every new transition), a mini-
batch of N transitions (si, ai, ri, s

′
i) is sampled randomly

from this replay memory and used to minimize the L2 loss
between the left-hand and right-hand sides of Eq 6:

L =
∑
i

∥∥∥∥Q̂(si, ai|θQ)−
(
ri + γ arg max

a′∈A
Q̂(s′i, a

′|θQ
′
)

)∥∥∥∥
2

.

(7)

Note the use of different weights θQ
′

in the right-hand
side, used to stabilize the learning. These target weights
are updated periodically from the learned weights θQ. The
exploratory policy is usually ε-greedy with respect to Eq. 2:

πε(s) =

{
arg maxa∈AQ(s, a) with probability ε
random(A) otherwise

. (8)

Deep Deterministic Policy Gradient Actor-critic algo-
rithms represent π explicitly instead of deriving it from
Q. In the deep deterministic policy gradient algorithm
(DDPG, Lillicrap et al. (2015)), the Q function is approx-
imated as in deep Q learning, but the arg max in Eq. 7 is
replaced by the action given by a separate policy network
µ(s|θµ) trained to be the mean of a Gaussian policy

π(s|θµ) = N (µ(s|θµ), σ) (9)

where σ is the standard deviation of the exploration
distribution. After every Q update, the weights θµ of the
policy network are updated in the direction of

E
[
∇θµQ(s, a|θQ)|s=st,a=µ(st|θµ)

]
≈

1

N

∑
∇aQ(s, a|θQ)|s=si,a=µ(si|θµ)∇θµµ(s|θµ)|s=si . (10)

As in deep Q learning, separate target networks with
weights θQ

′
and θµ

′
are used to calculate the right hand

side of Eq. 7. However, instead of periodic updates, they
are updated continuously from θQ and θµ using a moving
average filter. In addition, the Gaussian policy is usually
replaced by one that has time-correlated noise to improve
exploration (Lillicrap et al. (2015)).

2.2 Locally Linear Regression

We use locally linear regression (LLR, Atkeson et al.
(1997)) to approximate the dynamics around the goal
state sd. LLR is well-suited to model approximation for
LQR because the linear model it estimates can be directly
split into the A and B matrices required by LQR control.
In LLR, all transitions (si, ai, s

′
i) are stored and a linear

model X is fit around the K nearest neighbors of the query
point sd

NI =

 s1, a1, 1
s2, a2, 1
· · ·

sK , aK , 1

 , NO =

∆s1

∆s2

· · ·
∆sK

 , (11)

where si = si − sd and ∆si = s′i − si, by solving

(NT
I NI)X = NT

I NO (12)

using the Cholesky decomposition with Tikhonov regular-
ization. The A and B matrices of the discrete-time system

st+1 = Ast +Bat + E (13)

are then defined as follows:

A = X1:|S|,1:|S| (14)

B = X1:|S|,|S|+1:|S|+|A|, (15)

where X = X+I, and |S| and |A| are the dimensionalities
of S and A, respectively.
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2.3 Linear Quadratic Regulator

The Linear Quadratic Regulator is an optimal solution to
the Bellman equation (4) for linear systems with quadratic
rewards (Mehrmann (1991)), in our case

R(s, a) = −
(
sTCs+ aTDa

)
, (16)

where C and D are diagonal matrices specifying the costs
for deviating from the goal state sd and zero action,
respectively. The solution is computed by solving the
discrete time algebraic Riccati equation (Benner and Sima
(2003))

P = ATPA−
(
ATPB

) (
D +BTPB

)−1 (
BTPA

)
+C (17)

after which the control is given by

at = −Fst (18)

F =
(
D +BTPB

)−1 (
BTPA

)
. (19)

To find the steady-state feedforward action aff to cancel
the disregarded E term in Eq. 13, we solve

Baff = Ast+1|st=sd,at=0 − sd (20)

using the singular value decomposition and add it to the
regulator output.

3. METHODS

We compare three different ways of integrating LQR
control with reinforcement learning: LQR capture, LQR
action and integrated LQR action.

3.1 LQR Capture

In LQR capture, the system is controlled by the reinforce-
ment learning agent except in a region around the goal
state, in which case control is taken over by the LQR
controller (Randløv et al. (2000)). From the point of view
of the RL agent, this turns the system into a semi-MDP
(sMDP, Sutton et al. (1999)), where the action that led to
the capture region is temporally extended until the system
leaves the capture region, or until the end of the episode.
In sMDPs, the target in Eq. 6 is replaced by

Q(st, at) =

∆t−1∑
k=0

γkrt+k + γ∆t arg max
a′∈A

Q(st+1, a
′), (21)

where ∆t is the number of time steps taken by action at. If
the episode terminates with the system still within the cap-
ture region, we treat the state as terminal absorbing (Sut-
ton and Barto (2018)), with the reward given by Eq. 21 and
∆t equal to the number of steps the system remained in
the capture region before the episode terminated. As such,
the agent learns to enter the capture region in such a way
as to maximize the performance of the LQR controller,
instead of just entering the capture region itself such as
in (Randløv et al. (2000)).

3.2 LQR Action

LQR capture requires the system architect to specify a
capture region. If this region is not chosen optimally, the
resulting controller will not be optimal. To avoid manual
specification of the capture region, we may instead allow
the reinforcement learning controller to select a special
action which applies the action suggested by the LQR
controller. Although this requires learning the return of
this new action, it allows the controller to stabilize a
continuous system.

For the LQR action algorithm, the action set is thus
expanded to

AA = A ∪ {aLQR}, (22)

where the abstract action aLQR, when selected, applies the
LQR control. Due to the use of an abstract action, this
method is only applicable to discrete action set methods
such as DQN. The resulting mixed cartesian-abstract ac-
tion set can be represented by adding an integer-valued
abstract action dimension to the action space, where the
value 0 indicates the use of the cartesian action space and
any other value (in this case, only 1) indicates the index
of the abstract action.

3.3 Integrated LQR Action

While the abstract LQR action does not share the carte-
sian action space with the other actions, the applied LQR
control does. We may therefore instead add the LQR
control as a sample point in the original action space by
making it state-dependent

AIA(s) = A ∪ {−Fs+ aff} (23)

and taking the maxium over AIA(s) instead of over A
in Eqs 7 and 8. The advantage of this method over an
abstract LQR action is that its return may be generalized
over by the Q-value representation. Taking similar (dis-
crete) actions in the regular action space therefore also
improves the estimate of the LQR action, decreasing the
learning time.

In addition, we can embed the LQR action in the DDPG
algorithm by taking the arg max in Eqs 7 and 8 over both
the LQR action −Fs+aff and the DDPG action µ(s|θµ′

).
While DDPG can already stabilize a dynamic system
without chatter, adding a known-good (at least close to the
goal state) solution might also decrease the learning time,
or increase performance. To ensure sufficient exploration,
we use ε-greedy exploration for the choice between DDPG
and LQR action, and apply the exploration noise in Eq. 9
to both.

4. SIMULATIONS

We test the three described methods on three simulated
testbeds: the pendulum swing-up, cart-pole swing-up and
2d flyer, using the Generic Reinforcement Learning Li-
brary, GRL 1 . The network architecture and other param-
eters are described in Appendix A.
1 Code available at https://github.com/wcaarls/grl.
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All experiments were performed 20 times to calculate the
95% confidence interval of the results, which are presented
as the rise time and end performance. The rise time is
defined as the first time the agent passes a system-defined
cumulative episode reward consistently (3 times in a row),
and the end performance is the mean of the cumulative
episode reward over the last 10% of the episodes of each
run.

4.1 Pendulum Swing-up

The pendulum swing-up is a classical control problem
where a pendulum attached to a motor has to swing up
from the stable equilibrium to the unstable equilibrium,
but without enough torque to do so in one swing (Busoniu
et al. (2010)). The system has two state dimensions s =

[θ, θ̇] being the angle and angular velocity of the pendulum
and one action dimension a = u being the voltage applied
to the motor, up to 3V . To avoid the 0/2π nonlinearity,
the angle θ is supplied to the networks in a sine-cosine
representation. The cost matrices are C = diag([5, 0.01])
and D = 1, with goal state sd = [0, 0]. The episode ends
after 3s.

4.2 Cart-pole Swing-up

Another classical control set-up is the cart-pole swing-
up (Barto et al. (1983)). In this case, the pendulum is
mounted to a cart, which can be pushed along a track to
perform the swing-up. As such, the system has four state
dimensions s = [x, θ, ẋ, θ̇], now including the position and
velocity of the cart. The action is still one-dimensional
a = F , being the force applied to the cart, up to 15N.
Again, the angle is presented in sine-cosine representation,
and the cost matrices are C = diag(2, 1, 0.1, 0.1) and
D = 1

15 , with goal state sd = [0, 0, 0, 0]. The episode ends
after 10s.

4.3 2d Flyer

We introduce the 2d flyer as a very unstable regulation
task, with additional nonlinearity in the form of an obsta-
cle. The flyer is modeled as a rod with mass m = 0.1kg and
length l = 0.1m, where two forces [FL, FR] perpendicular
to the rod may be applied at the tips. The equations of
motion areẍÿ

θ̈

 =

( − (FL + FR) sin θ/m
(FL + FR) cos θ/m− g

(FR − FL) l/I

)
, (24)

where g = 9.81 and the inertia I = ml2

3 . Therefore, the

system has six state dimensions s = [x, y, θ, ẋ, ẏ, θ̇] and
two action dimensions a = [FL, FR]− [0.5, 0.5], up to 0.1N.
The angle is represented by its sine and cosine once again,
and the cost matrices are C = diag([1, 1, 1, 0, 0, 0]) and
D = diag([1, 1]), with goal state sd = [0, 0, 0, 0, 0, 0]. The
episode ends after 20s or if the flyer leaves the target area
[−1,−1] < [x, y] < [1, 1].

An obstacle occupies the region [−0.4,−0.3] < [x, y] <
[0.1,−0.2], which prohibits the flyer from reaching the
target through simple regulation from the start location
[−0.4,−0.4].

5. RESULTS

The main results are presented in Table 1, with the
respective learning curves given in Figure 3.

5.1 DQN

In the DQN case, the LQR integrated action algorithm
(DQN-LQR-IA) consistently presented the best end per-
formance, although it did not learn significantly faster
than using an abstract action (DQN-LQR-A). All LQR-
based algorithms outperform baseline DQN due to reduced
chattering while maintaining the goal state, see Figure 1.

Using learned dynamics (*-LD) did not have a large effect
on either rise time or end performance, indicating that the
dynamics around the goal state are learned sufficiently
quickly such as not to impede the learning process. In
theory, learned dynamics makes the system nonstationary,
as the actions of the LQR controller change during the
run. The impact of this nonstationarity is different for
each system. For DQN-LQR-LD, it changes the rewards
received when entering the capture region (see Eq. 21),
while for DNQ-LQR-A-LD it changes the controls applied
by the abstract action, leading to a different next state.
Finally, for DQN-LQR-IA-LD, it changes the action set
used to calculate the target values. Note, however, that
while these errors are stored permanently in the replay
memory in the case of DQN-LQR-LD and DQN-LQR-A-
LD, for DQN-LQR-IA-LD the loss in Eq. 7 is recalculated
every time a new minibatch is sampled, and thus always
reflects the current dynamics.

5.2 DDPG

Because DDPG already uses continuous actions, we did
not expect a large performance gain from using LQR
actions. Indeed, for the pendulum plain DDPG has the
best end performance and is only slightly slower than
the other variants. However, LQR capture (DDPG-LQR(-
LD)) shows significantly improved rise time and end per-
formance for the cart-pole swing-up problem, while LQR
integrated action (DDPG-LQR-IA(-LD)) has the best rise
time and end performance for the 2d flyer.

The improvements in rise time and end performance for
LQR capture show that using a well-chosen capture region
in which the LQR controller is optimal helps learning, even
when using a continuous action algorithm such as DDPG.
And the good results for LQR integrated action for the 2d
flyer indicate that choosing between the LQR and DDPG
actions might help guide the solution towards a better
policy, although similar to (Gu et al. (2016)) the result
is inconsistent across domains.

Inspecting the state evolution of individual episodes during
a run (data not shown) shows that the best episode reward
is comparable for all methods. Rather, it is the average end
performance that is improved.

6. CONCLUSION

We presented a brief comparison between three differ-
ent ways of using the action calculated by an optimal
controller in reinforcement learning: LQR capture, LQR
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Table 1. Mean and 95% confidence intervals over 20 runs for the rise time and end performance on the three
testbeds. Values in bold are the best performance within that category (DQN or DDPG), or statistically

equivalent to it.

pendulum swing-up cart-pole swing-up 2d flyer
rise (s) end perf rise (s) end perf rise (s) end perf

DQN 350 ± 46 -802 ± 3.5 2405 ± 536 -270 ± 1.7 7749 ± 561 -5.4 ± 0.8
DQN-LQR 313 ± 40 -736 ± 9.1 985 ± 191 -232 ± 5.0 7563 ± 804 -6.9 ± 2.0
DQN-LQR-A 285 ± 31 -714 ± 2.9 1625 ± 401 -236 ± 6.8 6348 ± 747 -4.3 ± 0.7
DQN-LQR-IA 245 ± 36 -713 ± 1.9 1370 ± 352 -224 ± 3.7 7012 ± 700 -4.3 ± 0.5
DQN-LQR-LD 308 ± 42 -733 ± 5.7 1210 ± 337 -233 ± 4.3 7103 ± 442 -4.5 ± 1.2
DQN-LQR-A-LD 320 ± 52 -721 ± 4.3 1900 ± 410 -234 ± 6.3 6784 ± 609 -5.4 ± 1.8
DQN-LQR-IA-LD 233 ± 31 -716 ± 8.3 1280 ± 418 -226 ± 5.1 7202 ± 439 -4.7 ± 0.7

DDPG 213 ± 67 -731 ± 10 1590 ± 600 -244 ± 8.8 10993 ± 1493 -5.1 ± 1.7
DDPG-LQR 185 ± 20 -728 ± 12 1025 ± 351 -216 ± 4.9 8840 ± 1585 -4.6 ± 1.7
DDPG-LQR-IA 198 ± 15 -737 ± 10 1755 ± 559 -264 ± 29 5470 ± 841 -3.4 ± 0.4
DDPG-LQR-LD 183 ± 16 -731 ± 16 805 ± 124 -214 ± 2.4 8314 ± 1327 -4.9 ± 1.0
DDPG-LQR-IA-LD 198 ± 13 -754 ± 22 1310 ± 531 -249 ± 15 6140 ± 912 -3.7 ± 0.7
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(a) 2d flyer state evolution, DQN
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(b) 2d flyer state evolution, DQN with integrated LQR action

Fig. 1. State evolution of DQN and DQN-LQR-IA. Solid lines are state values, dashed lines are actions. DQN suffers
from chattering due to its discrete action set, while DQN-LQR-IA maintains a chatter-free equilibrium.
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(a) 2d flyer state evolution, DDPG
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(b) 2d flyer state evolution, DDPG with integrated LQR action

Fig. 2. State evolution of DDPG and DDPG-LQR-IA. Solid lines are state values, dashed lines are actions. DDPG-
LQR-IA has a lower steady-state error.
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (s)

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0
C

um
ul

at
iv

e 
re

w
ar

d

DDPG
DDPG-LQR-LD
DDPG-LQR-IA-LD

8200 8400 8600 8800 9000

-260

-240

-220

-200

(d) Cart-pole swing-up DDPG
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(e) 2d flyer DQN
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Fig. 3. Performance evaluation of LQR integration using learned dynamics for DQN (left column) and DDPG (right
column). Shown are the mean and 95% confidence interval over 20 independent runs, plotted using a moving
average filter of 10 episodes. The horizontal line is the point at which the rise time is measured.
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action and LQR integrated action. When combined with
DQN, all methods decreased rise time and increased end
performance compared to the baseline, with the LQR
integrated action algorithm having the best performance
overall. For DDPG the results are less consistent, but both
LQR capture and LQR integrated action showed improved
performance in some test cases.

Future work includes using different (non-linear) optimal
control techniques instead of LQR, which allows tackling
non-regulation tasks. In this setting, it would also be
interesting to compare our approach to methods that
somehow combine the control output with the RL policy,
such as by summing (Koryakovskiy et al. (2018)). The
fact that LQR integrated action does not poison the
replay memory may be particularly advantageous when
integrating learning or adaptive controllers.
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Appendix A. PARAMETERS

Table A.1 contains the environment-independent configu-
ration of the DQN and DDPG algorithms, while Table A.2
contains the environment-specific parameters.

Table A.1. Algorithmic parameters

Parameter DQN DDPG

Hidden layers [400, 300] [400, 300]
Hidden layer activation ReLU ReLU
Output activation linear tanh

Exploration rate (ε) 0.05
Uhlenbeck and Ornstein (1930) friction 0.15

Table A.2. Environment-specific parameters

Parameter pendulum cart-pole 2d flyer

State dimensions 2 4 6
Action dimensions 1 1 2
Action discretization 3 3 [3, 3]
Control time step (τ) 0.03 0.05 0.05
Timeout 3s 10s 20s

Discount rate (γ) 0.99 0.97 0.99
Exploration noise (σ) 1 5 0.01
Reward scale 0.1 0.1 1
Replay memory ∞ ∞ ∞
LLR neighbors (K) 64 64 64
LLR memory 10000 10000 10000
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