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Abstract: This paper presents a continuous-time model predictive control scheme based on B-
spline functions used for signals and model approximation. The proposed controller offers two
interesting advantages. First, it formulates the control signal as a continuous polynomial spline
function, the nature of which is determined by its control polygon that is subject of optimization.
Second, all continuous constraints assumed over prediction horizon are consistently transformed
into constraints imposed on a finite number of elements of this control polygon. Using parametric
quadratic programming we further show how to obtain an explicit representation of the proposed
controller, which is known for its efficient online implementation. The featured simulation study
demonstrates that by a suitable choice of number and position of knots of the spline function over
the prediction horizon it is possible to substantially reduce the number of critical regions of the
explicit controller while preserving control performance, and to mitigate the direct correlation
between number of regions and chosen length of prediction horizon.
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1. INTRODUCTION

Continuous-time model predictive control, i.e. CMPC, has
been the subject of a long-term systematic research thanks
to various advantages that it offers over standard discrete-
time formulations of MPC. The latter, are however, vastly
preferred in industrial applications (Ferreau et al., 2016),
which, as pointed out by Pannocchia et al. (2015), can be
attributed mainly to their computational nature. Typical
approaches to continuous-time MPC are presented e.g. in
Demircioğlu and Gawthrop (1991); Ronco et al. (1999);
Wang (2009); Pannocchia et al. (2010). There are several
arguments that motivated their development. First, a fea-
sible set for discrete-time formulation of MPC problem has
smaller volume than an analogous one for the continuous-
time formulation (Pannocchia et al., 2015). Second, higher
sampling rates in general lead to well-known phenomena
related to numerical sensitivity and ill-conditioned prob-
lems, or give rise to nonminimum-phase zeros, etc. (Wang,
2009). Third, if we use a continuous-time model, the MPC
design becomes essentially independent on the chosen sam-
pling period. Fourth, characteristic for the CMPC formu-
lation is a smoother control signal (Wang, 2009).
Following the work of Demircioğlu and Gawthrop (1991),
in Rohaľ-Ilkiv (1997) the author proposed an alternative
approach to the CMPC problem based on spline functions,
specifically B-spline functions, known for their indisputa-
ble advantages in various fields, such as geometric model-
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ing, interpolation and smoothing of signals, optimal tra-
jectory planning, etc. The use of splines for optimal control
has been also proposed, see e.g. Sun et al. (2000); Kano
et al. (2003); Tabriz and Heydari (2014); Hilhorst et al.
(2016); Matinfar and Dosti (2018). It can be shown that if
we assume a finite number of B-spline basis functions, we
may appropriately parametrize the control signal as a con-
tinuous spline with predefined degree of continuity, which
can provide some new benefits in the problem formulation.
Main design parameters in this procedure are order of the
spline and placement of its knots. It is the number of these
knots that essentially enables to reduce dimensionality of
the optimization problem, i.e. length of the optimizer. By
choosing a uniform distribution of the knots we constitute
regular sampling time intervals at which the control law
can determine a new direction of next polynomial segment
of the control signal. In this light the above idea resembles
the concept of “intermittent feedback control”, successfully
established for practical design of CMPC by Ronco et al.
(1999). Another asset of the spline-based CMPC problem
formulation is that it allows to guarantee intersample ful-
filment of continuous constraints. To this end we may ef-
ficiently exploit conversion of the original continuous con-
straints assumed in CMPC problem to constraints active
only on a finite number of elements of the so-called control
polygon of the B-spline function.
This paper presents an explicit approach to the synthesis
of CMPC proposed recently in Rohaľ-Ilkiv et al. (2019),
using modern tools for parametric programming. In view
of real-time feasible implementations—even on embedded
computing hardware—the main motivation to obtain its
explicit representation is to further reduce the online com-
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putational effort—a typical bottleneck of MPC. The paper
is organized as follows. Section 2 provides an introduction
and main notations to the theory of polynomial splines.
Section 3 concisely presents solution to the B-spline based
CMPC problem in the standard, implicit form. The explic-
it solution based on parametric programming is introduced
in Sect. 4. Efficacy and some properties of such B-spline
parametrization of control law are discussed in Sect. 5 via a
simulation study. The paper concludes with final remarks
and goals of future work.

2. SPLINE AND B-SPLINE FUNCTIONS

In this section we provide a brief summary of basic proper-
ties of B-spline functions, conversions between particular
spline representations, as well as their essential shape pro-
perties. For a comprehensive theory of splines we refer the
interested reader e.g. to de Boor (1978); Schumaker (1981);
Piegl and Tiller (1995); Höllig and Hörner (2013).

2.1 Basic definitions

Let us first state some formal definitions.
Definition 1. Let (ξ0 =)0 < ξ1 < . . . < ξq < Tx(= ξq+1)
be the subdivision of a closed finite-time interval [0, Tx]
by q distinct (time) points. A function s(t), defined on
the interval [0, Tx], is called a spline function of the order
r > 0 (degree r− 1) and the defect def if the following two
conditions hold:
• in each open interval ]ξi, ξi+1[ , i = 0, . . . , q, s(t) is a
polynomial of degree ≤ r − 1;
• has continuous derivatives up to the order r− def − 1
in the open interval ]0, Tx[.

The points ξi, i = 1, . . . , q are referred to as interior knots
or breakpoints of the spline function. For each fixed set
ξ = (ξ1, . . . ξq) of the knots, the class of splines is a linear
space of functions with dimension

z = (α1 + α2 + . . .+ αq) + r, (1)
where αi denotes a multiplicity (or defect def) of the knot
ξi. Let Pr,ξ,α denote the linear space of spline functions
for α = (α1, . . . αq). If all interior knots ξi, are simple, i.e.
αi = 1, i = 1, . . . , q, then Pr,ξ,α = Cr−2[0, Tx]. In order to
perform computations with splines, one must first choose
a suitable representation, in which any member of Pr,ξ,α
can be written as a unique linear combination of properly
chosen z basis functions such that Defn. 1 is satisfied. A
common choice is to use B-spline functions.
Definition 2. A B-spline function Mi,r,ξ(t) of order r > 0,
with knots ξi, . . . , ξi+r, can be defined using the following
recurrence relation:

Mi,1,ξ(t) :=
{

1 if ξi ≤ t < ξi+1,

0 otherwise,

Mi,k,ξ(t) := ξi+k − t
ξi+k − ξi+1

Mi+1,k−1,ξ(t)

+ t− ξi
ξi+k−1 − ξi

Mi,k−1,ξ(t), for k = 2, . . . , r,

where the two fraction terms are interpreted as zero when-
ever ξi+k − ξi+1 = 0 and ξi+k−1 − ξi = 0, respectively.

From Defn. 2 one can observe that Mi,r,ξ(t), i = . . . 0, 1 . . .
(i) have a local support, (ii) are positive on their supports

and (iii) form a partition of unity. Every function s(t) satis-
fying Defn. 1 then has a unique representation (the Curry-
Schoenberg theorem):

s(t) =
z∑
i=1

ciMi,r,ξ(t) = m(t)Tc, (2)

with m(t) = [M1,r,ξ(t), . . . ,Mz,r,ξ(t)]T, c = [c1, . . . , cz]T,
where Mi,r,ξ(t) or shortly Mi(t), i = 1, . . . , z, denote base
functions of the spline space Pr,ξ,α, and ci denotes the i-th
B-spline coefficient of s(t). They are commonly referred to
as control coefficients or control points, and the collection
{ci}zi=1 of all control points is referred to as control poly-
gon of the spline. In the following we will assume the spline
represented as a linear combination of basis B-spline func-
tions (2) as the approximation function. The spline design
parameters thus are:
• order r and defect def of the spline;
• number q and location ξ of its knots;
• and control coefficients (control polygon) {ci}zi=1.

Note that if the order and the knots of the spline function
are fixed, the approximation problem becomes a linear one
since the spline function is linear in the unknown B-spline
coefficients c, as follows from (2). Depending on the type
of approximation, these coefficients can usually be easily
calculated as the solution of an overdetermined system of
linear equations. However, number and shape of B-spline
basis functions must be fixed a priori.

2.2 Conversion from B- to pp-representation

A polynomial spline can be, by definition, written as:

s(t) = pi(t) :=
r∑
j=1

pij(t− ξi)j−1, t ∈ [ξi, ξi+1],
i = 0, . . . , q,

(3)

where pi(t) are polynomial pieces or segments which repre-
sent the spline s(t) on interval [0, Tx]. Relation (3) is called
a piecewise polynomial (pp-)representation of spline s(t).
Clearly, the pp-representation of spline s(t) is completely
determined by the (q + 1)r-dimensional vector of polyno-
mial coefficients p = [p01, . . . , p0r, · · · , pq1, . . . , pqr]T. Given
the B-representation (2) of the spline s(t), the vector p of
its pp-representation can be easily computed according to:

p = P c, (4)
where rows of matrix P can be obtained by differentiation
of vector mT(t) in knots {ξi}qi=1:

P =
[

1
(j − 1)! m[j−1]T(t)

∣∣∣
t=ξi

]i=0,...,q

j=1,...,r
with

m[j−1]T(t) = [M [j−1]
1 (t), . . . ,M [j−1]

z (t)],
where notation f [i](t) stands for the i-th derivative of f(t)
with respect to t, with f [0](t) ≡ f(t); see de Boor (1978);
Bartels et al. (1987) for details.
Given the vector p, the conversion from pp-representation
to B-representation can be performed as follows:

c = P−1
L p,

which is more difficult because of left inverse of matrix P;
but if it is a priori known that the approximated function
lies in Pr,ξ,α for a certain r, ξ, α, then P−1

L can be deter-
mined uniquely.
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2.3 Shape properties of B-spline curves

The fundamental shape properties of B-spline curves may
be summarized using the following theorem. The reader is
referred to Höllig and Hörner (2013) for details and proof.
Theorem 1. (Shape properties of B-spline curves). Let s(t)
be a B-spline curve of order r over the knot sequence ξ.
Then the following properties hold:
(i) in general there is no endpoint interpolation;
(ii) for ξi ≤ t < ξi+1, s(t) lies in the convex hull of the r

control points ci−r+1, . . . , ci;
(iii) local control: for t ∈ [ξi, ξi + 1] the curve is indepen-

dent of cj for j < i− r + 1 and j > i;
(iv) if r− 1 control points coincide, then the spline curve

passes through this point and is tangent to the con-
trol polygon;

(v) if r − 1 control points are on a line, then the spline
curve touches this line;

(vi) if r control points are on a line L, then s(t) ∈ L for
ξi ≤ t < ξi+1, i.e. an entire segment of the curve s(t)
coincides with L;

(vii) derivative:

s′(t) =
z−1∑
i=1

c̄iMi,r−1,ξ(t) (5)

with c̄i = r − 1
ξi+r−1 − ξi

(ci − ci+1);

(viii) if r − 1 knots t = ξi+1 = . . . = ξi+r−1 coincide,
then s(t) = ci, i.e. the spline curve passes through a
control point and is tangent to the control polygon.

3. SPLINE-BASED CONTINUOUS-TIME MPC
FORMULATION

For ease of presentation, let us consider a continuous-time
single-input single-output (SISO) system described near a
given operating point by the following linear time-invariant
(LTI) model:

ẋ(t) = Ax(t) + Bu(t), (6a)
y(t) = Cx(t), (6b)

where elements of the state vector x(t) ∈ Rru (ru – order of
the spline input signal) can be directly calculated from the
spline derivatives of input/output signals using a technique
of spline filtration elaborated in Rohaľ-Ilkiv (1997). Consi-
dering a time window given by τ ∈ [tk, tk+Th], where tk is
the current time and Th denotes the prediction horizon, the
predicted state at time tk + τ can be obtained by solving
the differential equation (6a) as follows:

x(tk + τ) = eAτx(tk) +
∫ τ

0
eA(τ−γ)Bu(tk + γ)dγ. (7)

Now, if we employ the B-spline functions expansion (2) to
approximate the control action as:

u(t) ≡ su(t) = m(t)Tcu, u(t) ∈ Pru,ξ,α, (8)
we can substitute it into the prediction equation (7), which
thus becomes parametrized in cu:

x(tk + τ) = eAτx(tk) + Γ(τ)cu (9)

with Γ(τ) =
∫ τ

0
eA(τ−γ)Bm(γ)Tdγ.

Applying the quasi-infinite horizon approach of Chen and
Allgöwer (1998) to guarantee the closed-loop stability, our

goal is to solve the following finite-horizon continuous-time
MPC problem:

min
u(·)

∫ tk+Th

tk

(
‖x(tk + τ |tk)‖2Qx

+ u2(tk + τ |tk)wu(τ)
)

dτ

+ ‖x(tk + Th|tk)‖2Qh
, (10a)

s.t. umin ≤ u(t+ τ |t) ≤ umax, τ ≥ t, (10b)
u̇min ≤ u̇(t+ τ |t) ≤ u̇max, τ ≥ t, (10c)

x(tk + Th|tk) ∈ Ω. (10d)
In the quadratic cost (10a), let us understand all signals as
deviations from their respective reference values, Qx � 0
and wu(τ) > 0 denote the state weighting matrix and the
input weighting function, respectively. In the constraints
(10b)–(10c), (umin, umax) and (u̇min, u̇max) denote bounds
imposed on control signal and its derivative, respectively.
In addition, stability and recursive feasibility are ensured
by assuming a terminal cost weighted with Qh� 0 in (10a),
and by assuming a terminal set 1 constraint (10d).
As outlined in Rohaľ-Ilkiv et al. (2019), the CMPC prob-
lem (10) can be tackled with the B-spline function parame-
trization, which leads to the following formulation:

min
cu(k)

cu(k)THcu(k) + 2cu(k)TGx(tk), (11a)

s.t. cmin
u ≤ cu(k) ≤ cmax

u , (11b)
cmin
u,∆ ≤ A∆cu(k) ≤ cmax

u,∆ , (11c)
xmin

Ω ≤ AΩcu(k) ≤ xmax
Ω , (11d)

m(0)Tcu(k) = m(T )Tcu(k − 1), (11e)
ṁ(0)Tcu(k) = ṁ(T )Tcu(k − 1), (11f)

ṁ(Th)Tcu(k) = 0, (11g)
where the reformulated cost (11a) with matrices 2 H and
G has been obtained by substituting (8) and (9) into (10a).
Note that the continuous-time constraints (10b) and (10c)
had to be reformulated to suitable finite-dimensional forms
given by (11b) and (11c), respectively. These must however
guarantee the so-called intersample behavior of the spline
control signal, which is achieved by a proper bounding of
its control polygon cu(k). Taking into account the basic
shape properties of B-splines, outlined in Sect. 2.3, (11b)
represent amplitude constraints (10b) of the control sig-
nal u(t) on horizon [tk, tk + Th], where cmin

u and cmax
u are

min and max values of the spline control coefficients cu(k)
computed using B-spline approximation of given umin and
umax values. Using the relation (5), (11c) approximate the
constraints (10c) on derivative of the control signal u̇(t),
where cmin

u,∆ and cmax
u,∆ are min and max values of the differ-

ences of the spline control coefficients, which can, together
with entries of matrix A∆, be computed based on location
of spline knots. Next, (11d) represent terminal constraints
transformed from (10d) using prediction model (9); where
1 This set has to be invariant under a local state feedback, virtually
acting for τ ∈ [tk+Th,∞[ and feasible with (10b)–(10c). One may use
e.g. a low-complexity invariant set computation procedure proposed
by Rohaľ-Ilkiv (2004).
2 The matrices H and G can be calculated as:

H :=
∫ tk+Th

tk

Γ(τ)TQxΓ(τ)dτ +
∫ tk+Th

tk

m(τ)wu(τ)m(τ)Tdτ + Γ(Th)TQhΓ(Th),

G :=
∫ tk+Th

tk

Γ(τ)TCTwy(τ)CeAτdτ + Γ(Th)TQhe
ATh .

using numerical integration.
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polynomial segment
of the control signal

T – implementationi
period

tk tk+1

T – control period

knot points–

Fig. 1. Generation of the spline control signal.

xmin
Ω , xmax

Ω denote vectors bounding the terminal set Ω. In
order to keep the spline function su(t) in the space Pru,ξ,α
for given (ru, ξ, α), the equality constraints (11e)–(11f) are
employed to enforce continuity between the implemented
and the projected spline control signal at the beginning of
the prediction horizon [tk, tk + Th]. Finally, the constraint
(11g) is added to improve stability of control by requiring
a zero derivative of the projected spline control signal at
the end of the prediction horizon [tk, tk + Th]. Naturally,
problems (10) and (11) are not exactly equivalent, because
the original constraints (10b)–(10d) are replaced with the
constraints (11b)–(11g) imposed on the spline control coef-
ficients, following the argumentation of basic spline shape
properties listed in Sect. 2.3. These properties, however,
imply only sufficient conditions in general, hence bringing
some degree of conservatism to the problem (11). For more
information on this open research topic and ideas how to
reduce this conservatism we refer the interested reader e.g.
to Carnicer and Delgado (2010); Loock et al. (2015).
From the optimization perspective, the spline-based CMPC
problem (11) is a quadratic program (QP), which can be
rewritten in the following simplified form:

min
cu(k)

1
2cu(k)THcu(k) + cu(k)TGx(tk), (12a)

s.t. Aineqcu(k) ≤ bineq, (12b)
Aeqcu(k) = beq. (12c)

Solving QP (12) implicitly for a current state x(tk) yields
a vector of optimal control coefficients c? = [c?1, . . . , c?z]T∈
Rz. According to (4), c?(k) is subsequently converted to
the pp-representation of the optimal spline control signal
s?u(τ), τ ∈ [tk, tk + Th] given by its polynomial coefficients
p?(k). From problem (11) it is clear that we are looking
at the control signal u(t) from the viewpoint of a selected
distance T between knot points of the spline function su(t).
In real-time control, the distance T corresponds to a con-
trol period, in which the first polynomial segment of the
optimal spline input signal, i.e. s?u(τ), τ ∈ [tk, tk + T ], is
applied for control. This is usually performed with a much
shorter “implementation” period Ti � T ; see Fig. 1. This
means we calculate the values of control signal su(tk + τ)
for τ = iTi, i = 1, . . . , n, T = nTi, and implement them
for control using a common zero-order hold.

We remark that during the prediction horizon [tk, tk +Th]
the distance T between knots of the projected spline input
signal su(τ), τ ∈ [tk, tk + Th] can be selected as βT , with
β = 1, 2, . . ., introducing a property comparable with the
well-known move blocking techniques used in MPC. We
also remark that the entire design procedure can be easily
extended to multi-input multi-output (MIMO) and time-
varying systems.

4. EXPLICIT SOLUTION OF SPLINE-BASED CMPC

Following the practical implementation aspects discussed
in the introductory section, let us now present an explicit
solution of the B-spline based CMPC problem (11), in con-
trast to the considerably more expensive computation in
the implicit fashion given by (12). As shown in Bemporad
et al. (2002), this can be achieved first by recasting a QP-
based control problem such as (12) as a parametric qua-
dratic program (pQP); which in our case takes the form:

min
cu

1
2cT

uHcu + cT
uḠθ, (13a)

s.t. Āineqcu ≤ b̄ineq + B̄ineqθ, (13b)
Āeqcu = b̄eq + B̄eqθ, (13c)

θ ∈ Θ, (13d)
with objective function and constraints parametrized (the
problem data marked by ·̄ ) with a vector of parameters

θ =
[
xT, cprev

u
T, uref

]T
,

in which presence of control coefficients cprev
u , obtained in

previous time instant, stems from constraints (11e)—(11f)
which ensure continuity (in amplitude and first derivative)
between the previous and projected spline control signal.
Since we want the controller to keep its reference tracking
capability, the parameter vector θ also contains the input
reference calculated as uref = −

(
CA−1B

)−1
yref.

Problem (13) can be solved using the technique of (multi-)
parametric programming, which enables us to precompute
the solution c?u(θ) for all feasible values of the parameter
θ, explicitly (offline), as a continuous and piecewise affine
(PWA) function in the following form:

c?u(θ) :=


F1θ + g1 if θ ∈ R1,
...

...
Fnregθ + gnreg if θ ∈ Rnreg ,

(14)

defined over nreg polyhedral regions Ri in the parameter
space, given as convex intersections of finitely many closed
halfspaces, i.e.

Ri = {θ | Riθ ≤ ri} .
The collection of the so-called critical regions {Ri}nreg

i=1 is
referred to as a partition of the set of feasible parameters.
Online effort to implement the explicit spline-based CMPC
controller hence reduces to a simple function evaluation, as
per (14), where most of the time is spent on point location,
that is determining which region Ri the current parameter
θ(k) resides in, by checking its defining inequalities. The
result is the current optimal value of the control polygon
c?u(k)≡c?u(θ(k)) of spline input signal. Analogously to the
implicit (online) solution approach described in Sect. 4, the
receding horizon implementation strategy—characteristic
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for MPC—is then realized by determining the parameters
of the spline’s pp-representation via (4) and applying only
its first polynomial segment in a way illustrated in Fig. 1.
The procedure is repeated at each sampling instant, there-
by closing the feedback loop. The control law (14) clearly
results in the same closed-loop behaviour as the implicit
solution to QP (12).
The potential of the explicit representation of spline-based
CMPC controller may be fully exploited namely in the con-
text of real-time implementations on low-cost embedded
hardware and in applications with higher sampling rates.

5. SIMULATION STUDY

In this section we demonstrate the basic features of design
and performance of the proposed explicit spline-parame-
terized CMPC controller via a selected numerical example,
in which we aim to control a continuous-time, linear non-
minimum phase SISO stochastic system given in the La-
place domain as:

y(s) = (−15s+ 20)
(s3 + 4.5s2 + 9s+ 10)u(s)+

+ (0.2 + 0.07s)
(s3 + 4.5s2 + 9s+ 10)e(s),

(15)

where e(s) is a uniformly distributed noise with standard
deviation σ = 0.15. This system is not very challenging in
terms of control but can quite well illustrate the basic con-
cept. Now, by applying the spline-based online identifica-
tion procedure introduced in Rohaľ-Ilkiv (1997), it can be
transformed to a phase variable state-space form, such as
in (7), with matrices:

A =
[0 0 −0.457

1 0 −0.799
0 1 −1.138

]
, B =

[0.912
0.596
0.333

]
, and C = [0 0 1] ,

which was then used to formulate the spline-based CMPC
problem (11), assuming values of parameters listed in Tab.
1a. The choice of spline design parameters, having an im-
portant impact on the shape of the spline function (order,
defect, number and position of knots), was guided by com-
mon rules for signal approximation. Higher orders and a
large number of knots imply high flexibility but may also
result in overfitting. Conversely, lower orders and a small
number of knots may result in over-smoothing behaviour.
By using the MATLAB based tools of YALMIP (Löfberg,
2004) and Multi-Parametric Toolbox (MPT, Herceg et al.
(2013)), the spline-based CMPC problem (11) was recast
and solved 3 as a parametric QP (13). For Th = 6 s, z = 5
and other design parameters (see the first row in Tab. 1b),
the explicit solution was obtained in ∼2 s and consists of
a PWA optimizer defined over a partition with 50 critical
regions in space R9.
The controller was tested in 5 simulation setups, with the
same objective of tracking predefined step changes of the
output reference yref(t), to demonstrate the impact of ho-
rizon length and number of interior knots within a control
period on the controller’s complexity, in terms of number
of optimized variables and number of critical regions. The
3 All computations were performed on a 2.8 GHz i5 core CPU with
8 GB of RAM. The pQP problem was solved using the enumeration-
based approach of Herceg et al. (2015) available in MPT3.

obtained results are presented in Fig. 2 and Tab. 1b. The
control performance is assessed also in terms of the mean
squared control error. As indicated in Tab. 1b for a wide
range of lengths of the prediction horizon, Th = 6T–24T ,
there is not a usually obvious relation between the choice
of horizon length and an increase in number of optimized
variables z and critical regions nreg. An unrealistic scenario
was also shown—choice of a very short prediction horizon,
Th = 6T , when the controller apparently failed to track the
reference and a large set-point change even lead to a tem-
porary violation of input amplitude constraint (see Fig. 2a
at ∼3500Ti = 700 s). In terms of complexity reduction, an
interesting observation is a very low number of controller’s
regions which have to be stored in the hardware memory.
As shown in the simulation with fixed horizon (in our case
Th = 24T ), with an increasing number q of interior knots
located within the control period T we can observe a pro-
portional increase in number of optimized variables as well
as in number of regions. In parallel, one may also observe
an increased activity of the control input, in particular at
a set-point change; see Fig. 2b, which also suggests that a
larger number of interior knots does not necessarily lead to
a smaller steady-state error—the smallest one is achieved
already for two knots (z = 5). Table 1b moreover compares
number of constraints and average execution times of the
implicit 4 and the explicit implementation of the proposed
controller, where the latter is expectedly faster, although
it performs point location in higher dimensions of the pa-
rameter space.
Note also, that in all simulation runs the input weighting
function wu(t) was set as zero, which sufficed to ensure a
stabilizing control. This observation is a by-product of the
applied conditions on continuity and zero derivative of the
spline at the end of prediction horizon, (11e) and (11g).

6. CONCLUSION

This paper presented design, implementation and simula-
tion analysis of an effective approach to the synthesis of ex-
plicit spline-based continuous-time model predictive con-
trol. It formulates the control input signal as a spline func-
tion which satisfies user-defined constraints—even between
samples. The explicit controller design is built upon the el-
ements of the spline function’s control polygon, which—in
comparison with the standard discrete-time formulation—
mitigates the immediate relationship between the problem
complexity (e.g. in terms of number of optimized variables
or number of controller’s critical regions) and the necessary
length of prediction horizon. Longer prediction horizons,
in turn, are then beneficial for contractivity and stability
of the proposed explicit control law.
One might have also observed that the presented approach
is similar to the flatness-based approach since it essentially
rewrites the continuous-time optimal control problem as a
tractable optimization problem using either the knowledge
of the applied model transition or the flatness properties
of the nominal controllable LTI system.
Future work of authors aims at robustness of the proposed
control scheme and its potential extension to the nonlinear
MPC framework.

4 Obtained by solving (12) with MATLAB’s quadprog solver.
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Table 1. (a) Values of parameters used in simulation; (b) overview of controller design and implementation properties.
(a)

Parameter Value

implementation period† Ti = 0.2 s
control period T = 5Ti = 1 s
prediction horizon Th = {6T, 12T, 24T}
spline order ru = 3
spline defect def = 1
weighting functions wu(τ) = 0, wy(τ) = 1

input amplitude bounds umin = −0.7
umax = 3.2

input derivative bounds u̇min = −3.0
u̇max = 3.0

† corresponds to sampling time

(b)

Location
of interior

knots {ξ}qi=1

Solution
implicit explicit

Th q z ncon tex ncon nθ nreg tex msce†

6T 2 {2T, 4T} 5 24/3 1.85 42/3 9 50 0.17 1.641
12T 2 {4T, 8T} 5 24/3 1.83 42/3 9 57 0.20 0.578
24T 1 {12T} 4 20/3 1.60 36/3 8 7 0.05 1.382
24T 2 {8T, 16T} 5 24/3 1.66 42/3 9 25 0.11 0.917
24T 3 {6T, 12T, 18T} 6 28/3 1.63 48/3 10 69 0.22 0.788

q – number of interior knots within Th, z – number of optimized variables,
ncon – number of inequality/equality constraints, nθ – number of parameters,
nreg – number of critical regions, tex – average controller execution time [ms]

† mean squared control error

(a) fixed z, various Th (b) fixed Th, various z

Fig. 2. Simulation results obtained with the explicit spline-based CMPC used to control the system described by (15).
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