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Abstract: An experimental demonstration is given of a nonlinear feedback controller applied
to a short-stroke wafer stage system of an industrial wafer scanner. The controller design adopts
a classical linear PID-based configuration in which both the integrator and low-pass filter are
replaced with hybrid integrator-gain-based filter elements. The reduced phase lag associated
with these filters gives rise to increased design flexibility, and potentially enables a substantial
increase in low-frequency disturbance suppression. The nonlinear controller is designed by means
of a quasi-linear loop-shaping approach, while stability of the full nonlinear closed-loop system
is verified by solving a set of linear matrix inequalities. Performance of the controlled system is
discussed on the basis of measurement results obtained from a wafer stage system.
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1. INTRODUCTION

Wafer scanners arguably employ one of the crucial steps
in the manufacturing process of integrated circuits (IC’s),
namely, exposing the circuit topology obtained from a ret-
icle onto the photosensitive layers of a silicon wafer. Both
reticle and wafer are part of separate motion systems: the
reticle stage and wafer stage (Butler, 2011). Essential for
these stages to achieve nanometer positioning accuracies
while being subject to large acceleration profiles, is the
use of feedforward and feedback control systems. While
feedforward control is applied for set-point tracking, feed-
back control typically deals with disturbances. Currently,
the majority of feedback control designs rely on the linear
control paradigm. The widespread use of linear control
in industry is often attributed to its design simplicity
and predictability. However, in view of the growing per-
formance demands on accuracy and throughput of wafer
scanners, classical trade-offs encountered when using linear
control increasingly become performance-limiting factors
(Seron et al., 1997). Nonlinear control strategies deal with
such trade-offs in a different manner and may offer a
means to enhance performance beyond the capabilities
of linear control. Examples in this regard include split-
path nonlinear (SPAN) filters (Foster et al., 1966), reset
control (Beker et al., 2004; Nešić et al., 2008), and hybrid
integrator-gain systems (HIGS) (Heertjes et al., 2018).

In the context of high-precision motion control of wafer
scanners, HIGS is of particular interest as its describing
function reveals (weak) integrator characteristics with an
induced phase lag of only 38.15 degrees. This significant
phase reduction may be exploited in a control design to
enhance frequency-domain characteristics such as band-
width, thereby giving rise to improved low-frequency dis-
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turbance suppression properties. Although a similar phase
advantage is associated with reset integrators, HIGS at-
tains its desirable properties by means of continuous (but
non-smooth) outputs, whereas reset elements achieve this
by discontinuous outputs. Since wafer and reticle stages
typically have structural dynamics with lightly damped
resonances (Oomen et al., 2014), avoiding discontinuous
signals provides a distinct advantage over reset control.

Recently in Van den Eijnden et al. (2020), the phase
advantages associated with HIGS are exploited in a PID-
based controller design for a motor-load motion system.
In particular, a classical PID configuration is considered
in which the integrator and second-order low-pass filter
are replaced by HIGS-equivalent filters. The latter are
constructed by augmenting the HIGS with specific linear
input- and output weighting filters, such that the describ-
ing function of the augmented HIGS filter demonstrates
similar magnitude characteristics as the linear filter it is in-
tended to replace, while giving improved phase properties.
A comparable idea was proposed in Saikumar et al. (2019)
where a reset element was combined with a linear lead filter
for the construction of a constant-in-gain lead-in-phase
element to be used for broadband phase compensation.

In this paper, application of the proposed control strategy
using multiple HIGS elements is considered. The main
contribution is the experimental demonstration of a full
HIGS-based PID control design on a short-stroke wafer
stage of a state-of-the-art industrial wafer scanner. Perfor-
mance of the HIGS-based controller is compared to that of
a linear equivalent design in terms of (low-frequency) dis-
turbance suppression properties and noise response. Both
controllers are designed by means of a (quasi-linear) loop-
shaping procedure for maximizing the bandwidth while
satisfying identical constraints on the closed-loop transfer
functions. As a second contribution, rigorous conditions for
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stability of the resulting nonlinear closed-loop system are
given in the form of numerically tractable linear matrix
inequalities (LMIs), which for the case of using multiple
HIGS elements are presented for the first time.

The remainder of the paper is organized as follows. In
Section 2 HIGS is introduced. Its use for wafer stage con-
trol is discussed in Section 3. Section 4 presents sufficient
conditions for stability. Loopshaping design and measure-
ment results of the full HIGS-based controller applied to
an industrial wafer stage system are presented in Section 5.
Section 6 gives the main conclusions.

2. HYBRID INTEGRATOR-GAIN SYSTEMS

The hybrid integrator-gain system (HIGS) can be mod-
elled as the following discontinuous piecewise linear system

H :


ẋh = ωhz if (z, u, ż) ∈ F1,

ẋh = khż if (z, u, ż) ∈ F2,

u = xh,

(1)

where xh ∈ R denotes the state of the integrator, z ∈
R is the input which is assumed to be continuously
differentiable, ż ∈ R is the corresponding time-derivative,
and u ∈ R is the generated output. The design parameter
ωh ∈ (0,∞) is the integrator frequency, and kh ∈ (0,∞)
the gain. Dictated by the sets F1 and F2 in (1), the HIGS
operates as (i) an integrator or (ii) a gain, respectively. By
design, the union of these sets is given by

F := F1 ∪ F2 =
{

(z, u, ż) ∈ R3 | khzu ≥ u2
}
, (2)

which restricts the input-output relation of the HIGS to
the [0, kh]-sector. As the HIGS is intented to primarily
exhibit integrator dynamics, the region F1 is maximized in
such a way that a switch from ‘integrator-mode’ to ‘gain-
mode’ is invoked only when the (z, u, ż)-trajectory tends
to escape the sector, resulting in:

F1 := F \ F2, (3a)

F2 :=
{

(z, u, ż) ∈ F | u = khz ∧ ωhz2 > khżz
}
. (3b)

For ensuring xh(t) ∈ F for all t ≥ 0, one can initialize 1 the
HIGS at xh(0) ∈ F .

In frequency-domain, HIGS can be approximated by its
first-order describing function D(jω) ∈ C, i.e., the com-
plex mapping from a sinusoidal input z(t) = sin(ωt) to the
first harmonic in the resulting output u(t). This mapping
is given by

D(jω) =
ωh
jω

(
γ

π
+ j

e−2jγ − 1

2π
− 4j

e−jγ − 1

2π

)
+ kh

(
π − γ
π

+ j
e−2jγ − 1

2π

)
,

(4)

where γ = 2 arctan(khω/ωh) ∈ [0, π] denotes the (pe-
riodic) switching instant. The describing function (4)
demonstrates first-order low-pass magnitude characteris-
tics, with an induced phase lag of only 38.15 degrees. For
a derivation of (4), further motivation for the sets (3), and
a thorough discussion on the (time-domain) properties of
HIGS, see Heertjes et al. (2018) and the references therein.

1 For an incorrect initialization, i.e., xh(0) 6∈ F , a one-time reset
occurrence can be enforced by xh(0

+) = α ·z(0), α ∈ [0, kh] to ensure
xh(t) ∈ F for all t > 0.

3. WAFER STAGE CONTROL WITH HIGS

3.1 Scanning Principle and Motion Control Context

During wafer scanning, light emitted by a source falls on
a reticle, which contains the blueprint of the integrated
circuit topology. After passing through the reticle, the
light travels through a lens which projects an image of the
circuit topology onto a silicon wafer. The wafer is carried
by a short-stroke stage. For driving the stage, Lorentz
actuators are used which guarantee a natural decoupling
of base-frame vibrations to the stage (Butler, 2011).

For high-quality imaging, the vertical direction of the
wafer during scanning should be kept in focus, i.e., the
wafer stage generally tracks a non-zero set-point in this
direction, reflecting the measured wafer topology. In z-
direction, the short-stroke wafer stage is typically approx-
imated by a simplified fourth-order system

P (s) =
m1s

2 + bs+ k

m1m2s4 + b(m1 +m2)s3 + k(m1 +m2)s2
, (5)

where m1 = 5 kg, m2 = 17.5 kg represent the mass of the
magnetic yoke mounted to the stage and the stage itself,
respectively, and the stiffness coefficient k = 7.4 ·107 N/m,
and damping coefficient b = 90 Ns/m reflect properties of
the coupling between the yoke and stage. The frequency
response function (FRF) of a short-stroke wafer stage in
z-direction measured at the center point of the wafer is
shown in Fig. 1, along with the parametric model (5).

-200

-150

-100

10
1

10
2

10
3

-200

0

200

Fig. 1. Measured FRF of the wafer stage in z-direction
(black) and simplified fourth-order model (grey).

The simplified motion control scheme of a short-stroke
wafer stage in vertical direction is depicted in Fig. 2.

Σ C(·) Σ P (s)
r e w y

d

−

Fig. 2. Simplified closed-loop system configuration.

The input to the stage consists of the control signal w,
generated by a (non)linear feedback controller C, and a
disturbance d. Dominant sources of (low-frequency) dis-
turbances typically arise from unavoidable cross-talk via
hoses, electrical cables, and airshowers used to condition
the interferometer measurement system. The plant output

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8420



y is subtracted from the reference r to form the servo
error signal e := r − y. In the remainder, it is assumed
that tracking is dealt with by an advanced feedforward
controller, and a mismatch in feedforward is regarded as
an additional setpoint-induced input disturbance.

3.2 HIGS-Based PID Controller

Consider the following linear PID-type controller structure
that is commonly used (after rigid-body decoupling) for
wafer stage feedback control:

C(s) = Cpid(s)Clp(s)Cn(s), (6)

where the PID-filter Cpid(s) and the second-order low-pass
filter Clp(s) are given by

Cpid(s) = kp

(
1 +

ωi
s

+
s

ωd

)
, (7)

Clp(s) =
ω2
lp

s2 + 2βlpωlps+ ω2
lp

, (8)

with proportional gain kp ∈ R, integrator, differentiator,
and low-pass cut-off frequencies ωi, ωd, ωlp ∈ R, respec-
tively, and damping coefficient βlp ∈ R. In (6), Cn(s)
consists of several notch-filters, i.e.,

Cn(s) =

N∏
i=1

(
ω2
p,i

ω2
z,i

)
s2 + 2βz,iωz,is+ ω2

z,i

s2 + 2βp,iωp,is+ ω2
p,i

. (9)

Although the integrator in (7) and the low-pass filter (8)
are key elements for attaining sufficient input disturbance
rejection and noise attenuation of the controlled system
(Skogestad & Postlethwaite, 2005), these also introduce
the negative effects of phase lag. To improve upon this
aspect, one may consider replacing these linear filters by
HIGS-based equivalent filters. The latter possess similar
magnitude characteristics as the filter they intend to
replace, but induce significantly less phase lag as observed
from their describing functions.

A particular approach for constructing such filters, is
through the use of input-output filters. That is, by aug-
menting the HIGS with linear weighting filters Z(s), U(s) ∈
C as demonstrated in Fig. 3, one obtains a cascaded filter
element, denoted by HF , for which the describing function
is derived on the basis of linear reasoning as

DF (jω) = Z(jω)D(jω)U(jω), (10)

with D(jω) the HIGS’ describing function (4).

Z(s) H(·) U(s)
ẑ z u û

Fig. 3. Augmented HIGS-based filter HF .

Clearly, Z(s) and U(s) can be exploited for shaping the
characteristics of (10). As is motivated in Van den Eijnden
et al. (2020), the particular choice

Z(s)U(s) =

(
1 +

s

ωc

)
F (s), (11)

where ωc = ωh|1 + 4j/π|/kh corresponds to the cross-over
frequency of (4) and F (s) is the filter whose phase proper-
ties are to be improved, e.g., F (s) = ωi/s or F (s) = Clp(s),
yields the overall describing function (10) to have similar
magnitude characteristics as F (s), but with different phase
lag. Note that different choices for Z(s), U(s) that satisfy

(11) are possible. The rationale for the choice in (11) comes
from the fact that D(jω) has magnitude characteristics
corresponding to a first-order low-pass filter, which are
compensated by the ‘inverted’ PD-part in (11). Conse-
quently, one achieves ‖DF (jω)‖ = ‖Z(jω)D(jω)U(jω)‖ ≈
‖F (jω)‖. Furthermore, the 90 degrees phase lead induced
by the PD-filter in (11) together with the smaller phase lag
of 38.15 degrees coming from D(jω), results in an overall
phase lead contribution to the phase characteristics of DF .

Adopting the use of HIGS-based filters as constructed in
Fig. 3 in the PID-based configuration (6), results in the
HIGS-based PID controller as depicted in Fig. 4. Here,

kpHi(·) Σ

kp

(
1 + s

ωd

)
Hlp(·) Cn(s)

e v w

CHIGS

Fig. 4. PID controller, with HIGS-based integrator Hi and
HIGS-based second-order low-pass filter Hlp.

the HIGS-based integrator Hi is constructed by choosing
Z(s) = 1 and U(s) = (1 + s/ωc)

ωi

s , and for the HIGS-
based second-order low-pass filter Hlp, Z(s) = 1 and
U(s) = (1 + s/ωc)Clp(s), with Clp(s) as in (8), are chosen.

In general, a describing function of the HIGS-based PID
controller in Fig. 4 cannot be constructed by simply
appending the describing functions of the HIGS-based
integrator and HIGS-based low-pass filter, as the input
to the second HIGS associated with Hlp is not necessarily
sinusoidal. However, as discussed in Van den Eijnden et al.
(2020), if the parameters associated with the two HIGS
elements are chosen as to satisfy ωh,i < γωh,lp, with γ > 1
sufficiently large, interference of both nonlinear elements
remains fairly limited, and the HIGS-based controller
admits a frequency-domain approximation given by

DC(jω) = kp

(
1 +Di(jω) +

jω

ωd

)
Dlp(jω)Cn(jω), (12)

in which Di(jω) and Dlp(jω) are the describing functions
of the HIGS-based integrator, and second-order low-pass
filter, given by (10). The describing function (12) is shown
in Fig. 5, together with a linear equivalent PID-controller.
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Fig. 5. Frequency-domain characterization of a linear PID
controller (grey) and HIGS-based controller (black).
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In the remainder of the paper, (12) together with the
constraint on ωh,i and ωh,lp will be used in a quasi-
linear loopshaping design procedure of the HIGS-based
PID controller for a wafer stage system.

4. CLOSED-LOOP STABILITY ANALYSIS

Though being valuable for design purposes, a describing
function analysis does not provide solid conclusions on
stability of a system in feedback with the presented HIGS-
based controller. To deal with this shortcoming, in this
section rigorous conditions for closed-loop stability are
formulated in terms of numerically verifiable LMIs. As
this requires the need for a state-space formulation of the
closed-loop system, the system in Fig. 2 is first re-written
into an equivalent Lur’e form, as shown in Fig. 6.

G(s)

Hi(·)
Hlp(·)

d y

ū z̄

Fig. 6. Closed-loop system in Lur’e form.

Here, z̄ = [zi, zlp]
> denotes the augmented inputs to

the HIGS (1) associated with the integrator and low-pass
filter, indicated by the subscripts i, and lp, respectively,
and ū = [ui, ulp]

> represents the corresponding outputs.
Assume that the multi-input multi-output system G(s)
admits the following state-space realization

G :


ẋl = Alxl +Buū+Bld,

y = Clxl +Duū+Dld,

z̄ = Czxl +Dzū,

(13)

with states xl ∈ Rm, and output y ∈ R. Note that (13)
implies that the transfer from d to z̄ is strictly proper,
which is the case since P (s) in (5) has a relative degree
of two. In turn, this implies CzBl = 0. The linear system
(13) interconnected with two HIGS elements (1) can be
written as the following piecewise linear system

ẋ = Apqx+Bd, if Ex ∈ Fpq, (p, q) ∈ {1, 2}2

y = Cx+Dd,
(14)

with x = [xl, xhi , xhlp
] ∈ Rm × Fi × Flp, where Fi,Flp

are the sets associated with Hi and Hlp, respectively,
given in (3) and Fpq = Fi,p ∪ Flp,q. Note that p indexes
the active mode of Hi, whereas q indexes the active
mode of Hlp, with p, q = 1 referring to ‘integrator-mode’,
respectively for Hi(·) (indicated by p) as well as Hlp(·)
(indicated by q), and p, q = 2 referring to ‘gain-mode’. The
matrix E extracts the signals from x that determine mode-
switching of the HIGS elements, i.e., Ex = [Ei, Elp]x =
[(z, u, ż)i, (z, u, ż)lp]

>. The system matrices are given by[
Apq B
C D

]
=

 Al Bu Bl
JpqQpq JpqRpq 0
Cl Du Dl

 , (15)

where the mode dependent matrices are derived as Jpq :=
(I − KpqDz)

−1, Qpq := WpqCz + KpqCzAl, and Rpq :=
WpqDz +KpqCzBu. Furthermore, the matrices

Wpq := diag ([s(p)ωh,i, s(q)ωh,lp]) , (16a)

Kpq := diag ([(1− s(p))kh,i, (1− s(q))kh,lp]) , (16b)

select the corresponding active dynamics of each HIGS,
with s(k) := 2 − k. Note that for deriving the matrices
in (15) use is made of the representation ˙̄u = Wpq z̄ +

Kpq ˙̄z with ū =
[
xhi , xhlp

]>
. Moreover, for the considered

configuration, the matrix (I−KpqDz) ∈ R2×2 is invertible.

4.1 LMI-based stability conditions

For reducing possible conservatism in the stability analy-
sis, knowledge about the switching regions of HIGS in (3)
can be incorporated in the search for a suitable Lyapunov
function via the use of S-procedure relaxation terms. For a
general HIGS in (1), these terms are constructed as follows.
In integrator mode, the input-output relation is confined
to (khz(t))

2 ≥ khz(t)u(t) ≥ u(t)2. Using the fact that in a
closed-loop system one has Ex = [z, u, ż]>, these quadratic
inequalities can be written in terms of the state x as

x>E>Q1E︸ ︷︷ ︸
:=S1

x ≥ 0, with Q1 =

k2h kh 0
kh −2 0
0 0 0

 . (17)

Additionally, for the gain mode one has u(t) = khz(t), and
ωhz(t)

2 − khż(t)z(t) ≥ 0. The inequality is written as

x>E>Q2E︸ ︷︷ ︸
:=S2

x ≥ 0, with Q2 =

[
0 0 −kh
0 0 0
−kh 0 2ωh

]
, (18)

and the equality is captured by x>E>Π>ΠEx := x>T x =
0, with Π = [kh,−1, 0]. The next theorem presents suffi-
cient conditions for stability of the closed-loop system (14).

Theorem 1. Consider the closed-loop system in (14) with
‖d‖∞ ≤ c. Suppose there exist non-negative real scalars
αxx, βpq,xx ≥ 0, and arbitrary real scalars γpq,xx, with
xx = {i, lp} such that for all (p, q) ∈ N2, N = {1, 2}, the
symmetric matrix P ∈ Sn×n satisfies the following LMIs

P − Σ � 0, (19a)

A>pqP + PApq + Θpq + Ψpq ≺ 0, (19b)

where Σ = αiS1,i + αlpS1,lp, and Θpq = βpq,iΘp,i +
βpq,lpΘq,lp with

Θk,xx = s(k)S1,xx + (1− s(k))S2,xx , (20)

and

Ψpq = γpq,i(1− s(p))Ti + γpq,i(1− s(q))Tlp, (21)

with selection function s(k) = 2− k, and where Sk,xx, Txx
are defined in (17) and (18). Then for all x(0) ∈ Rm×Fi×
Flp the closed-loop system is input-to-state stable (ISS).

The proof of Theorem 1 demonstrates that under the
hypothesis of the theorem, the function V (x) = x>Px
qualifies as an ISS Lyapunov function for the system. It is
a fairly standard proof (see e.g., Johansson (2003); Khalil
(2002)) and is therefore omitted from the paper. Note,
however, that key in proving the theorem is the use of
the S-procedure (related to the matrices Σ, and Θpq) and
Finsler’s lemma (related to Ψpq), along with the fact that
the input d enters linearly in the dynamics (14).

5. LOOPSHAPING DESIGN AND WAFER STAGE
MEASUREMENT RESULTS

In this section, two controllers are designed for the wafer
stage system in Fig. 2: (i) linear controller C = Clin(s)
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with similar structure as in (6), and four fixed notch-
filters, and (ii) HIGS-based controller C = CHIGS, as
presented in Fig. 4, where Cn(s) consists of four notch-
filters that are identical to those used in the linear case.
The design procedure employs an automated (quasi-)linear
H∞-loopshaping approach which is formulated as the
following generalized constrained optimization problem

maximize
ρ

ωbw(ρ)

subject to ‖W (jω)M(jω, ρ)‖∞ ≤ 1, ∀ω ∈ Ω,

ρ ∈
{
ρ, ρ
}
,

(22)

where ρ ∈ Rn is the set of controller design parameters
with ρ, ρ being the minimum and maximum admissible
values, ωbw is the bandwidth to be maximized, and

M(jω, ρ) =

(
S −PS
CS −CPS

)
∈ C2×2, (23)

is the four block transfer function matrix relating the
exogenous inputs r, d to the performance outputs e, w.
Here, P (jω) is the measured plant FRF, see Fig. 1, and
C(jω) denotes the (quasi-linear) FRF representation of
the controller. That is C(jω) = Clin(jω) for the linear
case whereas C(jω) = DC(jω), with DC(jω) given in (12)
for the HIGS case. The (quasi-linear) sensitivity transfer
function is defined by S(jω) = (1 + C(jω)P (jω))−1. In
(22), W (jω) ∈ C2×2 is a dynamic weighting filter that is
related to the design criteria (e.g., sensitivity peaking),
and Ω = {ω ∈ R | ωmin ≤ ω ≤ ωmax} is a compact set
which contains the frequencies of interest. The optimiza-
tion problem (22) for both the linear and quasi-linear case
is solved by means of an autotuner. The obtained set of
parameters are given in Table 1 and Table 2, and the
sensitivity magnitude characteristics are shown in Fig. 7.

Table 1. PID-filter parameter values.

Linear HIGS

kp 1.51 · 107 1.94 · 107 N/m

ωi 57.99 · 2π 72.91 · 2π rad/s

ωd 86.99 · 2π 109.4 · 2π rad/s

ωlp 552.5 · 2π 537.2 · 2π rad/s

β 0.2 0.2 -

kh,i − 1 -

ωh,i − 76.59 · 2π rad/s

kh,lp − 1 -

ωh,lp − 268.6 · 2π rad/s

Table 2. Notch filter parameter values.

i ωz,i in rad/s βz,i ωp,i in rad/s βp,i

1 740 · 2π −1.3 · 10−3 620 · 2π 1.6 · 10−1

2 1039 · 2π 1.3 668 · 2π 1.97

3 157 · 2π 2.4 · 10−2 160 · 2π 2.0 · 10−2

4 1884 · 2π 2.4 · 10−1 1944 · 2π 2.0 · 10−1

Under the given design constraints, the maximum band-
width obtained with the linear controller is 142 Hz whereas
the use of DC(jω) allows for a somewhat larger bandwidth
of 153 Hz. The (quasi-linearized) HIGS-based controller
gives rise to a substantial 4.2 dB improvement in broad-
band low-frequency disturbance suppression as compared
to the linear design. This is effectuated by the HIGS-based

low-pass filter which induces less phase lag around the
bandwidth and thus allows for a larger loop-gain (see Ta-
ble 1). In the range from 70 Hz to 120 Hz the improvement
is even 6.5 dB, which stems from the phase characteristics
associated with the HIGS-based integrator Hi.

Remark 1. Verifying stability of the resulting closed-loop
system by finding a feasible solution to the LMIs in Theo-
rem 1 appeared to be no trivial task. By increasing ωh,lp by
a factor of at least 1.82, feasible solutions were found. Note
that this is remarkable since the conditions in Theorem 1
are possibly conservative due to the search for a com-
mon quadratic Lyapunov function. The conditions may be
further relaxed by considering, e.g., piecewise quadratic
functions instead (Johansson, 2003). For systems with a
single HIGS, such an approach has been succesfully applied
in Van den Eijnden et al. (2019).

10
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-60
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-20
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Fig. 7. Sensitivity magnitude characteristics of the linear
system and HIGS controlled system along with the
sensitivity constraint (dashed).

5.1 Measurement Results

During experiments, the system is subject to a repre-
sentative third-order scanning setpoint, and a sampling
frequency of 5 kHz is used. To quantify servo performance
of a wafer scanner, two key performance measures are
considered: (i) the moving average (MA) filtered error, and
(ii) the moving standard deviation (MSD) filtered error.
The MA characterizes the ability of exposing two layers
exactly on top of each other (overlay), and is defined as

MA{e(t)} :=
1

Te

∫ t+Te
2

t−Te
2

e(τ)dτ, (24)

with Te the exposure time. Essentially, (24) resembles a
low-pass filtering type of operation applied to the mea-
sured error signal e. The MSD provides a measure for
imaging quality. It is defined by

MSD{e(t)} :=

√√√√ 1

Te

∫ t+Te
2

t−Te
2

(e(τ)−MA{e(τ)})2 dτ,

(25)
and resembles a high-pass filtering operation. The raw
error signal e measured at the center point of the wafer,
MA, and MSD of eight consecutive experiments for the
linear- and HIGS-based configuration are shown in Fig. 8.

First, it is noted form Fig. 8 that the achieved performance
over all eight repeated experiments is quite reproducible.
Clear improvements in MA and MSD are observed from
Fig. 8 for the HIGS-controlled system. Particularly, the
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peak values of the MA during the scanning phase decrease
from 8.3 nm in the linear case to 4.3 nm for the HIGS
controlled case, thereby demonstrating almost a factor
of two improvement, which is in agreement with the
expectation coming from the describing function in Fig. 7.
This sort of improvement is also observed for the MSD
values. Note that simultaneous improvements in both MA
and MSD is in general not trivial due to (i) the waterbed
effect which is associated with linear systems but may
still be present in the nonlinear case, (ii) generation of
non-smooth control signals which potentially induces more
high-frequency distortion, and (iii) the introduction of
multiple nonlinearities in the feedback control loop.
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Fig. 8. Error e(t) (top), MA (middle), and MSD (bottom)
for the linear (black) and HIGS-controlled system
(red). The yellow surface indicates a scanning phase.

In addition to time-domain results, frequency-domain re-
sults are presented in Fig. 9 in terms of an averaged
cumulative power spectral density (cPSD). From Fig. 9
a significant improvement in mid-frequency disturbance
rejection is observed, particularly in the range from 60 −
300 Hz. Also note that around 200 Hz, the linear system
induces relatively more amplification than the HIGS con-
trolled system, whereas in the range 400 − 700 Hz, the
opposite is observed. These observations are in agreement
with the predictions coming from the describing function
in Fig. 7, hence its usefulness for motion control design.
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Fig. 9. Cumulative power spectral density of the measured
error signal e(t).

6. CONCLUSIONS

In this paper, the use of multiple hybrid integrator-
gain elements in a PID-based controller configuration is
considered. The reduced phase characteristics associated
with these elements are exploited in a describing function
based controller design procedure to achieve improved low-
frequency disturbance rejection properties when compared
to a linear design. Sufficient conditions for stability of the
true nonlinear closed-loop system are given in the form
of numerically tractable LMIs. Measurement results on a
short-stroke wafer stage of an industrial wafer scanner sup-
port the potential for improving low-frequency disturbance
rejection without excessive transmission of high-frequency
noise. Combined use of multiple HIGS elements is therefore
believed to significantly contribute to the performance
enhancement of industrial high-precision motion systems.
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