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Abstract: In a context of wind power production growth, it is necessary to optimize the
levelized cost of energy by maximizing the profit of operating wind turbines, which is defined as
the difference between gains (e.g. energy sold) and losses (e.g. operation and maintenance cost).
Operation and maintenance cost is intimately related to fatigue damage. However, considering
fatigue directly in an optimization needs to be carefully done because its faithful model does
not fit standard forms. In this paper, it is first shown that the variance of a signal and its
corresponding damage using fatigue theory are nonlinearly related. Therefore, this relationship
is used to design a convex cost function approximating fatigue. Preliminary tests suggest
promising results regarding the relevance of this formulation in optimizing fatigue trade-off
when compared to a family of quadratic cost functions. The proposed formulation allows to
directly consider economic parameters in the cost function, limiting thus the sensitivity to
parameter tuning.
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1. INTRODUCTION

Wind energy production has been exponentially growing
in the last decades, with about 591 GW globally installed
in 2018 compared with 94 GW in 2007, see GWEC (2018).
In order to achieve COP21 objective, which is to maintain
CO2 emissions below 5.4 × 1012 kilograms per year, the
wind energy industry is expected to develop even further,
see GWEC (2016). This energetic transition requires a
large economic investment. It is thus necessary to optimize
Horizontal Axis Wind Turbine (HAWT) operation and
maintenance cost.
Control of HAWT blade pitch angle can contribute to
this challenge. The main objectives of HAWT blade pitch
control are to regulate output power and rotor speed
while reducing mechanical fatigue. In the early work on
blade pitch control, wind was assumed to be uniformly
distributed over the rotor area. Therefore, all the blades
were pitched to the same angle, this technique is called
Collective Pitch Control (CPC). With recent increase in
rotor diameter, this assumption is less and less valid. Aero-
dynamic forces on the blades fluctuate with the azimuth
angle while the blade pitch angle remains constant, see
Hansen (2015). Therefore, by varying each blade pitch
angle individually depending on its azimuth, blades fatigue
loads can be alleviated. This technique is called Individual
Pitch Control (IPC), see Bossanyi (2003).
IPC is usually divided in two stages:

(1) The CPC stage whose objective is to regulate the
rotor rotational speed and power, while alleviating
the fatigue loads on the tower.

(2) The IPC stage that gives a differential pitch angle
on each blade, added to the collective pitch angle, in
order to reduce the unbalanced loads on the rotor,
contributing to the rotating components damage (i.e.
blades, rotor bearing, blade bearings)

Therefore, the goal of the IPC stage is essentially to opti-
mize the trade-off between the fatigue damage of various
components, in order to minimize the HAWT operating
cost.
Optimal control is a good solution to achieve this objec-
tive. However, expressing this objective as an economic
cost function for optimal control is a challenging task due
to the fatigue damage estimation, see Hammerum et al.
(2007) and Barradas-Berglind and Wisniewski (2016). Fa-
tigue damage is quantified using the Palmgrem-Miner fa-
tigue theory, where it is expressed as a sum of damages
caused by hysteresis load cycles, see Palmgren (1924).
These cycles are counted using a RainFlow Counting
(RFC) algorithm (see Downing and Socie (1982)) which
cannot be expressed as a simple algebraic function. Consid-
eration of fatigue as an explicit control objective remains
an open topic, see Knudsen et al. (2015). To our best
knowledge, it is possible to find in the literature four
methods considering directly fatigue as an objective cost
function for HAWT control:

(1) In Hammerum et al. (2007), the spectral properties
of the stress history are used to design an optimal
feedback controller.

(2) In Collet et al. (2019), a data driven surrogate model
is designed to predict fatigue from wind spectrum
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characteristics and controller. This surrogate model
is used to select the best controller among several
candidates.

(3) In de Jesus Barradas-Berglind et al. (2015), a
quadratic cost function parameters are varied to
match an on-line estimated economic fatigue cost
function.

(4) In Loew et al. (2019), a sequential optimization is
made where the cost function parameters are iter-
atively modified between gradient steps, based on
RFC.

The two last methods are different from the others because
they are using a temporal approach instead of a spectral
one. These approaches are both used to define an objective
cost function for Model Predictive Control (MPC). They
are then compared to a classical MPC, using quadratic
norms as objective cost function.
This paper approach bridges several aspects of the above
methods. It uses a data-driven surrogate model relating
quadratic norms (variance) and fatigue of given signals,
in order to approximate a fatigue trade-off objective cost
function. This approximated objective cost function is
used to optimize the system input trajectory. It is different
from the second method, as the surrogate model relates
trajectory time series to fatigue damage, instead of wind
characteristics to fatigue. It differs also from the fourth
method, as a global differentiable cost function is derived
and used avoiding the use of RFC in the MPC.
The outline of this paper is the following. Fatigue theory
is presented in Section 2. Then, in Section 3, the novel
fatigue-oriented cost function is introduced. In Section 4,
an example of application on HAWT (IPC) is depicted
along with the parametrization of a quadratic cost func-
tion. Afterwards, the performance of fatigue-oriented opti-
mization is compared to the quadratic one in Section 5.3.
Eventually, a conclusion along with an outlook on the
undergoing work is given in Section 6.

2. FATIGUE ESTIMATION

It is possible to estimate the fatigue damage endured by
one component using the Palmgren-Miner linear damage
rule, see Palmgren (1924) and Miner (1945). In fatigue
theory, it is considered that any material contains cracks,
and these cracks propagate inside the material during its
lifetime, until it fails. To propagate a crack, only the value
of the load at reversals matter, therefore fatigue expression
is not an integral over time and load history must be post-
processed using the Downing-Socie RainFlow Counting
(RFC) algorithm, see Downing and Socie (1982). This
algorithm can be considered as a functional yielding from a
load history H, the number of occurrences ns of hysteresis
cycles s of range LRs and mean Lms :

RFC : H −→ (ns, L
R
s , L

m
s ) (1)

Each hysteresis cycle contributes to a certain amount of
damage. Summing these damages allows to estimate the
total damage endured by one component denoted by D,
expressed as follows:

D =

M∑
s=1

ns
N(LRs , L

m
s )

(2)

where M is the number of different kinds of cycles counted
in the RFC algorithm, N(., .) is a function of the load cycle
amplitude, yielding the number of cycles to failure of range
LRs and mean Lms that the material can endure throughout
its lifetime. It should be noticed that the material is not
damaged when D = 0 and it fails when D ≥ 1. The
expression of N(·, ·) is the following:

N(LRs , L
m
s ) =

(
Lult − Lms

LRs

)m
(3)

where m is the Wöhler exponent, varying from one mate-
rial to another (for instance, m = 4 for steel and m = 10
for glass fiber). Lult is the ultimate design load, the maxi-
mum load that the component can support. Assuming that
the signal oscillates around zero, it is possible to neglect
the so called Goodman correction (see Hayman (2012))
and consider that Lms = 0 ∀s. Therefore the ultimate
design load becomes a multiplicative factor of the fatigue
damage.

3. A NOVEL FATIGUE-ORIENTED COST
FUNCTION

In this section, the fatigue trade-off objective function is
first introduced. Then the relationship between variance
and fatigue is presented, and eventually the novel fatigue-
oriented cost function is derived.

3.1 Fatigue trade-off objective function

This paper aims at defining a control framework for
the optimization of the fatigue damage trade-off between
various HAWT components. One way to express this
objective in an economic cost function is to weight each
component fatigue damage by their respective economic
costs, as follows:

Jfat(y) =

n∑
i=1

πiD(yi) (4)

where Jfat is the total economic cost of fatigue, y is
the system output trajectory, n is the number of HAWT
components considered, D(.) is a function that yields
the fatigue damage from a load history, πi and yi are
respectively the ith component economic cost and output
trajectory. However, due to the incorporation of RFC
algorithm in fatigue damage estimation, the expression of
the cost function Jfat is non algebraic and discontinuous.
This makes the optimization problem difficult to solve and
motivate the search for a differentiable representation.

3.2 Relationship between variance and fatigue

Using a quadratic cost function as objective in the for-
mulation of optimization problems is usually desirable, as
it is differentiable, convex, and makes the optimization
relatively simple. Moreover, quadratic cost functions are
generally suitable to represent energy cost in many areas.
A quadratic cost is denoted by Jquad:

Jquad(y,u) =

N∑
k=1

y(tk)TQy(tk) + u(tk)TRu(tk) (5)

where u is the system output trajectory, N is the dis-
crete prediction horizon length, tk is the kth time instant,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12812



y = (y1 . . . yn)
T

is the vector of the system instantaneous
outputs, u is the vector of the system instantaneous inputs,
Q and R are semi-definite positive matrices of appropriate
dimensions. However, a quadratic cost function does not
quantify fatigue damage as mentioned in Knudsen et al.
(2015). In de Jesus Barradas-Berglind et al. (2015), it is
suggested that there exists matrices Q and R such that
Jquad approximates Jfat. It also suggests that the values
of these matrices are adapted online and are thus time
varying. In Biegel (2011), it is observed that the rela-
tionship between quadratic cost functions and fatigue is
monotonically increasing and strongly nonlinear. There-
fore minimizing the variance of one signal is equivalent
to minimizing its damage. However, as the relationship is
nonlinear, minimizing a linear combination of variances is
not equivalent to minimizing the same linear combination
of damages.
In this paper, this study is pursued further by plotting the
relationship between quadratic cost functions and fatigue
in the logarithmic space (see Fig. 1). Stress histories are
generated from gaussian noise filtered through first order
filters, whose time constant and static gain are randomly
drawn in uniform distribution on the respective intervals
[1, 10] (in seconds) and ]0, 100], instead of output signals
from a HAWT simulator as in the previously cited study.
This choice was made in order to generate rapidly a big-
ger dataset, allowing thus to have a relevant and robust
regression. In Fig. 1, for each stress history Hi, a couple
(Var(Hi),D(Hi)) is obtained and plotted. The variance,
denoted by Var, is computed using its discrete expression:

Var(z) =
1

N

N∑
i=1

z(tk)2 −

(
1

N

N∑
i=1

z(tk)

)2

(6)

where z is a signal whose trajectory on the time interval
under consideration is denoted by z. The fatigue damage,
denoted by D, is estimated using RFC and the Palmgrem-
Miner rule, the Goodman correction is neglected as stress
histories oscillate around zero and Lult is normalized to 1.
It can be seen that there is a linear relationship between
the logarithms of Var and D. Using a linear regression, it
is thus possible to approximate the fatigue damage D of
the load history Hi from its variance Var:

D(Hi) '
eb

Lult
mVar(Hi)a (7)

where a and b are respectively the proportional coefficient
and intercept of the linear regression. From the regression
it results that (a, b) are equal to (2.6, 4.6) and (5.6, 15.6)
for, respectively, Wöhler coefficients of 4 and 10. In Fig. 2,
the scatter plot of the ground truth and predicted fatigue
using expression (7) shows that good approximations can
be obtained.

3.3 The fatigue-oriented cost function

The insight of this work is to incorporate the relationship
between variance and fatigue damage in the cost function.
Therefore, the fatigue-induced cost function Jfat can be
approximated by J̃fat given by:

J̃fat(y) =

n∑
i=1

πie
bi

Lulti
mi

(Var(yi))
ai (8)
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Fig. 1. Relation between
variance Var and dam-
age D in the logarith-
mic space, for two val-
ues of the Wöhler coef-
ficient .
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Fig. 2. Scatter plot of the
ground truth damage
and the predicted dam-
age using the fatigue-
oriented cost function.

where ai and bi are the regression’s coefficients mentioned
above and related to the output trajectory yi.
The cost function J̃fat is particularly interesting for opti-
mal control problems because it is a convex differentiable
algebraic function, since the variance is a convex function
and ai ≥ 1 ∀i. Therefore, there is no loss of convexity
nor differentiability. Moreover the resulting problem can
be solved directly using standard nonlinear programming
solvers.

4. APPLICATION

The relevance of the fatigue-oriented cost function pre-
sented above must be compared to a family of quadratic
cost function on a given system. This section first presents
the system used for the comparison, before presenting the
considered ensemble of quadratic cost functions. Eventu-
ally, the tuning procedure of the quadratic cost function is
detailed, and some details on the optimizations are given.

4.1 System

A HAWT is a multi-body system, disturbed by the wind,
whose different bodies vibrations are coupled. A HAWT
is a multi-inputs/multi-outputs system, that can be sim-
ulated using high fidelity nonlinear aero-elastic HAWT
simulators, such as FAST, see Jonkman et al. (2009). It
can be noted that FAST allows to linearize the nonlinear
equations modeling the HAWT behavior for control pur-
poses. In this study, the focus is set on the IPC stage of
a HAWT blade pitch controller. As mentioned previously,
the IPC stage objective is to reduce the fatigue of vari-
ous HAWT components. Therefore, the model of interest
obtained from FAST linearization relates the blade pitch
angles, the hub-height wind velocity and the out-of-plane
blade root bending moments, denoted respectively by θi,
v and Mi for blade i. The model is linearized around an
operating point, defined by its collective blade pitch angle
θcol, steady wind velocity v0, steady out-of-plane blade
root bending moment M0 and the azimuth angle ψ(t). The
linearized model is thus Linear Time Varying (LTV) and
expressed as follows:

ẋ = A(ψ(t))x+B(ψ(t))δΘ +Bd(ψ(t))δv
δM = C(ψ(t))x+D(ψ(t))δΘ +Dd(ψ(t))δv

(9)

where δΘ = [δθ1, δθ2, δθ3]T are the three differential blade
pitch angles with δθi = θi − θcol, δM = [δM1, δM2, δM3]T
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are the three differential out of plane blade root bending
moments with δMi = Mi − M0, δv = v − v0 is the
differential wind speed. The Coleman transform, denoted
by T (ψ) is defined as follows, see Coleman and Feingold
(1957):

T (ψ) =
2

3

[
cos(ψ) cos(ψ + 2π

3 ) cos(ψ + 4π
3 )

sin(ψ) sin(ψ + 2π
3 ) sin(ψ + 4π

3 )

]
(10)

This transform is classically used in the IPC literature to
project states expressed in a rotating frame of coordinates
onto a fixed frame of coordinates, see Bir (2008). As a
corollary, the LTV model becomes Linear Time Invariant
(LTI):

˙̃x = Ãx̃+ B̃Θ̃ + B̃dδv

M̃ = C̃x̃+ D̃Θ̃ + D̃dδv
(11)

where Θ̃ = T (ψ)δΘ = [θyaw, θtilt]
T and M̃ = T (ψ)M =

[Myaw,Mtilt]
T are respectively the blade pitch angles and

out-of-plane blade root bending moments expressed in the
fixed frame of coordinates.
It is also considered that blade pitch actuators have the
same first order dynamic, expressed as follows:

τΘ̇ + Θ = Θsp (12)

where Θsp is the setpoint angle for the actuator and τ is the
actuator characteristic time. Then the Coleman transform
must also be applied to (12), in order to extend the system
expressed in (11). The actuator dynamic equation in the
Coleman transform yields:

˙̃Θ = ΓΘ̃ + Θ̃sp (13)

where Θ̃sp = T (ψ)Θsp and Γ =

[
− 1
τ −ω
ω − 1

τ

]
with ω the rotor

rotational velocity. Then considering the state x̄ = [x̃, Θ̃]T ,
it is possible to merge the systems (11) and (13) to get:

˙̄x = Āx̄+ B̄Θ̃sp + B̄dδv

ȳ = C̄x̄+ D̄Θ̃sp + D̄dδv
(14)

where ȳ = [M̃, Θ̃]T = [Myaw,Mtilt, θyaw, θtilt].
In the following, the control objective is to optimize
a trade-off between the fatigue of these four outputs,
corresponding to the rotor bearing, shaft and blade pitch
actuators. The parameters used for fatigue estimation are
carefully chosen in order to yield a realistic fatigue trade-
off and summarized in Table 1.

Table 1. Summary of the parameters used for
the fatigue estimation, i corresponds to the

output number.

i Lult
i πi mi

1 3× 103 103 10
2 3× 103 103 10
3 6.98× 10−1 1 4
4 6.98× 10−1 1 4

4.2 Quadratic cost function parametrization

In order to design a controller that optimizes the fatigue
trade-off cost Jfat using a quadratic cost function, it is
required to find matrices Q and R allowing to approximate
Jfat. Therefore, the trial and error method consists in
testing matrices Q and R values successively, and keep the

one giving the minimum Jfat. Unfortunately, the symmet-

ric matrices Q and R depend respectively on p(p+1)
2 and

m(m+1)
2 variables, where p and m are respectively the sys-

tem number of inputs and outputs. For the system (14), it
makes 13 variables to tune, which can be computationally
expensive.
However, in the specific test case of a three bladed wind
turbine rotor, each blade is independent from each other
in the rotating frame of coordinates. Therefore only the
diagonal terms of the matrices need to be considered.
Moreover, it can also be assumed that as all the blades
and blade pitch actuators are identical, the same weights
should be given to each blade pitch actuator and its cor-
responding blade root bending moments. Therefore, for
the system presented in (9), the Q and R matrices can be
parametrized as follows:

Q(ρ) = ρI3 , R = I3 (15)

where ρ ∈ R+ is a weight on the blade root bending
moments and In is the identity matrix of dimension n.
However, in the studied case of system (14), the outputs
are the yawing and tilting blade root bending momentsand
pitch angles. Therefore, due to the Coleman transform and
the state vector extension, the parametrized matrices Q̄
and R̄ are considered:

Q̄(ρ) =

(
ρI2 0
0 I2

)
, R̄ = εI2 (16)

where ε � min(ρ, 1) is constant, such that the variations
of blade pitch angles set-points do not impact the fatigue
trade-off. Therefore, the quadratic cost Jquad depends on
the system (14) outputs and inputs trajectories, denoted

respectively by ȳ and Θ̃sp, and ρ:

Jquad(ȳ, Θ̃sp, ρ) =

N∑
i=1

ȳTk Q̄(ρ)ȳk + Θ̃T
sp,kR̄Θ̃sp,k (17)

where ȳk and Θ̃sp,k are respectively the system (14) kth

instant outputs and inputs.

4.3 Parametrized quadratic cost function tuning procedure

The quadratic cost (17) is a function of ȳ, Θ̃sp and ρ. As ȳ
is the output trajectory of the dynamic system (14), ȳ is a
function of the initial state x̄0, the disturbance trajectory
v and the input trajectory. This cost function is used in
the following unconstrained optimization problem:

min
Θ̃sp

Jquad(ȳ, Θ̃sp, ρ)

s.t. ȳ = ȳ(x̄0,v, Θ̃sp)
(18)

where x̄0, v and ρ are given. Therefore, the solution of
the above mentioned optimization problem is a function
of x̄0, v and ρ and as a consequence, the system output
trajectory ȳ and the fatigue cost Jfat at the optimum of
the parametrized quadratic optimization are also function
of x̄0, v and ρ.
For a given x0 and v, the tuning procedure of the quadratic
cost function can thus be expressed as the following
optimization problem:

min
ρ

Jfat (x̄0,v, ρ) (19)
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4.4 Fatigue-oriented optimization

The fatigue-oriented unconstrained optimization problem
is expressed as follows:

min
Θ̃sp

J̃fat(ȳ)

s.t. ȳ = ȳ(x̄0,v, Θ̃sp)
(20)

where x̄0 and v are given. The solution of this optimization
problem is thus a function of x̄0 and v. To evaluate the
impact of the cost functions on the fatigue cost resulting
from the unconstrained optimization, the fatigue cost
using the fatigue-oriented optimization and the one using
the quadratic optimization are compared.

5. RESULTS

In this section, several preliminary results are presented.
First of all, an example of the parametrized quadratic
cost function tuning is shown, then the fatigue-oriented
optimization solution and the quadratic one are compared
on a single disturbance, before being compared on a family
of disturbances.
In the sequel, the considered linearized system is derived
using the HAWT simulator FAST with the first flapwise
mode of the blades activated. It is estimated for wind of
12 m.s−1 velocity, without shear nor yaw misalignment,
for a collective blade pitch angles of 15.7 degrees. The
HAWT simulated is a Senvion MM82, assumed to rotate
at rotor nominal speed, i.e. 17.1 rpm. Concerning the
discretization, a sample time of 0.1 seconds is considered.
For these preliminary results, the disturbance is not ac-
tually a wind generated using a standard wind generator,
but a gaussian white noise filtered through a first order low
pass filter. The low pass filters parameters are its static
gain and characteristic time, denoted respectively by K
and α. In the sequel, the couples (K,α) are randomly
drawn in uniform distributions on the respective intervals
]0, 104] and ]0, 10]. The initial condition x̄0 is set to 0 in
all simulations.

5.1 Quadratic cost function tuning

In Section 4, it is mentioned that ρ must minimize Jfat
for given x̄0 and v. Unfortunately, having an analytical
expression of Jfat as a function of x̄0, v and ρ is not
straightforward, due to the RFC involvement in the fa-
tigue computation and the matrix inversions due to the
quadratic cost function optimization problem. Therefore,
the brute force method is chosen in order to tune ρ. For
given x̄0 and v, 1000 values of ρ are randomly drawn on
an uniform distribution, ranging from 10−5 to 101.
In Fig. 3, the fatigue cost Jfat(x̄0,v, ρ) is plotted as a func-
tion of ρ, for given x̄0 and v, under a prediction horizon
of 100 seconds and for 1000 samples of ρ. The disturbance
v is generated using K = 6950 and α = 2.86 seconds,
these values are randomly generated. In Fig. 4, the same
values are plotted, zoomed in the zone of interest. It can
be clearly seen that there is a minimum, corresponding
approximately to ρ ' 3.4 × 10−2. Therefore, the ρ value
minimizing Jfat for given x̄0 and v is considered as finely
tuned value.

10−5 10−4 10−3 10−2 10−1 100 101
10−2

101

104

ρ value

F
a
ti
g
u
e
co

st
J̃
fa
t

Quadratic

Fatigue-oriented

Fig. 3. Scatter plot of Jfat(x̄0,v, ρ) in function of ρ and plot
of the fatigue cost obtained with the fatigue-oriented
optimization. For given x̄0 and v, under a prediction
horizon of 100 seconds and for 1000 values of ρ.

0.025 0.03 0.035 0.04 0.045

0.05

0.075

ρ value
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a
ti
g
u
e
co

st
J̃
fa
t

Quadratic

Fatigue-oriented

Fig. 4. Scatter plot of Jfat(x̄0,v, ρ) in function of ρ and
plot of the fatigue cost obtained using the fatigue-
oriented optimization. For given x̄0 and v, under a
prediction horizon of 100 seconds and zoomed in the
zone of interest.

5.2 Comparison on a single disturbance

This finely tuned value of ρ is used to compare the
consequence on the closed-loop fatigue when using the two
following candidate optimization problems:

(1) The finely tuned unconstrained quadratic cost (18).
(2) The unconstrained fatigue-oriented cost (20).

The fatigue-oriented optimization allows to obtain a lower
fatigue cost than the finely tuned quadratic one, with
respective fatigue cost of 5.75 × 10−2 and 5.95 × 10−2.
It means that the fatigue-oriented optimization allows a
relative 3.4% reduction in fatigue cost compared to the
finely tuned quadratic one.
In Fig. 5, the finely tuned quadratic and the fatigue-
oriented optimizations solutions time series are plotted.
It can be seen that the θyaw,sp solutions are very close
for both optimization. However, it can be seen the θtilt,sp
fatigue-oriented solution is more active than the quadratic
one, which makes the difference in terms of fatigue cost.
Comparing the optimizations solution on a single distur-
bance clearly advantage the finely tuned quadratic opti-
mization, because the tuning is made on the same dis-
turbance it is tested on, which is obviously not realistic.
This comparison emphasizes that the fatigue-oriented op-
timization is already slightly better. To show the ability of
the optimizations to adapt in various conditions, the two
fatigue cost of the optimizations solutions are compared
under a family of disturbances.

5.3 Comparison on a family of disturbances

In this family of disturbances, each disturbance is de-
fined by a couple (K,α), randomly drawn in previously
mentioned distributions. For each disturbance, the same
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Fig. 5. Plot of the solution found by the finely tuned
quadratic and fatigue-oriented optimizations.
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Fig. 6. Cumulative probability distribution of the fatigue
costs ratio obtained from 1000 samples.

finely tuned quadratic cost (with ρ ' 3 × 10−2) and the
same fatigue-oriented cost functions ((a, b) = (2.6, 4.6) for
m = 4 and (a, b) = (5.6, 15.6) for m = 10) are used
for the optimizations on every disturbances generated.
Each disturbance yields thus two fatigue costs, one for
the quadratic optimization solution and the other for the
fatigue-oriented one.
In Fig. 6, the cumulative probability distribution of the
relative fatigue cost between the fatigue-oriented opti-
mization solution and the quadratic one is plotted. It
can be seen that the probability that the fatigue-oriented
optimization solution allows to yield a lower fatigue cost
than the quadratic one is greater than 0.94. Moreover,
the probability that the relative fatigue would increase
more than 10% is lower than 0.02, while the probability
that the fatigue-oriented cost function would decrease the
fatigue cost more than 50% is greater than 0.56. Therefore,
it can be claimed that the use of the fatigue-oriented
cost function can allow sensitive fatigue reductions, and
is robust on this family of disturbances, compared to the
considered ensemble of quadratic cost functions.

6. CONCLUSION AND PERSPECTIVES

In this paper, a novel fatigue-oriented cost function is
presented in order to optimize the fatigue trade-off of
a HAWT. It is compared to an ensemble of quadratic
cost functions under a family of disturbances. Preliminary
results suggest that the fatigue-oriented cost function can
sensitively reduce the fatigue cost trade-off. It should be
noticed that several assumptions were made as the Good-
man correction is neglected which can be questioned, and
should realistic disturbances be considered. Comparison
is done with a reduced-dimensional parametrization of

quadratic cost functions. Moreover, linear model is con-
sidered for the underlying dynamics. Consequently, further
investigation are still needed in order to confirm the results
of the present work. The ultimate goal being to compare
the control resulting from this optimization on a realistic
HAWT simulator under turbulent winds, against state-of-
the-art fatigue-oriented control techniques.
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