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Abstract: This paper studies synchronization and exponential synchronization of reaction-
diffusion neural networks based on semi-linear coupled partial differential equations-ordinary
differential equations. Two kinds of boundary control methods are studied, one collocated
boundary measurement based form and the other distributed measurement based form.
Sufficient conditions for existence of the two proposed boundary controllers for synchronization
and exponential synchronization are respectively obtained in terms of LMIs. Two examples are
given to show the effectiveness of the proposed boundary control.

Keywords: Reaction-diffusion neural networks; Boundary control; Synchronization

1. INTRODUCTION

Synchronization of neural networks, an important dynamic
behaviour, has attracted a great deal of attention during
the last few decades. It has been widely applied to engi-
neering fields such as secure communication (Song et al.
(2018)), image encryption (Mani et al. (2019)), image
protection (Hu et al. (2018)), and price prediction (Huang
and Wang (2018)).

As been well known, the diffusion effects could not be
ignored in fields as shown in Liang and Cao (2003) and
Wang et al. (2016). Many important results for stability
and synchronization of reaction-diffusion neural networks
(RDNNs) were obtained. Vidhya et al. (2019) studied glob-
al asymptotic stability of stochastic Markovian jumping
RDNNs with discrete and distributed delays; Yang et al.
(2013) proposed pinning-impulsive control of RDNNs with
Dirichlet boundary condition; Yang et al. (2018) proposed
quantized control of markovian RDNNs with proportion-
al delays; Rakkiyappan et al. (2015) using Jensenąŕs
inequality and reciprocally convex technique discussed
sampled-data controllers for synchronization of RDNNs
with Dirichlet boundary conditions; Rakkiyappan and D-
harani (2017) proposed sampled-data synchronization of
randomly RDNNs with Markovian jumping and mixed
delays; Dharani et al. (2017) studied a pinning sampled-
data controller for synchronization of inertial RDNNs with
time-varying delays; Wang et al. (2018a) proposed a finite-

time controller of RDNNs with coupling delays; Stamova
and Simeonov (2018) studied Mittag-Leffler-type criteria
of fractional RDNNs with time-varying delays; Hou et al.
(2019) studied pinning control of multi-weighted RDNNs;
Xie et al. (2019) proposed pinning impulsive control of
RDNNs with distributed delays and discrete delays. Ac-
tually, the mentioned literature assume that nodes can
receive communication in all the spatial domain. When
the nodes of the RDNNs can only receive communication
in the spatial boundary domain, it is desired to design
spatial boundary coupling. Therefore, it is important to
research RDNN using spatial boundary coupling, which
has not been solved.

Owing to the extensively exist of partial differential
equations-ordinary differential equations (PDE-ODEs),
this paper investigates exponential synchronization of s-
tochastic reaction-diffusion neural networks (SRDNNs)
based on semi-linear coupled PDE-ODEs. Two kinds of
boundary control methods are studied, one collocated
boundary measurement based form and the other dis-
tributed measurement based form. Using the Lyapunov
direct method and Wirtinger’s inequality, sufficient con-
ditions for existence of the two proposed boundary con-
trollers for synchronization and exponential synchroniza-
tion are respectively obtained in terms of LMIs.

Notations: Some notations will be used below. I denotes
identity matrix with proper order. P < 0 means negative
definite. XT denotes the transpose of X.
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2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a semi-linear parabolic PDE-ODEs based RDNN
(PDE-ODERDNN) as

ẋi(t) = f(xi(t)) +A

∫ L

0

yi(ξ, t)dξ

+ c1

N∑
j=1

gijΓ1xj(t) + ui(t),

∂yi(ξ, t)

∂t
= Θ

∂2yi(ξ, t)

∂ξ2
+ p(yi(ξ, t)) +Bxi(t)

+ c2

N∑
j=1

hijΓ2yj(ξ, t),

(1)

such that
∂yi(ξ, t)

∂ξ

∣∣∣∣
ξ=0

= 0,
∂yi(ξ, t)

∂ξ

∣∣∣∣
ξ=L

= Ui(t),

xi(0) = x0
i , yi(ξ, 0) = y0i (ξ),

(2)

where (ξ, t) ∈ [0, L] × [0,∞) respectively stand for the
spatial variable and the time variable; i ∈ {1, 2, · · · , N};
xi(t), yi(ξ, t) ∈ Rn are the states; ui(t), Ui(t) ∈ Rn are
control inputs; x0

i (t) and y0i (ξ, t) are the initial states;
α > 0 is a known scalar; A and B are known n×n matrices;
and f(·), p(·) ∈ Rn are sufficiently smooth nonlinear
functions; and c1, c2 are the coupling strengths. Assume
that the topological structure G = (gij)N×N is defined as:
gi,j > 0(i ̸= j) if i is connected to j , otherwise gi,j =

0(i ̸= j); and gii = −
∑N

j=1,j ̸=i gij , i, j ∈ {1, 2, · · · , N}.
And H = (hij)N×N is defined same to G.

The isolated node of the PDE-ODERDNN (1) is given as

ṡ(t) = f(s(t)) +A

∫ L

0

ν(ξ, t)dξ,

∂ν(ξ, t)

∂t
= Θ

∂2ν(ξ, t)

∂ξ2
+ p(ν(ξ, t)) +Bs(t),

(3)

such that the following boundary conditions and initial
conditions:

∂ν(ξ, t)

∂ξ

∣∣∣∣
ξ=0

=
∂ν(ξ, t)

∂ξ

∣∣∣∣
ξ=L

= 0,

s(0) = s0, ν(ξ, 0) = ν0(ξ),

(4)

where s(ξ, t) = [s1(ξ, t), s2(ξ, t), · · · , sn(ξ, t)]T is the state;
s0(ξ) is the bounded and continuous initial function.

Let e(t)
∆
= xi(t) − s(t), εi(ξ, t)

∆
= yi(ξ, t) − ν(ξ, t). The

synchronization error system can be obtained from (1) and
(3) that

ei(t) = f(xi(t))− f(s(t)) +A

∫ L

0

εi(ξ, t)dξ

+ c1

N∑
j=1

gijΓ1ej(t) + ui(t),

∂εi(ξ, t)

∂t
= Θ

∂2εi(ξ, t)

∂ξ2
+ p(yi(ξ, t))− p(ν(ξ, t))

+Bei(t) + c2

N∑
j=1

hijΓ2εj(ξ, t),

(5)

such that
∂εi(ξ, t)

∂ξ

∣∣∣∣
ξ=0

= 0,
∂εi(ξ, t)

∂ξ

∣∣∣∣
ξ=L

= Ui(t),

ei(ξ, 0) = e0i , εi(ξ, 0) = ε0i (ξ),

(6)

where e0i
∆
= x0

i − s0 and ε0i (ξ)
∆
= y0i (ξ)− ν0(ξ).

Definition 1. For the CSN (1) and the isolated node (3)
with any initial conditions, if

limt→∞||yi(ξ, t)− s(ξ, t)||2 → 0 (7)
for any i ∈ {1, 2, · · · , N}, then the CSN (1) synchronizes
the isolated node (3).
Lemma 2. (See Wang et al. (2018b).) z ∈ W 1,2([0, 1];Rn)
with z(0) = 0 or z(1) = 0, then∫ 1

0

zT (s)z(s)ds ≤ π−2

∫ 1

0

żT (s)ż(s)ds. (8)

Assumption 1. Assume f and p satisfy the Lipschitz
condition, i.e., for any sclars s1 and s2, there exist scalars
γ1, γ2 > 0 such that

|f(s1)− f(s2)| ≤ γ1|s1 − s2|,
|p(s1)− p(s2)| ≤ γ2|s1 − s2|.

(9)

3. SYNCHRONIZATION CONTROL VIA
PROPORTIONAL CONTROL

To achieve synchronization of the PDE-ODERDNN (1),
the boundary controller is first studied as:

ui(t) = −kiei(t),

Ui(t) = −diεi(L, t),
(10)

where ki and di are the feedback strengths to be deter-
mined.
Theorem 3. Under Assumption 1, using the boundary
controller (10), the PDE-ODERDNN (1) synchronizes the
isolated node (3) if there exist K > 0 and D > 0 such that

Ψ
∆
=

Ψ11 0 0.5IN ⊗ (A+BT )
∗ Ψ22 Ψ23

∗ ∗ Ψ33

 < 0, (11)

where

Ψ11
∆
= γ1L

−1INn + 0.5c1L
−1(G⊗ Γ1 +GT ⊗ ΓT

1 )
− L−1K ⊗ In,

Ψ22
∆
= −0.25L−2π2IN ⊗Θ− L−1D ⊗Θ,

Ψ23
∆
= 0.25L−2π2IN ⊗Θ,

Ψ33
∆
= γ2INn + 0.5c2(H ⊗ Γ2 +HT ⊗ ΓT

2 )
− 0.25L−2π2IN ⊗Θ,

K
∆
= diag{k1, k2, . . . , kN},

D
∆
= diag{d1, d2, . . . , dN}.

Proof. Consider the Lyapunov functional candidate as

V (t) =
1

2

N∑
i=1

eTi (t)ei(t) +
1

2

N∑
i=1

∫ L

0

εTi (ξ, t)εi(ξ, t)dξ.

(12)

One has
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V̇ (t) =

N∑
i=1

eTi (t)
dei(t)

dt

+
N∑
i=1

∫ L

0

εTi (ξ, t)
∂εi(ξ, t)

∂t
dξ

=

N∑
i=1

eTi (t)(f(xi(t))− f(s(t)))

+
N∑
i=1

eTi (t)A

∫ L

0

εi(ξ, t)dξ

+ c1

N∑
i=1

eTi (t)

N∑
j=1

gijΓ1ej(t)

− ki

N∑
i=1

eTi (t)ei(t)

+
N∑
i=1

∫ L

0

εTi (ξ, t)Θ
∂2εi(ξ, t)

∂ξ2
dξ

+

N∑
i=1

∫ L

0

εTi (ξ, t)(p(yi(ξ, t))− p(ν(ξ, t)))dξ

+
N∑
i=1

∫ L

0

εTi (ξ, t)Bei(t)dξ

+ c2

N∑
i=1

∫ L

0

εTi (ξ, t)

N∑
j=1

hijΓ2εj(ξ, t)dξ.

(13)

Using Lemma 2, for Θ > 0,

∫ L

0

N∑
i=1

εTi (ξ, t)Θεi,ξξ(ξ, t)dξ

=

N∑
i=1

εTi (ξ, t)Θεi,ξ(ξ, t)
∣∣x=L

x=0

−
∫ L

0

N∑
i=1

εTi,ξ(ξ, t)αεi,ξ(ξ, t)dξ

=−
N∑
i=1

diε
T
i (L, t)Θεi(L, t)

− 0.25L−2π2
N∑
i=1

∫ L

0

(εTi (ξ, t)− εTi (L, t))Θ

(εi(ξ, t)− εi(L, t))dξ

(14)

Using Assumption 1,

N∑
i=1

eTi (t)(f(xi(t))− f(s(t)))

≤γ1

N∑
i=1

eTi (t)ei(t),

(15)

and

N∑
i=1

∫ L

0

εTi (ξ, t)(p(yi(ξ, t))− p(ν(ξ, t)))dξ

≤γ2

N∑
i=1

∫ L

0

εTi (ξ, t)εi(ξ, t)dξ.

(16)

With (18), substituting (7) and (8) into (8),

V̇ (t) ≤
N∑
i=1

eTi (t)(γ1 − ki)ei(t)

+ c1

N∑
i=1

eTi (t)
N∑
j=1

gijΓ1ej(t)

+ γ2

N∑
i=1

∫ L

0

εTi (ξ, t)εi(ξ, t)dξ

+ c2

N∑
i=1

∫ L

0

εTi (ξ, t)
N∑
j=1

hijΓ2εj(ξ, t)dξ

+
N∑
i=1

∫ L

0

eTi (t)Aεi(ξ, t)dξ

+
N∑
i=1

∫ L

0

εTi (ξ, t)Bei(t)dξ

− d
N∑
i=1

εTi (L, t)Θεi(L, t)

− 0.25L−2π2
N∑
i=1

∫ L

0

(εTi (ξ, t)− εTi (L, t))Θ

(εi(ξ, t)− εi(L, t))dξ

=

∫ L

0

ε̂T (ξ, t)Ψε̂(ξ, t)dξ < 0,

(17)

where ε̂(ξ, t) = [eT (t), εT (L, t), εT (ξ, t)]T , e ∆
= [eT1 , e

T
2 , · · · ,

eTN ]T and ε
∆
= [εT1 , ε

T
2 , · · · , εTN ]T , and Ψ is defined in

Eq.(11). This completes the proof. �
Theorem 4. Under Assumption 1, using the controller
(10), the PDE-ODERDNN (1) exponentially synchronizes
the isolated node (3) if

Ψ̄
∆
=

 Ψ̄11 0 0.5IN ⊗ (A+BT )
∗ Ψ̄22 Ψ̄23

∗ ∗ Ψ̄33

 < 0, (18)

in which

Ψ̄11
∆
= Ψ11 + ρL−1INn,

Ψ̄22
∆
= −0.25L−2π2IN ⊗Θ− dL−1IN ⊗Θ,

Ψ̄23
∆
= 0.25L−2π2IN ⊗Θ,

Ψ̄33
∆
= Ψ33 + ρINn.

Proof. Construct the Lyapunov functional candidate as

V̇ (t) + ρV (t)

≤
∫ L

0

ε̂T (ξ, t)Ψ̄ε̂(ξ, t)dξ

<0.

(19)

This completes the proof. �
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4. SYNCHRONIZATION VIA PROPORTIONAL
CONTROL

To achieve synchronization of the PDE-ODERDNN (1),
the proportional controller is first studied as:

ui(t) = −kiei(t),

Ui(t) = −di

∫ L

0

εi(ξ, t)dξ,
(20)

in which ki and di are the feedback strengths to be
determined.

With employing the adaptive controller (10) for the PDE-
ODERDNN (1), the following result can be obtained.
Theorem 5. Under Assumption 1, using the boundary
controller (20), the PDE-ODERDNN (1) synchronizes the
isolated node (3) if

Ξ
∆
=

Ψ11 0 0.5IN ⊗ (A+BT )
∗ Ξ22 Ξ23

∗ ∗ Ξ33

 < 0, (21)

in which

Ξ22
∆
= −0.25L−2π2IN ⊗Θ

Ξ23
∆
= dIN ⊗Θ

Ξ33
∆
= Ψ33 − dIN ⊗Θ.

Proof. Construct the Lyapunov functional candidate as

V (t) =
1

2

N∑
i=1

eTi (t)ei(t) +
1

2

N∑
i=1

∫ L

0

εTi (ξ, t)εi(ξ, t)dξ.

(22)

Using Lemma 2, Θ > 0,

∫ L

0

N∑
i=1

εTi (ξ, t)Θεi,ξξ(ξ, t)dξ

=
N∑
i=1

εTi (ξ, t)Θεi,ξ(ξ, t)
∣∣x=L

x=0

−
∫ L

0

N∑
i=1

εTi,ξ(ξ, t)αεi,ξ(ξ, t)dξ

=− d
N∑
i=1

εTi (L, t)Θ

∫ L

0

εi(ξ, t)dξ

− 0.25L−2π2
N∑
i=1

∫ L

0

ε̃Ti (ξ, t)Θε̃i(ξ, t)dξ,

(23)

where ε̃i(ξ, t) = εi(ξ, t) − εi(L, t). According to the Kro-
necker product for matrices and (18), substituting (7) and
(8) into the time derivative of V (t),

V̇ (t) ≤
N∑
i=1

eTi (t)(γ1 − ki)ei(t)

+ c1

N∑
i=1

eTi (t)
N∑
j=1

gijΓ1ej(t)

+ γ2

N∑
i=1

∫ L

0

εTi (ξ, t)εi(ξ, t)dξ

+ c2

N∑
i=1

∫ L

0

εTi (ξ, t)

N∑
j=1

hijΓ2εj(ξ, t)dξ

+

N∑
i=1

∫ L

0

eTi (t)Aεi(ξ, t)dξ

+
N∑
i=1

∫ L

0

εTi (ξ, t)Bei(t)dξ

− d

N∑
i=1

εTi (L, t)Θ

∫ L

0

εi(ξ, t)dξ

− 0.25L−2π2
N∑
i=1

∫ L

0

ε̃Ti (ξ, t)Θε̃i(ξ, t)dξ

=

∫ L

0

ε̂T (ξ, t)Ξε̂(ξ, t)dξ,

(24)

where ε̌(ξ, t) = [eT (t), ε̃T (ξ, t), εT (ξ, t)]T and Ξ is defined
in Eq. (12).
Theorem 6. Under Assumption 1, using the boundary
controller (10), the PDE-ODERDNN (1) exponentially
synchronizes the isolated node (3) if

Ξ̄
∆
=

 Ψ̄11 0 0.5IN ⊗ (A+BT )
∗ Ξ̄22 Ξ̄23

∗ ∗ Ξ̄33

 < 0, (25)

in which
Ξ̄22

∆
= −0.25L−2π2IN ⊗Θ,

Ξ̄23
∆
= dIN ⊗Θ,

Ξ̄33
∆
= Ξ33 + ρINn.

Proof. Construct the Lyapunov functional candidate as
V̇ (t) + ρV (t)

≤
∫ L

0

ε̂T (ξ, t)Ξ̄ε̂(ξ, t)dξ

<0.

(26)

This completes the proof. �
Remark 7. Different from stabilization of PDE-ODE sys-
tems (Di Meglio et al. (2018); Wang and Wu (2019); Wang
and Krstic (2019); Zhao et al. (2019)), this paper proposed
synchronization control of PDE-ODE based RDNNs.
Remark 8. He (2018); Dai et al. (2019); Lan et al. (2019);
Qi et al. (2019) studied synchronization control of many
sorts of PDE based RDNNs and obtained many important
results. Different from PDE based RDNNs, synchroniza-
tion control for PDE-ODERDNNs is studied in this paper.

5. NUMERICAL SIMULATION

Example 1. Consider a semi-linear PDE-ODERDNN (1)
composed of 4 nodes with coefficients listed as
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Θ = A = B =

[
1 0
0 1

]
, f(·) = p(·) = tanh(·), n = 2,

G = H =

−5 2 1 2
1 −6 1 4
2 4 −7 1
2 0 1 −3

 .

(27)

and with random initial conditions.

It is not difficult to verify that f(·) = p(·) satisfies the
Lipschitz condition with γ1 = γ2 = 1. According to
Theorem 3, k1 = 7.6776, k2 = 7.2776, k3 = 6.8776, k4 =
8.4776 are obtained. Applying the controllers (8) with the
feedback gains, ei(t) and εi(ξ, t) are obtained as shown in
Figs. 1 and 2. Obviously, the proposed controller (8) can
guide the PDE-ODERDNN (1) to synchronize the isolated
node (3).

Fig. 1. ei(t)

Fig. 2. εi(ξ, t)

Example 2. Consider a semi-linear PDE-ODERDNN (1)
composed of 4 nodes with coefficients same to Example 1.

According to Theorem 5, k1 = 2.0451, k2 = 2.0937, k3 =
2.1174, k4 = 1.9890 are obtained. Applying the controllers

(20) with the feedback gains, ẽi(t) and ε̃i(ξ, t) are obtained
as shown in Figs. 3 and 4. Obviously, the proposed con-
troller (20) can guide the PDE-ODERDNN (1) to synchro-
nize the isolated node (3).

Fig. 3. ẽi(t)

Fig. 4. ε̃i(ξ, t)

6. CONCLUSIONS

Synchronization and exponential synchronization were re-
spectively studied for RDNNs modelled by semi-linear
parabolic PDE-ODEs. Two kinds of boundary control
methods were studied, one collocated boundary measure-
ment based form and the other distributed measuremen-
t based form. By using Lyapunov direct method and
some inequalities, two sufficient synchronization criteria
in terms of LMIs were obtained. Simulation results of
numerical examples respectively verified the effectiveness
of the proposed control respectively based on collocat-
ed boundary measurement and distributed measurement.
One interesting topic in future is to further study pinning
synchronization of PDE-ODERDNNs.
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