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Abstract: This paper deals with the online estimation of the geometric and kinematic
parameters of a wheeled mobile robot, with the objective of its precise navigation. To do this,
the implementation of an algorithm for estimating these parameters is proposed. It is based on a
quadratic criterion to be minimized, which is a function of the difference between the measured
and estimated robot pose. The estimator inputs external measurements of robot positions and
speeds and proprioceptive inertial and odometer measurements, and outputs an estimate of
model parameters. Its expression does not depend on the position of the robot relative to the
path to be followed and its possible tracking errors, nor on the speed of the tracking. The
experimental implementation carried out on a real bi-directional container truck under realistic
operating conditions has shown its performance.
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1. INTRODUCTION

One of the main challenges of mobile wheeled robots is
their precise navigation along a trajectory. It depends
among other things on their type of wheels and their
configurations (see Tzafestas (2014) for an overview of
wheels and chassis). This has an impact on the models of
the robot to be considered and their parameters. Possible
models are, for example, sensor models, actuator models,
kinematic models, dynamic models or flexibility models.
And an accurate identification of a robot model from
measurements is very useful, either for state observation
(Carvalho Filho et al. (2019)) or for the implementation
of a model-based control of the robot (see Fig. 1). State
observers can use Bayesian estimation theory tools such as
the Extended Kalman Filter (EKF) or the Particle Filter
(Thrun et al. (2005) or Siegwart and Nourbakhsh (2004)),
while many model-based mobile robot controllers (Frank
(2018)) are available, such as model reference adaptive
control (Ashoorirad et al. (2006)) or model predictive
control (MPC) (Rossiter (2003), Lenain et al. (2004)).

The state reconstructor or estimator is a system whose
inputs are the inputs and outputs of the real process
and whose output is an estimate of the state of that
process. The process model can be linear or non-linear,
continuous or discrete, deterministic or stochastic. The
case of noisy systems, where random phenomena occur,
is referred to filters such as EKF. For example, we can cite
the case of an EKF-based kinematic parameter estimation
for a passenger vehicle (Brunker et al. (2017)). Other
deterministic methods have been proposed in the past.
Non-linear model estimation can be done with the Gauss-
Newton method (Norton (1986)) which ensures quadratic
convergence. In that case, the estimation is done itera-
tively by minimizing the sum of the squares of errors
between the measurement outputs and the outputs pre-
dicted by the current theoretical model. Since input mea-

surement noise can lead to bias errors, this constraint
can be processed with total least squares (Van Huffel
and Vandewalle (1991)). Less accurate, the screw axis
measurement (Hollerbach and Wampler (1996)) is a class
of methods which measure the joint axes in the form of
lines in space. One of these methods is the circle point
analysis (Mooring et al. (1991)) for the moving of joints
one by one to generate a circle around a measurement
point. Other approaches use the Jacobian matrix (Bennett
et al. (1992)), or even rely on the control theory. One
example is the estimation of slip parameters using the
sliding-mode control theory (Song et al. (2009)), based on
the vehicle kinematic model and measurements.

Here, the deterministic case is investigated for the obser-
vation of the parameters of a discretized non-linear model
of a mobile robot, for its implementation on the embedded
computer of a real robotic system. The proposed new
approach is similar to those mentioned above in that a
quadratic criterion is minimized. Nevertheless, it has the
advantage of having an expression that does not depend
on trajectory tracking performance, and its expression is
sufficiently general to be able to propose the estimation of
any type of geometric or kinematic parameter of any type
of wheeled robot model. The block diagram Fig. 1 gives an
overview of the classic architecture of the control system
(similar to the one of Cariou et al. (2009)).

State observer

Controller Mobile RobotTrajectory

Model parameters 
Estimator

Fig. 1. Control block diagram
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The Controller and the State observer are based on a
kinematic model of the vehicle. The function of the Model
parameters Estimator is to correct the parameters of this
model online, from the controllers’ control outputs and the
state observer’s position and speed outputs.

In particular, this parameter estimation makes it possible
to compensate for wheel-ground sliding phenomena with
dynamics dependent on the position measurement period,
but also to estimate the value of parameters that are
difficult to measure directly with precision, such as the
effective wheel diameter (required for longitudinal odom-
etry), steering angle offsets, or even the wheelbase.

This architecture ensuring an online correction of the
model parameters, this will make it easier to manage high
speed variations.

Thereafter, the kinematic model of a vehicle with steered
front and rear axles is designed in section 2 for observation
and control. The model chosen is horizontal plane - roll
and pitch are not taken into account. Then, an estimator
of the parameters of this model is designed in section 3.
This estimator is applied to particular cases of parameters
in section 4. Then, test results are presented in section 5
before the conclusion section 6.

2. KINEMATIC MODEL

The kinematic model used for the estimator is described
in this section. The plan model of a bi-steered vehicle is
chosen, it includes the usual case of the car. However,
any other type of model could have been considered, the
method remaining the same.

2.1 Equations of motion

The kinematic model is computed by using the Lie group
formalism, described in detail for example by Murray et al.
(1994). This allows more clarity in equations writing.

In the following, The frame (f) is fixed to the vehicle front
wheel centre with its longitudinal axis in the wheel steering
direction. The same applies to frame (r). (0) is the world
frame and (m) is the vehicle body frame. (cf ) and (cr) are
the front and rear reference frames on the path. Notations
are the following. jTk

i is the twist at the origin of frame
(i) with respect to frame (j), expressed in frame (k). For
simplicity, (k) is not specified if k = i. Notations are the
same for the pose matrix jHk

i . jAdi is the adjoint matrix,
for transporting frame (i) into frame (j). Notations are the
same for jRi,

jpi and scalars.

In the Fig. 2, αf,r are the front and rear steering angles,
δf,r are the front and rear sliding angles and βf,r = αf,r +
δf,r. Then, kinematic equations are defined in both frames
(f) and (r) by the following twists:

oTf =

 θ̇m + β̇f
vf
0

 , oTr =

 θ̇m + β̇r
vr
0

 (1)

And twists of frames (f) and (r) relative to the vehicle
body and expressed in these frames are written as follows:

Fig. 2. Horizontal plane model of a bi-directional vehicle
relative to its reference trajectory

mTf =

 β̇f0
0

 , mTr =

 β̇r0
0

 (2)

The twists defined by (1) are not independent. The combi-
nation of (1) and (2) allows to link the longitudinal veloc-
ities vf and vr in order to obtain the following expression

of the yaw velocity θ̇m of the mobile:
oTm = mAdf (oTf − mTf ) = mAdr (oTr − mTr) (3)

with:

• mAdf,r =

[
1 01×2

−mp⊥f,r
mRf,r

]
;

• mpf,r, the vectors mf and mr expressed in the mobile
frame (m);

• mp⊥f,r, the vector obtained by a π
2 rotation of the

vector mpf,r;
• mRf,r, a rotation matrix defining the direction of

frames respectively (f) and (r) in the (m) frame.

From the above equations, the following two equations are
obtained: {

θ̇m = vfσf
vr = vfφ

v
f

(4)

with following variables:

• l = lf − lr (lf and lr are signed with respect to the
(m) frame)

• σf =
sin(βf−βr)
l cos βr

• φvf =
cos βf

cos βr

Similarly, taking vr, β̇f and β̇r as independent variables
leads to: {

θ̇m = vrσr
vf = vrφ

v
r

(5)

with following variables:

• σr =
sin(βf−βr)
l cos βf

• φvr = cos βr

cos βf
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2.2 Estimation models

For the estimation, twists and positions of (f) and (r)
frames are used. Differently from previous works (e.g.
Cariou et al. (2009), Lenain et al. (2004) or Lenain et al.
(2006)), the parameters estimation does not depend on a
path. The major advantage is that it is not disturbed in
case of significant path tracking error.

3. MODEL PARAMETERS ESTIMATOR
ALGORITHM

The objective of this section is to define an estimator of ge-
ometric and kinematic parameters, based on the kinematic
model defined in the previous section and by defining the
variation of the parameter to be estimated such that it
minimizes a quadratic criterion that is a function of the
difference between the measured and estimated robot pose.
For the estimator design, measured proprioceptive state
variables are considered, such as:

• ωf and ωr, the averages of speeds of rotation of the
front and rear wheel axles;
• αf and αr, the front and rear steering angles;
• α̇f and α̇r, the front and rear steering velocities.

These odometry measurements are received from the vehi-
cle at the sampling period dt. Inertial data could also have
been considered. In practice, the controller’s steering speed
outputs are often used because they avoid measurement
noise.

For the exteroceptive variables measurements, the follow-
ing variables are assumed to be available:

• opmmes , the measured position of frame (m) with
respect to the reference frame (o);
• oθmmes , the measured mobile robot orientation with

respect to the reference frame (o).

The state observation is based on equation (3) and on the

pose oHm =

[
oθm
opm

]
of the mobile. Observed speeds and

positions of (f) and (r) frames, are given by the following
relationships:

oT̂f,r = mÂd
−1
f,r

oT̂m + mT̂f,r

oĤf,r = oĤm +

 β̂f,r

lf,r

[
cos θ̂m
sin θ̂m

]  (6)

These equations are established by considering the follow-
ing properties of the mathematical expected value: E(aX+
bY) = aE(X) + bE(Y) with a and b real values; and
E(XY ) = E(X)E(Y) only if X and Y are independent
variables, which is the case here, βf,r being independent

from θ̇m and vm.

For estimates of parameters, two successive state estimates
of oHf,r are considered oĤf,rk and oĤf,rk+n

, synchronous

with measures (n number of sampling steps between two
measures). If the odometry is correct, the change between
these two estimates is given by:

[
oĤf,rk+n

]
=
[
oĤf,rk

] ∏
1≤j≤n

e
dt
[
oT̂k+j

k+jodo

]
(7)

where oT̂k+j
k+jodo

is the odometry twist calculated at the

k + j step. It is important to note that, in general,
the product of matrix exponentials is not equal to the
exponential of the sum of these matrices, and in particular:

e
dt
[
oT̂k+i

k+iodo

]
e
dt
[
oT̂k+j

k+jodo

]
6= e

dt(
[
oT̂k+i

k+iodo

]
+
[
oT̂k+j

k+jodo

]
)
.

The expression of oĤf,rk+n
can also be written as follows:

oĤf,rk+n
=

( oRf,rkR(ωkdt) · · ·R(ωk+jdt) · · ·
opf,rk +o Rk

f,rk
pk+1 + · · ·

)
.

Based on a variation of a parameter µ to identify, the
variation of oĤf,rk+n

expressed in frames (f) and (r) by

the equation (7), may be written as:

∂

∂µ

[
oĤf,rk+n

]
=

∂

∂µ

[
oĤf,rk

] ∏
1≤j≤n

e
dt
[
oT̂k+j

k+jodo

]
+[

oĤf,rk

] ∑
1≤i≤n

(
∏

1≤j≤i−1

e
dt
[
oT̂k+j

k+jodo

]
∂

∂µ
e
dt
[
oT̂k+i

k+iodo

]
∏

i+1≤j≤n

e
dt
[
oT̂k+j

k+jodo

]
)

The first term of the right member is null since µ is
varying only after the step k. Then, by rearranging the
first product:

∂

∂µ

[
oĤf,rk+n

]
=
[
oĤf,rk

] ∏
1≤j≤n

e
dt
[
oT̂k+j

k+jodo

]
∑

1≤i≤n

 ∏
i+1≤j≤n

e
dt
[
oT̂k+j

k+jodo

]−1 e−dt[oT̂k+i
k+iodo

]
∂

∂µ
e
dt
[
oT̂k+i

k+iodo

]  ∏
i+1≤j≤n

e
dt
[
oT̂k+j

k+jodo

]
Consequently:

∂

∂µ

[
oĤf,rk+n

]
=
[
oĤf,rk+n

] ∑
1≤i≤n

[
k+iAd−1k+n(

e
−dt
[
oT̂k+i

k+iodo

]
∂

∂µ
e
dt
[
oT̂k+i

k+iodo

])v]
with the exponent v meaning the vector form. The follow-
ing first order approximation is given:

e
−dt
[
oT̂k+i

k+iodo

]
∂

∂µ
e
dt
[
oT̂k+i

k+iodo

]
≈(

Id− dt
[
oT̂k+i

k+iodo

]) ∂

∂µ

(
Id + dt

[
oT̂k+i

k+iodo

])
≈ dt ∂

∂µ

[
oT̂k+i

k+iodo

]
As a result:[

oĤf,rk+n

]−1 ∂

∂µ

[
oĤf,rk+n

]
≈

dt
∑

1≤i≤n

[
k+iAd−1k+n

(
∂

∂µ

[
oT̂k+i

k+iodo

])v]
And:
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([
oĤf,rk+n

]−1 ∂

∂µ

[
oĤf,rk+n

])v

≈

dt
∑

1≤i≤n

k+iAd−1k+n
∂

∂µ
oT̂k+i

k+iodo

(8)

A criterion C to be minimized is then considered:
MinµC =

1

2

∥∥∥∥{[oĤf,rk+n

]−1 (
[oHf,rmes

]−
[
oĤf,rk+n

])}v∥∥∥∥2
To simplify the notations, it is rewritten as follows:

MinµC =
1

2

∥∥∥([H]
−1
δ [H]

)v∥∥∥2
And its derivative is calculated:

∂

∂µ

(
[H]
−1

([Hmes]− [H])
)

=
∂

∂µ

(
[H]
−1

[Hmes]
)

= − [H]
−1 ∂ [H]

∂µ
[H]
−1

[Hmes]

= − [H]
−1 ∂ [H]

∂µ

(
Id + [H]

−1
δ [H]

)
For a small variation of µ:

∂

∂µ

(
[H]
−1
δ [H]

)
δµ =

− [H]
−1 ∂ [H]

∂µ
δµ− [H]

−1 ∂ [H]

∂µ
[H]
−1
δ [H] δµ

The second term of the right member is considered null
for a second order variation.
Therefore, the variation of criterion C for a variation of µ
is:

δµC =
(

[H]
−1
δ [H]

)vt ∂
∂µ

(
[H]
−1
δ [H]

)v
δµ ≈

−
(

[H]
−1
δ [H]

)vt(
[H]
−1 ∂ [H]

∂µ

)v

δµ

To guarantee a negative or null value of this derivative, δµ
is chosen to be:

δµ = +lµ

(
[H]
−1 ∂ [H]

∂µ

)vt (
[H]
−1
δ [H]

)v
= +lµ

(
[H]
−1 ∂ [H]

∂µ

)vt ([
oT̂

f,rk+n

f,rk+nmes

])v
where lµ is a positive factor.
This last equality is clarified:

[H]
−1
δ [H] =

(
Rt −Rtp
01x2 1

)(
δR δp
01x2 0

)
At first order:

RtδR = RtRmes − Id2x2

=

(
cos (δθ) − sin (δθ)
sin (δθ) cos (δθ)

)
− Id2x2

≈ δθJ

with J =

(
0 −1
1 0

)
. Then:

[H]
−1
δ [H] ≈

(
δθJ Rtδp
01x2 0

)
= [Tδ]

with Tδ =

(
δθ

Rtδp

)
being oT̂

f,rk+n

f,rk+nmes
here.

Finally, by using equation (8), the following result is
obtained:

 δµ = lµdt
∑

1≤i≤n

∂

∂µ
oT̂k+it

k+iodo
k+iAd−tk+n

oT̂
f,rk+n

f,rk+nmes

µ̂+ = µ̂− + δµ

(9)

The estimator (9) is applied to some µ parameter cases,
namely wheel diameter, wheelbase and sideslip angle, in
the following section.

4. PARAMETER ESTIMATES

4.1 Wheel diameter estimate

Estimating the equivalent wheel diameter is equivalent to
estimating the longitudinal slippage. For estimating the
equivalent wheel diameter, equations (1) are considered.

To simplify them, β̂f and β̂r are supposed to be invariant

during a sampling step, so odometry twists oT̂f,rj are
simplified accordingly.

Then, by using equations (4) and (5), and that vf,rj =
dwheel

2 ωf,rj , the partial derivative of the odometry twist
oT̂f,rj with respect to dwheel is given by:

∂oT̂f,rj

∂dwheel
=

1

2

 ω̂f,rj σ̂f,rjω̂f,rj
0

 (10)

Depending on whether the front or rear wheels of the
mobile robot are actuated, the expression with oT̂fj or
oT̂rj will be used. The Estimator (9) can then be used
with a gain ldwheel

.

4.2 Wheelbase estimate

For estimating the mobile robot wheelbase, odometry

twists oT̂f,rj are simplified as previously, with β̂f and β̂r
being supposed to be invariant during a sampling step.
And, by using equations (4) and (5), the partial derivative

of the odometry twist oT̂f,rj with respect to l is given by:

∂oT̂f,rj

∂l
=

−1

l
v̂f,rj σ̂f,rj

0
0

 (11)

The Estimator (9) is then used with a gain ll.

4.3 Sideslip angles estimate

For estimating the sideslip angles, β̂f and β̂r are also sup-
posed to be invariant during a sampling step, and sideslip
angles are now taken into account. Thus, odometry twists
are rewritten differently from equation (1) as follows:

oT̂f,rj =

 ˆ̇
θm

v̂f,rj cos δ̂f,rj
v̂f,rj sin δ̂f,rj

 (12)

Considering an actuation of the front wheels by using
equations (4), partial derivatives of odometry twists oT̂f,rj

with respect to sliding angles δf,r are given by:
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∂oT̂fj

∂δf
=

 v̂fj ψ̂ffj0
v̂fj


∂oT̂rj

∂δr
=

 v̂fj
(
−ψ̂ffj + φ̂rfj σ̂fj

)
0

v̂fj φ̂
v
fj


(13)

with:

• ψff =
cos(βf−βr)
l cos βr

;

• φrf = tanβr;

Considering an actuation of the rear wheels by using
equations (5), partial derivatives of odometry twists oT̂f,rj

with respect to sliding angles δf,r are given by:

∂oT̂fj

∂δf
=

 v̂rj
(
−ψ̂rrj + φ̂frj σ̂rj

)
0

v̂rj φ̂
v
rj


∂oT̂rj

∂δr
=

 v̂rj ψ̂rrj0
v̂rj


(14)

with:

• ψrr =
− cos(βf−βr)

l cos βf
;

• φfr = tanβf ;

Terms cos δf,rj and sin δf,rj are simplified in equations (13)

and (14).

Estimator (9) is then used with the gains lδf and lδr for
the estimation of respectively δf and δr.

5. CALIBRATION OF A BI-STEERABLE
CONTAINER TRUCK

5.1 Description of the test

If the parameter estimator can be used to estimate online
parameters during vehicle navigation, it can also be used
to estimate steering offsets. This is what has been done
for the front and rear directions of an electric prototype
container truck, designed for commercial port operations.
It is an 18tons empty truck, with a 2m track and an 11m
wheelbase. The actuation of the front and rear steering
axles is hydraulic, by flow control servovalves. The low-
level control is a simple loop proportional to the steering
angle error. Since the front wheels are electrically actuated,
equations (13) are used.
Proprioceptive sensor data are angular increments of the
sensors on both front wheels and the crown steering angle
of front and rear axles. Those data are received from
the vehicle low-level controller through a CAN bus ev-
ery 10ms. Exteroceptive sensors used for this test are a
lidar and six pairs of ultrasonic distance sensors (24ms
response time, 0.069mm resolution, range between 20mm
and 150mm). The measured position and orientation of
the truck are obtained from the data of these sensors after
filtering. This test requires a high degree of accuracy and

is performed inside a docking station where containers
are placed and deposited by trucks. Outside this docking
station, the laser allows the truck to be positioned relative
to it. Inside, ultrasound is used to position the truck in
relation to the flat walls of this station. The truck moving
at low speed, and the ultrasonic sensors being already
almost orthogonal to the wall, this allows an accurate
millimetric measurement.
Then, the steering sensor calibration process is performed
using the sideslip angle estimator while the truck moves in
a straight line for 30s with zero front and rear steering
angle setpoints, at a low speed of 0.25m/s. Tests are
carried out under realistic conditions on asphalt roads.

5.2 Results analysis

The position of the truck is shown in Fig. 3, with a solid
black line for the position measured in the centre of the
vehicle. The orientation measured at the centre of the
vehicle is shown in Fig. 4 in solid black line.

Fig. 3. Truck path tracking

Fig. 4. Measured orientation

It is noticeable that the position is quite noisy with an
amplitude of about 2 to 3cm. This is mainly due to the
long length of the truck, which makes it difficult to position
it accurately, as any change in the orientation of the vehicle
has an impact on its lateral positioning. The walls of
the docking station, which are not perfectly flat, can also
deteriorate the quality of ultrasound measurements.

As for the measured orientation, although almost zero, it
fluctuates slightly between 0.016rad (0.9deg) and 0.026rad
(1.5deg) with a progressive increase until 20s before de-
creasing again. These fluctuations have a significant influ-
ence on the estimation of sideslip angles, with the mea-
sured position and orientation terms being used in the
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expression of the twist oT̂
f,rk+n

f,rk+nmes
used in equation (9).

The sideslip angles are shown in Fig. 5, as a cyan solid line
for the front axle and a dotted blue line after filtering, an
orange solid line for the rear axle and a red solid line after
filtering.

Fig. 5. Sideslip angles

The front and rear sideslip angles take about 10s to
converge. The value reached is about 0.01rad for both
axles. Then, a variation that is maximum at t = 20s
is observed, then again the curves converge towards the
value of 0.01rad. This clearly shows the dependence of the
algorithm on measurement noise and quality, and here in
particular on the orientation measurement of the vehicle
oθmmes .

6. CONCLUSION

An estimator of the geometric and kinematic parameters
of wheeled mobile robots was presented. This estimator
was applied to the particular case of a bi-steered vehicle
model, although it would also be appropriate for any
other type of kinematics, such as the multibody system
presented by Lucet and Micaelli (2019). It allows an online
update of control or observation models, or a calibration
of odometric sensors. This algorithm has the advantage of
being independent of the trajectory to be followed, and it
is insensitive to tracking errors.

Experimental results have demonstrated its effectiveness
in accurately estimating parameters, with a reasonable
convergence time of a few seconds. However, it remains
sensitive to exteroceptive measuring noises of the position
and orientation of the vehicle, which therefore remain to
be verified for the correct use of this estimator.

An extension to parameter estimation of a dynamic model
is envisaged, although additional difficulties of dependence
on the speed of the robot have to be addressed.
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