
Distributed Model Predictive Control for
Cooperative Landing

Robert Bereza*, Linnea Persson*, Bo Wahlberg*†

*Division of Decision and Control Systems, KTH Royal Institute of
Technology, SE-100 44 Stockholm, Sweden

†Division of Automatic Control, Linköping University, 581 83
Linköping, Sweden

(e-mail: {robbj,laperss,bo}@kth.se)

Abstract: We design, implement and test two control algorithms for autonomously landing a
drone on an autonomous boat. The first algorithm uses distributed model predictive control
(DMPC), while the second combines a cascade controller with DMPC. The algorithms are
implemented on a real drone, while the boat’s motion is simulated, and their performance is
compared to a centralized model predictive controller. Field experiments are performed, where
all algorithms show an ability to land while avoiding violation of the safety constraints. The
two distributed algorithms further show the ability to use longer prediction horizons than the
centralized model predictive controller, especially in the cascade case, and also demonstrate
improved robustness towards breaks in communication.

Keywords: Autonomous vehicles, Distributed control, Model-based control, Flight control,
Autonomous landing, Cooperative control

1. INTRODUCTION

Efficient communication and distributed sensing capabili-
ties of multi-agent systems allow groups of heterogeneous
vehicles to cooperatively solve advanced control problems.
Search-and-rescue at sea is one such challenging applica-
tion where unmanned aerial vehicles (UAVs) cooperating
with unmanned surface vehicles (USVs) can identify areas
of interest or people in need of aid, as well as provide
physical assistance when necessary. Because the rescue
might take place far out at sea, the ability to autonomously
land the UAV on a USV to e.g. recharge batteries is an
important feature. In this paper, we consider the problem
of landing a quadrotor UAV (Figure 1) on a cooperating
USV, while avoiding collision with the USV’s antennas and
other protruding parts. The vehicles have heterogeneous
and decoupled dynamics, but coupled objectives and con-
straints.

To address this problem, we consider the use of distributed
model predictive control (DMPC). The use of MPC allows
the vehicles to explicitly take safety and input constraints
into account. The algorithms introduced in this paper are
evaluated based on their computational efficiency, their
ability to handle safety constraints, and their robustness
towards breaks in communication. Efficiency is crucial be-
cause using sufficiently long prediction horizons is impor-
tant for the stability of MPC controllers, see e.g. Alamir
and Bornard (1995). Furthermore, because these algo-
rithms are designed to work on a real system, they must

*This work was supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) and the Swedish Research
Council

have safe and reliable performance even if communication
issues occur.

The main contributions of this paper are:

• Design and implementation of two distributed MPC
algorithms on a UAV;

• Testing of the computational efficiency of the al-
gorithms, compared to a centralized MPC, using
hardware-in-the-loop (HIL) simulations;

• Testing the performance of the algorithms, compared
to a centralized MPC, in outdoor field tests with loss
of communication between the vehicles introduced.

The two distributed algorithms demonstrate improved ro-
bustness towards communication breaks and an ability to
use longer predicted horizons compared to the centralized
MPC algorithm.

Fig. 1. The DJI Matrice 100 drone used in the experiments.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 15389



1.1 Related Work

Autonomous landings of UAVs on moving platforms have
been considered in several projects over the last years.
Many such projects consider non-cooperative landings
where the UAV lands on a moving target, e.g. Herissé et al.
(2012); Kim et al. (2017); Lee et al. (2012). A cooperative
autonomous landing using proportional controllers with
hybrid safety regions is presented in Muskardin et al.
(2017). In Persson (2019), the landing problem is solved
in a cooperative manner using an MPC algorithm which
plans a safe trajectory and follows it. Though these algo-
rithms are cooperative, they are centralized and all control
is computed by the same computer. The use of distributed
and cooperative control, where the computational load
is divided among the cooperating agents, is common in
e.g. formation control of groups of UAVs, see e.g. Keviczky
et al. (2008); Huck et al. (2014); Liu et al. (2018); Zou
et al. (2018). This approach is not yet commonly applied in
autonomous landings algorithms. In this paper, we develop
a distributed MPC for solving a spatially constrained
cooperative landing problem. We specifically investigate
the computational efficiency of distributed algorithms and
their ability to function despite breaks in communication.

A thorough overview of different types of DMPC can be
found in Negenborn and Maestre (2014) or Müller and
Allgöwer (2017). A DMPC algorithm able to handle land-
ing problems where the agent dynamics are decoupled, but
both constraints and objectives are coupled, is described
in Müller et al. (2012). The first algorithm designed in this
paper is similar to it, but changes have been made that
make the solutions less conservative at the cost of losing
stability and feasibility guarantees. The second algorithm
designed in this paper is an extension of the first and uses
cascade DMPC controllers to achieve longer prediction
horizons. The remainder of this paper is organized as fol-
lows. Section 2 describes the dynamical models used for the
vehicles. Section 3 covers the algorithms and the approach
used for constructing them, while experimental results
using the algorithms are described in Section 4. Finally,
future work and conclusions are discussed in Section 5.

1.2 Preliminaries

States and control inputs are denoted by x and u, re-
spectively. Discrete-time variables are denoted with square
brackets x[k]. These variables are sub-indexed by h, v and
b, corresponding to the horizontal UAV problem, vertical
UAV problem, or horizontal USV problem. Values for
variables over an entire prediction horizon are denoted

using a bar, e.g. x̄ =
[
xT [0], ...,xT [N ]

]T
. Quadratic stage

costs are written as l(y1, ...,yn) = yT1 Q1y1 + ...+yTnQnyn,
where Qi are the cost matrices. The letter j similarly
denotes quadratic terminal costs. Finally, the superscript
∗ denotes optimal values of variables, obtained from the
solution of an optimization problem.

2. PROBLEM STATEMENT

In this work, we consider the problem of autonomously
landing a UAV on a USV in a spatially constrained envi-
ronment. In particular, a DMPC controller is used to make
the algorithms both more efficient and less dependent on
uninterrupted communication.

2.1 Dynamics and Spatial Safety Constraints

The state of the UAV consists of its position (px, py, pz)
and velocity (u, v, w) along the x-, y-, and z-axes respec-
tively, as well as its attitude φ (roll), θ (pitch), and ψ
(yaw). These dynamics are based on the model from (Pers-
son, 2019, pp. 66–68). The attitude is controlled by the in-
puts φcmd, θcmd, and ψcmd respectively, while the vertical
velocity is controlled by the input wcmd. For simplicity, it
is assumed that ψ will be kept at 0 at all times. Further, it
is assumed that there exists a sufficiently fast lower-level
control for the thrust and attitude of the UAV, such that
the responses from the control inputs are approximately
first-order systems. We now choose the following roll and
pitch commands

θcmd = arctan
a∗x

g + 1
τw

(kww∗cmd − w)
,

φcmd = arctan
−a∗y

g + 1
τw

(kww∗cmd − w)

where a∗ is the desired acceleration and τw and kw are
model parameters. This allows us to approximate the
forward dynamics linearly as u̇ = −kdxu + a∗x, where kdx
represents drag, and corresponding for side motion. It is
now possible to separate the UAV motion into two sets
of equations, one for the vertical motion and one for the
horizontal motion

xh[k + 1] =fh(xh[k],uh[k])

xv[k + 1] =fv(xv[k],uv[k])

where xh[k] = [px[k], py[k], u[k], v[k]]
T

is the horizontal
state, xv[k] = [pz[k], w[k]]T is the vertical state and both
fh and fv are linear functions.

We consider a simple linear dynamical model for the
boat. Only the horizontal dynamics are considered, with
the control inputs being the horizontal acceleration. More
advanced variants of dynamical models for USVs can be
found in e.g. Fossen (2011).

When landing, we require the UAV to descend in a way
such that it avoids antennas and other protruding parts
on the USV. This constraint is captured by forcing the
planned path to stay inside a safe region, as is illustrated
in Figure 2. This region can be described by two linear

hs

ds

dl

Fig. 2. The striped region is considered a dangerous area,
and should be avoided by the controller.

inequalities. Details on the formulation of such a safety
constraint are given in Persson et al. (2017). Note that d
denotes the distance between the vehicles in the horizontal
plane, while h is the altitude of the UAV. A binary variable
b will also be used, and it will be set to 1 only when d < ds.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15390



3. CONTROL STRATEGY

In this section, two different DMPC algorithms are intro-
duced, together with the centralized MPC algorithm used
for comparison.

With decoupled horizontal and vertical dynamics, the
trajectory planning can be decoupled as well, adapted
from Persson (2019):

(1) Solve horizontal MPC to obtain a∗x and a∗y
(2) Compute predicted distances d̄
(3) Based on the predicted distances, compute binary

variables b̄ representing the controllers’ ability to land
at a certain point on the trajectory

(4) Solve vertical MPC using d̄ and b̄ to obtain w∗cmd
(5) Using a∗x, a∗y, and measured w, find φcmd and θcmd
(6) Apply w∗cmd as well as appropriate φcmd and θcmd

3.1 Centralized Control Problem

In the centralized algorithm, the control inputs for both
vehicles are computed by the same process. Because the
dynamics of the UAV are faster than the dynamics of the
USV, the computations are done on the drone computer.
The horizontal optimization problem is given by:

minimize
x̄h,x̄b,ūh,ūb

∑N−1
k=0 lc(xh[k]−xb[k],uh[k],ub[k])

+mb(xb[k]) + jc(xh[N ]−xb[N ]) (1)

subject to
xh[k+1] = fh(xh[k],uh[k])

xb[k+1] = fb(xb[k],ub[k])

}
k=0, ..., N−1

xh[k] ∈ Xh, xb[k] ∈ Xb
uh[k] ∈ Uh, ub[k] ∈ Ub.

}
k=0, ..., N

where the quadratic cost mb(xb[k]) penalizes deviations
from some specified USV velocity, letting the USV follow
multiple objectives. The index c denotes the centralized
problem. The state constraints include the safety con-
straints from Section 2.1, as well as velocity constraints
and touchdown constraints, restricting the UAV descend
velocity. The vertical problem is similarly given by:

minimize
x̄v,ūv

∑N−1
k=0 lv(b[k]xv[k],uv[k])+b[N ]jv(xv[N ])

subject to xv[k+1] = fv(xv[k],uv[k])
xv[k] ∈ Xv(d[k]), uv[k] ∈ Uv, k = 0, ..., N.

(2)

Note that the binary variables b are precomputed using
the predicted distance d̄ as described above.

3.2 Distributed Control Problem

The first new algorithm uses a straightforward distributed
MPC approach, and it will be referred to simply as the dis-
tributed algorithm. In this algorithm, the computation of
the horizontal problem is distributed between the vehicles.

USV Horizontal MPC

UAV Horizontal MPCVertical MPC

Predicted
trajectory

Fig. 3. In the distributed controller, the horizontal problem
is distributed between the UAV and USV, and the
vehicles share their predicted trajectories.

Each vehicle computes its own control inputs, based on a
predicted state trajectory of the other vehicle. The vehicles
exchange their predicted trajectory and adjust their own
trajectory to better adapt themselves to each other. The
schematic of this algorithm is illustrated in Figure 3. One
advantage of this algorithm is that it allows the vehicles
to act more independently from one another, in case of
e.g. a short communication loss. This stands in contrast
to the centralized case, where the USV cannot act without
control inputs from the UAV. Dividing an optimization
problem into two smaller ones also decreases the solution
time. However, this is at the cost of performance since
neither of the algorithms has full knowledge of the entire
system. The vertical problem in the distributed case is only
solved on the UAV and is therefore identical to (2). The
horizontal problem of both vehicles is as follows:

minimize
x̄self ,ūself

∑N−1
k=0 lself (xself [k]−x̂other[k],uself [k])

+mself (xself [k])

+ jself (xself [N ]−x̂other[N ])
subject to (3)

xself [k+1] = fself (xself [k],uself [k])

xself [k] ∈ Xself
uself [k] ∈ Uself

}
k = 0, ..., N

where x̂other is the predicted state of the other vehicle
and (self, other) ∈ {(h, b), (b, h)} for the UAV and USV
respectively. We define mh(xh[k]) = 0, since we do not
want the UAV to pursue any objectives other than landing.

3.3 Cascade Control Problem

The second new algorithm is called the cascade distributed
algorithm, which, on top of the distributed architecture
from the distributed algorithm uses a cascade controller
for each problem (see Figure 4). To control the vehicle, it
has both an outer controller generating a trajectory and
an inner controller which computes the inputs to follow
the planned trajectory. This algorithm requires the use
of parallel processes to solve the outer and inner problems
simultaneously. The horizontal and vertical outer problems
are identical to (3) and (2) respectively. To allow for longer
prediction horizons, the outer controllers in this algorithm
update at a frequency lower than the sampling frequency.
The inner controllers instead solve smaller problems at
the sampling frequency. This algorithm allows for the
use of longer prediction horizons in the outer controller,
at the cost of using older measurements in the outer
optimization. The inner optimization problems are given
by

Outer horizontal MPC Inner horizontal MPCUSV

UAV

Outer horizontal MPCOuter vertical MPC

Inner horizontal MPCInner vertical MPC

Predicted trajectory

Fig. 4. In the cascade controller, all subsystems have an
outer and an inner controller. The outer runs at a
lower frequency and plans the trajectory, while the
inner is responsible for trajectory following.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15391



minimize
x̄σ,ūσ

∑Nin−1
k=0 lσ,in(xσ[k]−xrefσ [k],uσ[k]−urefσ [k])

+ jσ,in(x[Nin]− xref [Nin])

subject to xσ[k + 1] = fσ(xσ[k],uσ[k]) (4)

k = 0, ..., Nin − 1.

where σ ∈ {h, b, v}, such that all subsystems solve equiva-
lent inner optimization problems. In all cases, xrefσ [k] and
urefσ [k] are the desired state and desired control input at
time step k respectively, obtained from the outer problem.
While the outer controllers aim to minimize the state dif-
ference between the vehicles, the inner controllers instead
minimize the difference between the actual trajectories
and the trajectories predicted by the outer controllers. To
speed up solution times, these optimizations do not ex-
plicitly take all constraints into account. These constraints
will instead be satisfied as long as the vehicles follow the
planned trajectory closely enough.

3.4 Algorithms

1 while Has not landed do
2 Receive state x̂b from USV;
3 Solve centralized problem (1);

4 Compute d̄ and b̄ based on x̄∗h and x̄∗b ;
5 Solve vertical problem (2);
6 Apply control signals u∗h[0] and w∗cmd[0];
7 Transfer u∗b [0] to USV;
8 end

Algorithm 1: Centralized algorithm

The centralized algorithm is given by Algorithm 1. This
algorithm runs on the UAV, and the USV applies the
control inputs received from the UAV. The distributed
algorithm, on the other hand, consists of two separate
algorithms, where the first algorithm runs on the UAV
and the second on the USV. A description of the first
can be seen in Algorithm 2. The algorithm running on
the USV is nearly identical, but with indices h and b
reversed, the abbreviations USV and UAV exchanged, as
well as lines 4 and 5 removed. Notable differences between
these algorithms and the centralized algorithm are in lines
2 and 7, where different information is exchanged. It is
worth noting that ˆ̄xb is usually the most recent predicted
trajectory from the other vehicle, but in the case that no
new message arrives on time, the predicted trajectory is
approximated by shifting the previous predicted trajectory
by a time step. The formula for an n-step shift is given by

xnew[k] = xold[k + n], ∀ 0 ≤ k ≤ N − n
xnew[k] = xold[N ], ∀ N − n < k ≤ N.

The cascade distributed problem also consists of two algo-
rithms, where the UAV algorithm is shown in Algorithm 3.
The USV algorithm can be recreated by removing lines
8, 9 and 12. Notable changes between this algorithm and

1 while Has not landed do
2 Obtain most recent ˆ̄xb;
3 Solve distributed UAV problem (3);

4 Compute d̄ and b̄ based on x̄∗h and ˆ̄xb;
5 Solve vertical problem (2) ;
6 Apply control signals u∗h[0] and w∗cmd[0];
7 Transfer x̄∗h to USV;
8 end

Algorithm 2: UAV distributed algorithm

Algorithm 2 are the if-statements starting at lines 4 and
10 in Algorithm 3. This means that every c iterations, a
new solution to the outer problem should be solved in a
parallel process, while the inner controller on the main
process computes the control inputs that should be used.
The outer problem has to be solved within c iterations.
This limits how long the outer horizon can be since the
computational time is dependent on the horizon. Because
the outer problem takes c iterations to solve, the optimizer
needs to choose the initial state as xh,in[c], that is, the
predicted state c steps into the future.

1 Set i = 0;
2 while Has not landed do
3 Obtain most recent ˆ̄xb;
4 if modulo(i,c) is 0 then

5 Update x̄refh and ūrefh ;

6 Transfer x̄refh to USV;
7 end
8 Solve inner UAV and vertical problem (4);

9 Compute d̄ and b̄ based on x̄refh and ˆ̄xb;
10 if modulo(i,c) is 0 then
11 Start solving outer UAV problem (3);
12 Start solving outer vertical problem (2);
13 end
14 Apply control u∗h,in[0] and w∗cmd,in[0];

15 Increment i;
16 end
Algorithm 3: UAV cascade distributed algorithm

4. EXPERIMENTAL RESULTS

Two computers were used in the experiments. The first
is the ground laptop, a Dell Latitude E6230 running
Ubuntu 16.04. The second is the drone onboard com-
puter, which is a NUC 7i7BNB, also running Ubuntu
16.04. This computer was concurrently running the low-
level drone control. The machines communicated with each
other using ROS (Robot Operating System) Kinetic Kane
distribution, described in Quigley et al. (2009). To solve
the optimization problems, the solver OSQP introduced
by Stellato et al. (2017) was used through its Python-
interface. The code is available on GitHub 1 . Two different
kinds of tests were performed: tests of the computational
performance that investigated how long prediction hori-
zons would be feasible to use, and field experiments inves-
tigating the landing performance of the algorithms.

For testing the computational performance of the algo-
rithms, HIL-simulations were performed where the simu-
lated dynamics matched the modeled dynamics exactly.
The centralized and the UAV algorithms were run on the
UAV onboard computer, while the USV was simulated and
controlled from the ground laptop. The goal was to run
all algorithms with an (inner) update frequency of 20 Hz,
so the maximum feasible horizon was chosen as the one
where both the mean and median iteration times over
100 consecutive trials were below 0.05 s. The centralized
and distributed algorithms could then achieve horizons
of at most 193 and 244 time steps (9.65 s and 12.2 s)
respectively, while the cascade distributed algorithm could
have an outer horizon and inner horizon of 340 and 211
time steps (17 s and 10.55 s) respectively when using c = 5.

1 https://github.com/robbj-git/Distributed_Rendezvous

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15392



2.5 3 3.5 4 4.5 5

·10−2

0

10

20

30

40

Duration [s]

O
cc
u
re
n
ce
s

Centralized
Distributed

Fig. 5. Distribution of the iteration computational times
for Algorithms 1 and 2, both with N = 193 time steps.

To better illustrate the performance difference between the
centralized and distributed algorithm, 100 trials with a
prediction horizon of 193 time steps were also performed
with the distributed controller, and the distribution of
iterations times for both it and the centralized algorithm
is shown in Figure 5. The ability of the algorithms to
successfully land the UAV was tested in flight experiments
performed outdoors. To ensure that every iteration would
finish within the desired time, a prediction horizon of 100
time steps (5 s) was used for the centralized and distributed
algorithms. The cascade distributed algorithm used an
outer horizon of 170 steps (8.5 s) and an inner horizon of
60 steps (3 s). The altitude of the UAV during a landing
experiment, together with the horizontal distance between
the vehicles and the altitude safety constraints, is shown
for all three algorithms in Figure 6. All algorithms success-
fully performed the landing without violating any safety
constraints. The parameters describing the safety region
were hs = 4 m, ds = 2 m, and dl = 1 m. Note that the
USV was in constant motion during these experiments, so
the UAV was able to land while following the USV motion.
All algorithms landed in a similar amount of time, with the
cascade distributed algorithm taking a couple of seconds
longer than the other algorithms. This delay was caused
by the outer controller planning to slow down the descent
to avoid violating constraints put on the vertical velocity.
The outer controller could not recover from this slowdown
as fast as the other algorithms due to its lower update rate.

To compare the ability of the algorithms to handle short
communication losses, a set of experiments where the com-
munication was broken for about 2.5 s were performed. The
communication break was introduced around 4 s after the
start of the landing, and during that time no messages were
sent from either of the vehicles. Figure 7 shows the landing
attempts of each algorithm in these experiments. Both
distributed algorithms successfully satisfied the safety con-
straints at all times, which the centralized algorithm, on
the other hand, could not. In the centralized case, once
the USV stops receiving instructions from the UAV, it
will stop applying control inputs, making the predictions
made by the UAV inaccurate. Therefore, the UAV will
continue moving, expecting the USV to move along with
it, until it eventually fails to satisfy the safety constraints.
In the distributed cases, once the UAV and USV stop
receiving updated plans from each other, they still have old

predictions to follow. By assuming that the other vehicle
follows the last received plan, both vehicles can continue
moving approximately as agreed, until new plans arrive.

5. FUTURE WORK AND CONCLUSIONS

Two distributed algorithms for autonomously solving a co-
operative landing problem between a UAV and USV were
designed and compared to a centralized MPC algorithm.
The first designed algorithm used a distributed MPC
approach, while the second combined distributed MPC
with a cascade controller architecture. The computational
performance of the algorithms was tested in a simulated
environment, while the landing performance was tested
in field experiments. In comparison to a centralized MPC
algorithm, the distributed algorithms could achieve longer
prediction horizons and improved robustness towards com-
munication breaks. In particular, the cascade distributed
algorithm could have significantly longer prediction hori-
zons in its outer controller. All three algorithms showed
similar performance in landing and satisfying safety con-
straints when no communication breaks were present.

An interesting consequence of using the distributed or
cascaded controller is that computational resources that
would otherwise have been used in solving the larger
centralized problem are now freed. In this paper, the extra
computational power has been put into increasing the
prediction horizon of the MPC problems. However, there
are many other ways that this extra computational power
can be exploited, e.g. to have more advanced models of the
vehicles in the optimization problem. By using nonlinear
instead of linear models, the vehicle attitudes could be
less constrained, allowing for better utilization of their
mobility. Especially by using a more accurate model of
the vertical motion, it could be possible to operate closer
to constraint bounds and thus be able to descend faster.

REFERENCES

Alamir, M. and Bornard, G. (1995). Stability of a trun-
cated infinite constrained receding horizon scheme: the
general discrete nonlinear case. Automatica, 31(9), 1353
– 1356. doi:10.1016/0005-1098(95)00042-U.

Fossen, T. (2011). Handbook of Marine Craft Hydrody-
namics and Motion Control. Wiley.

Herissé, B., Hamel, T., Mahony, R., and Russotto, F.
(2012). Landing a VTOL unmanned aerial vehicle on a
moving platform using optical flow. IEEE Transactions
on Robotics, 28(1). doi:10.1109/TRO.2011.2163435.

Huck, S.M., Rueppel, M., Summers, T.H., and Lygeros,
J. (2014). RCopterX - experimental validation of a dis-
tributed leader-follower MPC approach on a miniature
helicopter test bed. In 2014 European Control Confer-
ence (ECC), 802–807. doi:10.1109/ECC.2014.6862458.

Keviczky, T., Borrelli, F., Fregene, K., Godbole, D., and
Balas, G.J. (2008). Decentralized receding horizon
control and coordination of autonomous vehicle forma-
tions. IEEE Transactions on Control Systems Technol-
ogy, 16(1), 19–33. doi:10.1109/TCST.2007.903066.

Kim, J., Woo, S., and Kim, J. (2017). Lidar-guided
autonomous landing of an aerial vehicle on a ground
vehicle. In 2017 14th International Conference on
Ubiquitous Robots and Ambient Intelligence (URAI),
228–231. doi:10.1109/URAI.2017.7992719.

Lee, D., Ryan, T., and Kim, H.J. (2012). Autonomous
landing of a VTOL UAV on a moving platform using
image-based visual servoing. In 2012 IEEE Interna-
tional Conference on Robotics and Automation, 971–
976. doi:10.1109/ICRA.2012.6224828.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15393



0 2 4 6 8
0

2

4

6

8

Time [s]

D
is
ta
n
ce

[m
]

hUAV

dhor
Safety limit

(a) Landing using Algorithm 1.

0 2 4 6 8
0

2

4

6

8

Time [s]
D
is
ta
n
ce

[m
]

hUAV

dhor
Safety limit

(b) Landing using Algorithm 2.

0 2 4 6 8 10
0

2

4

6

8

Time [s]

D
is
ta
n
ce

[m
]

hUAV

dhor
Safety limit

(c) Landing using Algorithm 3.

Fig. 6. Landing attempts using Algorithms 1–3 in an outdoor field experiment. All algorithms successfully avoided
crossing the safety limit. A slight deceleration can be observed as a result of the vertical velocity constraints. The
UAV altitude is denoted by hUAV, and the distance (in the horizontal plane) between the vehicles is denoted dhor.

0 2 4 6 8 10
0

2

4

6

Horizontal distance [m]

A
lt
it
u
d
e
[m

]

hUAV

Safety limit

(a) Landing using Algorithm 1.

0 2 4 6 8 10
0

2

4

6

Horizontal distance [m]

A
lt
it
u
d
e
[m

]

hUAV

Safety limit

(b) Landing using Algorithm 2.

0 2 4 6 8 10
0

2

4

6

Horizontal distance [m]

A
lt
it
u
d
e
[m

]
hUAV

Safety limit

(c) Landing using Algorithm 3.

Fig. 7. Landing attempts with a 2.5 s break in communication. The motion during the time of communication loss is
represented by a dash-dotted line. For the centralized controller, the break in communication made the USV fall
behind the UAV, and despite attempts to abort and go to a safe altitude, safety constraints were violated. The
distributed algorithms satisfied the safety constraints throughout the landing.

Liu, Y., Montenbruck, J.M., Zelazo, D., Odelga, M., Ra-
jappa, S., Bülthoff, H.H., Allgöwer, F., and Zell, A.
(2018). A distributed control approach to formation bal-
ancing and maneuvering of multiple multirotor UAVs.
IEEE Transactions on Robotics, 34(4), 870–882. doi:
10.1109/TRO.2018.2853606.

Müller, M.A. and Allgöwer, F. (2017). Economic and dis-
tributed model predictive control: Recent developments
in optimization-based control. SICE Journal of Control,
Measurement, and System Integration, 10(2), 39–52. doi:
10.9746/jcmsi.10.39.

Müller, M.A., Reble, M., and Allgöwer, F. (2012). Cooper-
ative control of dynamically decoupled systems via dis-
tributed model predictive control. International Journal
of Robust and Nonlinear Control, 22(12), 1376–1397.
doi:10.1002/rnc.2826.

Muskardin, T., Balmer, G., Persson, L., Wlach, S., La-
iacker, M., Ollero, A., and Kondak, K. (2017). A novel
landing system to increase payload capacity and opera-
tional availability of high altitude long endurance UAVs.
Journal of Intelligent & Robotic Systems, 88(2), 597–
618. doi:10.1007/s10846-017-0475-z.

Negenborn, R.R. and Maestre, J.M. (2014). Distributed
model predictive control: An overview and roadmap of

future research opportunities. IEEE Control Systems
Magazine, 34(4). doi:10.1109/MCS.2014.2320397.

Persson, L., Muskardin, T., and Wahlberg, B. (2017). Co-
operative rendezvous of ground vehicle and aerial vehicle
using model predictive control. In 2017 IEEE 56th
Annual Conference on Decision and Control (CDC),
2819–2824. doi:10.1109/CDC.2017.8264069.

Persson, L. (2019). Autonomous and Cooperative Landings
Using Model Predictive Control. Licentiate thesis, Royal
Institute of Technology (KTH), Stockholm, Sweden.

Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A.Y. (2009). ROS: an
open-source robot operating system. In ICRA Workshop
on Open Source Software.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and
Boyd, S. (2017). OSQP: An operator splitting solver for
quadratic programs. ArXiv e-prints.

Zou, Y., Zhou, Z., Dong, X., and Meng, Z. (2018).
Distributed formation control for multiple vertical
takeoff and landing UAVs with switching topologies.
IEEE/ASME Transactions on Mechatronics, 23(4),
1750–1761. doi:10.1109/TMECH.2018.2844306.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15394


