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Abstract: This paper presents an iterative data-driven algorithm for solving dynamic multi-
objective (MO) optimal control problems arising in control of nonlinear continuous-time systems
with multiple objectives. It is first shown that the Hamiltonian function corresponding to each
objective can serve as a comparison function to compare the performance of admissible policies.
Relaxed Hamilton-Jacobi-bellman (HJB) equations in terms of HJB inequalities are then solved
in a dynamic constrained MO framework to find Pareto-optimal solutions. Relation to satisficing
(good enough) decision-making framework is shown. A Sum-of-Square (SOS)-based iterative
algorithm is developed to solve the formulated MO optimization with HJB inequalities. To
obviate the requirement of complete knowledge of the system dynamics, a data-driven satisficing
reinforcement learning approach is proposed to solve the SOS optimization problem in real-time
using only the information of the system trajectories measured during a time interval without
having full knowledge of the system dynamics. Finally, a simulation example is provided to show

the effectiveness of the proposed algorithm.

Keywords: Multi-objective optimization; Pareto optimality; Reinforcement learning;

Sum-of-Square theory.

1. INTRODUCTION

In most of the real-world control systems, the system
designer must account for multiple objectives (such as
safety, control effort, transient performance, comfort, etc.)
to evaluate candidate control policies. However, since there
usually exist conflicts between objectives (i.e., reaching
the best value for one objective needs some reconciliation
on other objectives), a control policy is best realized
by finding an appropriate context-dependent trade-off
among objectives. Multi-objective (MO) optimization has
been widely utilized to find a diverse set of efficient
solutions, each corresponding to a trade-off alternative,
in optimization problems with multiple objectives Marler
and Arora (2004); Gambier and Jipp (2011); Peitz
and Dellnitz (2018) and Roijers et al. (2013). The
decision-making process is then performed posteriori as
the decision-maker identifies the most suitable alternative
depending on the context.

There are at least two challenges in control of dynamical
systems with multiple objectives that are not well ad-
dressed in most MO optimization approaches. First, most
of the existing MO optimization frameworks are built from
the premise that the objective functions to be optimized
are static. In the control engineering systems, however,
we are dealing with dynamical MO functions Toivonen

Copyright lies with the authors

(1986); Toivonen and Makila (1989); Logist et al. (2010);
Ober-Blobaum et al. (2012) and utilizing static optimiza-
tion frameworks for control of dynamic systems results
in myopic short-sighted decisions that do not possess the
capability of proactively responding to changes and uncer-
tainties and adapting to novel scenarios. Second, the next-
generation autonomous systems such as self-driving cars
must autonomously and without any human intervention
decide on a suitable trade-off between objectives.

Reinforcement Learning (RL) techniques have been used
to solve optimal control problems for system with un-
certain dynamics. Most of existing RL algorithms are
presented to solve single-objective optimal control prob-
lems Lewis and Vrabie (2009); Modares et al. (2016);
Jiang and Jiang (2015); Kamalapurkar et al. (2018).
Recently, there has been a surge of interest in the study of
MO Reinforcement Learning (MORL) problems Kang and
Bien (2004); Logist et al. (2010); Caramia and Dell’Olmo
(2008); Lopez and Lewis (2019). Most of existing MORL
algorithms assume a given preference and find a single best
policy corresponding to it based on the weighted sum of
the objective functions. However, to successfully operate in
a changing and uncertain environment, inspired by human
cognitive psychology experiments, which indicates that
humans can learn multiple potential solutions for different
situational objectives and apply only one at a time, it is
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desired to learn multiple optimal solutions. Once a diverse
set of solutions is found, as mission scenario develops,
the system must then decide, without a priori specifica-
tion of preferences, which policy provides an appropriate
trade-off. A higher level of decision-making can decide on
the preferences and the most relevant calculated optimal
solution can be used as a warm start to avoid learning
from scratch in a novel scenario. One might argue that
solving several optimal control problems for a diverse set
of preferences using a weighted sum of objectives can
produce diverse solutions. However, these methods can-
not learn control policies in the nonconvex parts of the
Pareto optimal set Das and Dennis (1997); Caramia and
Dell’lOlmo  (2008). Moreover, since different objectives
have different physical meanings and units, their scales
are incomparable and the weighted-sum approach cannot
capture the aspiration level (i.e., level of satisfaction) of
each objective function for each context.

An interesting solution approach to MO static optimiza-
tion is the e-constraint method Carmichael (1980), for
which the MO optimization problem is converted into a
single-objective constrained optimization problem. That
is, it converts all objectives, except for the one with the
highest preference, to constraints by imposing some sat-
isficing bounds on them. Doing so, it can deal efficiently
with MO problems with nonconvex Pareto fronts. To our
knowledge, no attention has been paid to solving dynamic
MO optimal control problems using e-constraint method.
This method, however, can lay the cornerstone to solving
MO optimal control problems for which there is no a priori
preferences and preferences and objective’s aspirations can
change as the mission developed. The aspiration level of
each objective can be explicitly specified by the bounds
imposed on long-horizon objectives.

The main motivation of this paper is to develop a novel sat-
isficing control framework that enables us to find a diverse
set of solutions to a MO optimal control problem, with-
out knowing the complete knowledge about the system
dynamics. A challenge in solving dynamic MO problems
is that one needs to find a control policy that satisfies
a number of Hamilton-Jacobi Bellman (HJB) equations
Lopez and Lewis (2019), which is hard or even impossible
due to conflict between objectives. As shown in this pa-
per, a control policy, however, can simultaneously satisfy
several Hamiltonian inequalities encoding the objective
functions and their aspiration levels. To this end, it is
first shown that the Hamiltonian function corresponding
to each objective can serve as a comparison function to
compare the performance of admissible policies. Using this
fact, the MO optimal control problem is formulated as a
dynamic e-constraint problem with relaxed HJB equations
as constraints. This formulation can be interpreted as a
satisficing MO decision-making framework, for which, in-
stead of optimizing some objective functions, an aspiration
level is set for them. An SOS-based iterative algorithm is
then developed to find a finite number of solutions of MO
optimal control problems with relaxed HJB equations of-
fline. This SOS-based iterative algorithm needs knowledge
of the system dynamic, which may not be available. To ob-
viate the requirement of complete knowledge of the system
dynamics, a data-driven reinforcement learning method is
proposed for finding a Pareto optimal solution using only

the information of the system trajectories measured during
a time interval online in real-time.

Notations: The following notations are needed through-
out the paper. Let R" and R"*" denote the n dimensional
real vector space, and the n X m real matrix space, re-
spectively. Let ZT and ™ denote the sets of all positive
integers and real numbers, respectively. The set of all con-
tinuously differentiable polynomial functions is denoted by
C'. P denotes the set of all positive definite and proper
polynomial functions in C'. Let 0, € R* be the vector
with all zeros and 1, € R* the vector with all ones.
Assume that y',9? € R™. Then, y' < y? denotes weak
componentwise order which implies yi < y2, k =1,...,m.
y' < y? denotes Pareto order, which implies yp < y,%,
E=1,..,m,y" # vy y' £ y? denotes that y' is not Pareto
dominated by y2. Assume that di,ds € Zt, and doy > dj,
then 71(d1:42)(z) € RO is the arranged in lexicographic
order vector of distinct monic monomials in terms of

x € R with degree # where §:=( " T 42 \_(ntd—1
do di —1

and dy < Kk < ds. Moreover, the set of all polynomials in
z € N" with degree x is denoted by Rlz],; 4 -

2. PROBLEM FORMULATION

Consider the following continues-time nonlinear system

&= f(z) + g(z)u (1)
where z € R™ and u € R™ are the state and control input
of the system, respectively. In this work, we assume that
f() R = R™ and g(.) : R™ — R™*™ are polynomial
mappings and f(0) = 0.

For simplicity, throughout the paper, we assume the sys-
tem has only two objectives. The proposed approach, how-
ever, can be readily extended to more than two objectives.
The two cost or objective functions associated with the
system (1) are defined as
o0
Ji(w,u) = [ri(z(t),u(z))dti=1,2, (2)
0
where r;(z,u) = Q;(z) + ul R;(z)u, with Q;(x) > 0 as the
penalty on the states, and R; € R™*™ as a symmetric
positive definite matrix.

Definition 1. A control policy u = p(z) is said to be
admissible with respect to the cost functions J;(.), i = 1,2,
if it is continuous, ©(0) = 0, and it globally stabilizes the
dynamics (1) and makes J;(.), ¢ = 1,2 finite. The set of
admissible policies is denoted by ® in this paper.

Define the value function for a control policy u € ® as

Via(t)) = jfri(x(T), wydr, i=1,2, (3)

where V;(z(o0)) = 0.

Next, for an associated admissible policy u € ®, define the

Hamilton functions corresponding to the value functions
(3) as

Hi (2, u, Vi) = Qi(z) +u" Ri(x)u+ VI (f(2) + g(x)u), (4)
for i = 1,2, where VVj} is the gradient of V.

Definition 2. For the system (1) with multiple objectives
given by (2), a control solution u! is said to dominate a
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control solution u? in a Pareto sense, if and only if V;(u!) <
Vi(u?), Vi € {1,2} and V;(u') < V;(u?), Ji € {1,2}.

Problem 1. Consider the nonlinear system (1). Design an
admissible control policy u(x) € ® that minimizes the cost
functions (2) in a Pareto sense.

Minimizing each cost function independently while ignor-
ing the other cost functions can be performed using stan-
dard optimal control techniques Lewis and Vrabie (2009).
However, for dynamic MO optimal control, it is rarely
possible to design a controller that optimizes all objective
function simultaneously and independently. Therefore,
normally, utopian point, i.e., Juterian .= [ytopien jutorianT
where J'P" < J; (2 (0) ,u), Vo € R, Yu € R™, Vi = 1,2, is
unattainable. However, it is of great importance to find
solutions that are as close as possible to a utopian point.
Such solutions are called Pareto optimal solutions.

3. A HAMILTONIAN-DRIVEN SATISFICING MO
OPTIMAL CONTROL FRAMEWORK

In this section, it is shown that the Hamiltonian function
corresponding to each objective can serve as a comparison
function to compare the performance of admissible policies
in a Pareto sense. The following theorem shows that
minimizing one objective function while converting the
other objective as a constraint resembles the satisficing
(good enough) decision making framework for which the
constraint bound is an indication of the aspiration level
(the level of satisfaction) of the objective 2.
Theorem 1. Let w’(.), 7 = 1,2 be two different admis-
sible policies, with their value function vectors given as
Vi(z) = [V{(z) VJ(x)]", j = 1,2, being the solution to (4),
i.e., H; (.) = 0. Consider now the following conditioned
dynamic optimization problem
@ = argminH, (z,u(.), V{) (5)
st — 8 (x) < Hylz,ul.), Vi) <0 (6)
with 67(z) > 0 as the aspiration for objective 2. Let also
H = [H] H%]T where H] := Hi(z, @ (z), V{) and
H} = Ho(x, @’ (z), V). Then, the following properties
hold, Vx € R™.
) H?nm S 02a ] = 172
) If —51( ) < HL < 0,5 = 1,2, and Hi < H2, then
V2 < V! and consequently V1 AV?2, Vo € R".
)21f 52( ) < 0Y(x) and H} < H3, then V'AV? and
VIRV

Proof. The proof has three parts. It follows from (5)-(6)
that — 07 (z) < H) = Ho(x, @ (x), V§) < 0 and HI =
Hy(z, (), Vi) < Hi(z,uw/(.), V{) =0,V = 1,2 This
proves part 1. We now prove part 2. Let Vi(z) = Vi (z) +
A(z) for some A(z) > 0. Based on the Hamiltonian (4) for
Vi{(.) and the stationary condition Lewis et al. (2012),
one has

M= Q) + VT () — 5V g ()R () 9V
= H} + 4 —1vATg(z)R; g (2) VA, (7)
After some manipulation, (7) can be rewritten as
=H} - Hi + ;VATg(@) R g (1) VAL (8)
If H? —H} >0, (8) implies that dA/dt > 0. Based on (3),
A(z(o0)) = 0, so (8) implies that A(x) < 0, Vo € R". Thus,

Hi < H? implies that V2 < Vi! and consequently V1 AV?Z
Vz € R"™. This completes the proof of part 2. To prove part
3, considering the inequality condition (6), the Lagrangian
is TV = Hy (2, @ (2), V{ (2)) + Mo[-Hy (2, @ (), V§ (2)) — &7 (z)]
where A}, is Lagrange multiplier. Provided that §'(x) and
5%(z) are sufficiently small, from the Kuhn-Tucker condi-
tion Lewis et al. (2012), one can see that constraint (6) will
be active, i.e., Hy(z, 9/ (z), V§) = =07 (x), A5 > 0. More-
over, N, = —9H, (x, @ (x), V{ (z))/0H,(z, @ (), V§ (x)) which
based on property 2 indlcates that an improvement in
Hq(z, @ (x),V{(x)) may only be obtained at the cost of
degradation in Hy(x, %’ (z), V4 (z)). Therefore, the inequal-
ity condition (6) is active, i.e., H} = Ha(z, @l (.),Vy) =

— 69 (z) for j = 1,2. Thus, using property 2, 6%(x) < o' (x)
implies that HZ > H1 which implies that V21 < V# and
consequently V24V Vx € R". Moreover, from property
2, one has H1 < H? implies that Vi < Vi! and consequently
V14V2. This completes the proof. O

Remark 1. Theorem 1 implies that active constraint
correspond to Pareto optimal solutions. Therefore, by
tightening or loosing the aspiration level, i.e., 67, one can
find different Pareto optimal solutions on the Pareto front,
each corresponding on different demands on the objective
function 2. The desired aspiration level might depend on
the circumstance the system is encountering. Using this
sense, in the next section, the problem in hand will be
formulated as an e-constraint problem with relaxed HJB
equations as constraints. This framework allows to find
variety of solutions, each for different circumstances, and
as the mission scenario develops, apply the appropriate
solution without calculating it from scratch.

4. MULTI-OBJECTIVE SUBOPTIMAL CONTROL
WITH RELAXED HJB EQUATION

In this section, we formulate Problem 1 as an e-constraint
problem with relaxed HJB equations as constraints. To
this end, MO optimal control Problem 1 can be reformu-
lated as the following e-constraint problem.

Problem 2. Consider the nonlinear system (1) associated
with the cost functions (2). Design the control policy u(z),
to solve the following constrained minimization problem

(9)-(12).

min Jo Vi(x)dx 9)
st Hi(z,u(.), V) <0 (10)
=8 < Ho(z,u(.), V5) <0 (11)

V, eP,i=1,2 (12)

where § > 0 is a variable that implicitly indicates the
aspiration on optimizing objective V5. Moreover, 2 € R™
is an arbitrary closed compact set containing the origin
that describes the region in which the objective function
Vi(z) is expected to be minimized the most.

Remark 2. Based on (4), (10) implies that the closed-
loop system (1) converges to the origin. Moreover, based
on Theorem 1, (9) -(11) are equivalent to (5)-(6) which
indicates that the cost functions (2) are minimized in a
Pareto sense.

Assumption 1. Consider the nonlinear system (1). There
exist feedback control policy u(.) and functions Vo1 (u(.)) €
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P and Vpo(u(.)) € P, and § such that
Lo(Vo2 (), u(Vor(.))) < J, Vo € R"
where, for any V; € C! and u € ®
Li(Vi,u) = =VVi' () (f(2) + g(z)u) = ri(z,u), i = 1,2
= —H;(x,u; V) (14)
Theorem 1. Let V1 € P and its corresponding control
policy ug1 := @(Vp1) be the solution to (4). Let Assump-
tion 1 hold for the cost function Vpi(up1(.)) € P and
Vo2(uo1(.)) € P, and control policy ug;. For a fixed §, the
following hold. 1) The constrained optimization Problem
2 has a nonempty feasible set. 2) Let Vi(a1(.)) € P and
Va(u1(.)) € P be a feasible solution to the relaxed con-
strained optimization Problem 2. Then, the control policy
() = —3Ry g (2)V (15)
is globally stabilizing.

(13)

Proof. The proof is omitted due to the limited space. [

5. SOS-BASED MULTI-OBJECTIVE CONTROL

In this section, a novel iterative method is developed to
find the solution of Problem 2 and accordingly Problems
1 based on the SOS-based methods Ahmadi (2018). To do
so, the following definition is needed.

Definition 3. A polynomial p(z) is an SOS polynomial,
i.e., p(z) € P95 where P99 is a set of SOS polynomial,
if p(z) = >.7" p?(z) where p,(z) € P, i =1,...,m.

N

Let Vi(z) =3 ciymy;(z) = CTm (@), @ =
j=1
mi;(x), ¢ = 1,2 are predefined monomials in z and c¢;;,
i = 1,2 are coefficients to be determined. Denote V¥ (x) :=
P (), i =1,2.

Assumption 2. For system (1), there exist polyno-
mial functions Vpi1(uq(.)) and Vpa(ui(.)) and control
policy wui(.) such that Voi(ui(.)) € Rla]y,, N PS,
ﬁZ(Vm(),u(Vm())) S PSOS, and 5T—£2(V02(),u(%1()))
€ PSOS j =1,2 where 6" > 0.

Motivated by the work in Jiang and Jiang (2015) Algo-
rithm 1 is given to find the solution of Problem 2.

Theorem 2. Assume that Assumptions 1-2 hold. Then, for
a fixed aspiration level §”, the following properties hold.
1) The SOS program (16)-(20) has at least one feasible
solution;

2) The control policy u**1)(z) is globally asymptotically
stabilizing the system (1) at the origin;

3) 0 < VFH < V| VE, where V}F € P5OS;

4) The sequence {Vlk} € P993 is convergent, i.e., Vl(s” :
limy o VI > Vi

1,2 where

Proof. The proof is omitted due to the limited space. [

6. DATA-DRIVEN REINFORCEMENT LEARNING
IMPLEMENTATION

In this section, a data-driven learning algorithm is devel-
oped to implement Algorithm 2 without having the full
knowledge of the system dynamics.
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Algorithm 1: Relaxed MO SOS-program.

1: procedure
2: Start with {V,2(.), V2(.), u(®} that satisfy Assumption 2 and

set r = 1.
3: For k = 1,2,..., if there is a feasible solution then solve the
following SOS program:
min Vi(.)dz 16
omin /Q ® (16)
st Li(w(Vi),Vi()) e POS i=1,2 (17)
§"(@) = La(u(V1), Va(u(V1)) € PFO%, (18)
ViTt v, e p9OSs, (19)
v, e PSOS i=1,2, (20)

where V,(z) := CFm{**?(x), VF() = o @*?*D(2), i =
1,2, u(V)) = Kclmgl’dT>, uB (V) = Kélmgl’d” and &' (z) is
a predefined aspiration level.

4: If convergence is achieved, or if there is no more feasible
solution u} = w(Vh), U* = U* U {u}} where U* is the set of
efficient control policies and go to Step 5 else go back to Step 2
with k =k + 1.

5: Set r = r+ 1, 6"l (z) = vd"(x), where 0 < v < 1 is
predefined design parameter go to Step 2.

6: end procedure

Now, consider the system (1), after adding an exploratory
probing noise, one has

&= f+gu +e) (21)

where u is a control policy at iteration k + 1 and e is
an added bounded exploration probing noise.
In the SOS-based Optimization Algorithm 1, under As-
sumption 2, one has Vk,r, L;(uF, VF(x,u?)) € Rzl o
i=1,2,6"—Lo(uF, VF(x,ub)) € R[x], 9g-» Where 6" € R,
if the integer d" satisfies

d" > %max{deg(f(.)) +2d —1,2deg(g(.))

+2(2d — 1), deg(Q1(.)) + deg(Q2(.)),deg(6"(.))}
where deg(.) represents the degree of the polynomial
which is the highest degree of any of the terms. Also,
u¥*1 obtained from the proposed SOS-based Optimization
Algorithm 1 satisfies " € R[z], 4, Yk, 7.

k+1

22

Hence, there exists a constant matrix Kkt e gmxnar

" }d —1, such that u*+! = KRG EY),

Also, suppose there exist constant vectors C; € R™2d
and Cy € R4 with nog = (n+2d —n—1, such that

with ng =

2d

Vi(z) = CTm 22D () and V,(z) = CTm{** (2). Tt follows
then from (21) that

Vi = —ri(z,uf T — £y (T Vy (2, 0P YY)
+(R'gTVVI)TRie  (23)

Vo = —ro(z, uF ) — Lo(ub+E, Vy(z, uF L))
+VVI VYV TRy YTVV) T Rie  (24)

Notice that the terms Li(uFT! V)(x,ub*1)), Lo(uF+l,
Vy(z, uF 1)), RT1gTVV, and VVIVV, (R g7 VVi)T Rye
depend on the dynamic of the system. Also, note that
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constant vectors and matrix lo, € R"2d" and I, € R"2d,
I n+2d" T
and K, € R™*"r with d" = ( od" ) —d" —1 for the
tuple (V1, Vo, u*1) can be chosen such that:
‘Ci(uk+17 Vi(xvuk—i_l)) = lCiTmz(2’2JT)(x)ﬂ i=1,2,
,1gTVV1 — KCIHEI,dT)
Therefore, calculating £;(u**1, V,(z,uk*1)), i = 1,2 and
Ry '¢"VVy amounts to find I, , Ic,, and Ke,.

Substituting (25) and (26) in (23)-(24), we have

Vi = =i (bt Y) — 10, T3 () — 2T TKE, Rie
(27)

Va = —ro(a, uF+Y) — 10, T2 (2) — 2V 22 (w(1))T
(28)

xCy( TN (VIR (2(1)))TCy )T KE Rue

Integrating both sides of (27)-(28) on the interval [¢,t + ]
yields the following off-policy integral RL Bellman equa-
tions

of (@ (a(t))
t+0t

tf (ry (@, P 41

OF (@D (x(t)) — WS> (a(t + 6t))) =
t+0t

S o ut ) + 10, R (@) 4+ 2 VRS ()T

t

— WP (@t + 8t)) = (29)

Co@m TN (V2D (w(1)))TCy)TKE, Rie)dr  (30)

It follows from (29)-(30) that lc,, lc,, and Ky can
be found by using only the information of the system
trajectories measured during a time interval, without
requiring any system dynamic information. To this end,
we define the following matrices:

sy T
oo = [ 2@ @ TR, 1T (31)
— 2d 2d dr T
= [ ATm 2O IO ) x g
(v (z()"C)T @ Ry,
t1, k41 Tap g k1
ot =1 / oedr oidr]T, (33)
to,k+1 t,1k+171,k+1
t1, k41 Lap g k1
= ri(z, uFt)dr ri(x, uF)dr )T
to,k+1 tqk+1—1,k+1
(34)
2,2d) |t1,k41 2,2d) |tapq1.k+1
0k+1 [m( ) to::il RE ) tq:::l—k:kﬂ }T7 (35)

for i = 1,2, where ¢F*! € Ru *(nzar+tmnar) gnq ghH1 ¢
§qu+l
It follows from (29)-(30) that

l

k+1 Cy _ —k+1 k+1

1 [Vec(Kcl )} =ET TG (36)
l

k+1 Cy _ '—'k+1 k+1

; [Vec( Kcl)} = Zk+L 4 gkt (37)

= oy T
T (@) 4 2mY)) KL Rie)dr

Assumption 3. At each iteration k, there exists a lower-
bound ¢i ™! € Z* such that if q’”l, 5t > gE ! where

¢¥™ and ¢4 are dimensional of vectors ! and =51,
respectively, then rank( k+1)

k+1)

= Nygr +mng. and rank(ds ") = Nggr + mnge.

Algorithm 2: Data-driven relaxed MO SOS-based algo-
rithm.

1: procedure
2: Find the tuple {Vlo,\/207 u%} such that Assumption 2 be sat-
isfied. Choose C? and CJ such that V(z) := (C?)Tm?’m)(z)
2,2d
and VP(z) := (COHTm Y (a).
3: Employ u = u* + e as the input to the system (1), where e is

the probing noise and calculate and construct =, Z,, 6, and
0, as (31)-(35), till ¢,, ¢, be of full column rank.

4: Solve the following SOS program to find an optimal solution
i (2 (2)de) T C 38
Jmin </ (29 (@)de) ' €y (39)
l
k1 Cy _ k41 k+1
s.t. ¢y [Vec(Kcl)] == 4+07°Cy (39)
l
k41 Ca _ =kl k+1

% [Vec(Kcl) } =5 +07 O (40)
lo, Tm 20 (2) € PSOS| =12 (41)
5T — lCQTﬁf’MT)(x) € pSOs, (42)
(- o)A (@) € PIOT, (43)

5: Update the value functions and control policy as follows:
Vi@) = o R @), i =12 (44)
u D (z) = KEFZ D) (45)

6: If ||C’{c — Cf_1|| £, v which is a predefined threshold, go

back to Step 2 with k = k + 1 else u* = u(F+*D(z) and go to
Step 7.
7: end procedure

Now, assume that ¢F™!, ¢h™' > ¢! Vk. Tt follows from
(36)- (37) that the values of I, € R"2d", [, € R™2d", and
Ko, € > are determined as follows:

l _ -
Vel | = (@) @)@ +of 0

l =
Veel ko) | = (@575 ) 6T (E5 + 057 o)
(46)

So, an iterative SOS-based data-driven learning algorithm
is proposed in Algorithm 2 for online implementation of
Algorithm 1.

Theorem 3. Assume that Assumptions 1-3 hold. Then,
for a fixed 0", the following properties hold. 1) There
exists at least one feasible solution for the SOS program
(38)-(43) and (44)-(45); 2) The control policy u**+1(z)
(45) is globally asymptotically stabilizing the system (1)
at the origin; 3) 0 < V}' < VF Vk, where V{¥ is
given in (44); 4) The sequence {V } is convergent, i.e.,
VP =limg oo V¥ > Vi, where VI is given in (44).

Proof. Provided that {CF,Ck} is a feasible solution to
the relaxed MO SOS-program (16)-(20), one can find the
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Fig. 1. Comparison of the system state trajectories and
control policies for three aspiration levels §*,7 = 1,2, 3

corresponding matrix Kél € R™*M"ar guch that the tuple
{CF,CE, K} } be a feasible solution to the data-driven
relaxed MO SOS-program (38)-(43) and (44)-(45), which
imply that property 1 holds. Moreover, since the tuple
{C},CE,K§ } is a feasible solution to the data-driven
relaxed MO SOS-program (38)-(43) and (44)-(45) and
the tuple {C¥,Ck} is a feasible solution to the relaxed
MO SOS-program (16)-(20) and Algorithms 1 and 2 have
the equal objective function, Kél“mgl’w) is an optimal
solution to the relaxed MO SOS-program (16)-(20) and
consequently the results of Theorem 3 are further extended
to Theorem 4. This completes the proof. (]

7. SIMULATION

Consider the linearized double inverted pendulum in a
cart, with dynamics used in Lopez and Lewis (2019).
The quadratic cost functions chosen as @1 = Ig, Q2 =
200 * I, and Ry = Ry = 1. After the implementation
of Algorithm 2 with three different aspiration levels as
8t = 67(0.223 03+ 0.12325 +0.252% +0.20024 76 +0.52576 +
0.72224 + 0.222 + 0. 12623 + 05247576 + 0.2217223), i =
1,2,3 with §" € {0.001,0.14, 2}, three suboptimal control
policies are obtained. To save space, the obtained control
policies will not be shown here. Fig. 1 shows the evolution
of the system states after applying the obtained policies.
It can be seen in Fig. 1 that by changing the aspiration
level on second objective the obtained control policies
and corresponding system states are changed. That is,
the trade-off between regulation error and control effort
are changed by changing the aspiration level on second
objective.

8. CONCLUSION

This paper has developed an iterative data-driven adap-
tive dynamic programming (ADP) algorithm for dynamic
multi-objective (MO) optimal control problem for nonlin-
ear continues-time polynomial systems. The MO optimal
control problem was, first, formulated as a dynamic e-
constraint MO problem with relaxed Hamilton-Jacobi-
bellman (HJB) equations as constraints. To deal with
this problem, then, a Sum-of-Square (SOS)-based iterative
algorithm was presented to find some Pareto optimal so-
lutions of MO optimal control problem with relaxed HJB
Equations. This SOS-based iterative algorithm required

the knowledge of the system dynamic. To obviate the re-
quirement of complete knowledge of the system dynamics,
an online data-driven reinforcement learning method was
proposed for online implementation of the proposed SOS-
based algorithm. Finally, a simulation example was pro-
vided to show the effectiveness of the proposed algorithm.
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