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∗Robert Bosch Hungary, Budapest, Hungary (e-mail:
ferenc.hegedus@hu.bosch.com)

∗∗Department of Control for Transportation and Vehicle Systems,
Budapest University of Technology and Economics, Budapest, Hungary

(e-mail: {becsi.tamas; aradi.szilard; gaspar.peter}@mail.bme.hu)
∗∗∗Department of Automotive Technologies, Budapest University of

Technology and Economics, Budapest, Hungary (e-mail:
zsolt.szalay@gjt.bme.hu)

Abstract: This paper presents a real-time optimal motion planner algorithm for road vehicles.
The method is based on a cubic spline trajectory planner which is able to plan a set of
vehicle motions driving from a given initial state to a required final state. Maximal dynamical
feasibility and passenger comfort are ensured by minimizing the lateral acceleration and tracking
errors as the vehicle moves along the trajectory. Tracking of the planned motion is realized
during planning and execution as well by separate longitudinal and lateral controllers. Efficient
implementation and small number of optimization variables enables real-time usage. The
trajectory planner is first tested in a quasi real-time simulation environment and then under
real working conditions at the dynamic platform of proving ground ZalaZone with a completely
drive-by-wire Smart Fortwo. Measurement results are presented and analyzed in detail, and
possible future research directions are mentioned.
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1. INTRODUCTION

Automation of road transportation is a very important
and actual topic for today’s vehicle industry and aca-
demic institutions in this field as well. Due to the many
possible advantages, manufacturers of vehicle systems are
investing large amounts into the research and development
of automated vehicle features. Autonomous road vehicles
are expected to be more energy-efficient and environment-
friendly by optimizing driving strategies (Watzenig and
Horn (2016)). They are also predicted to improve road
traffic parameters, such as average travel time and traffic
flow capacity significantly (Tettamanti et al. (2016)). The
realization of self-driving cars includes numerous technical
challenges. One of these is trajectory planning, the design
of the vehicle’s motion. Over the last two decades, various
techniques were developed to address the motion planning
problem of road vehicles. The vehicle’s path can be build
from geometric curves such as circular arcs, clothoids,
or splines (Vorobieva et al. (2013)). In case of graph
search methods, the vehicle’s spatiotemporal surrounding
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is discretized into a graph where vertices are representing
vehicle states and edges are representing motion primitives
leading from one state to another. The vehicle’s trajectory
is then found by a search for the minimum-cost path in this
graph (Tianyu Gu et al. (2015)). A common drawbacks of
these approaches is that the nonholonomic dynamics of the
vehicle is hard to incorporate in the planning problem.

A proven approach for dynamically feasible trajectory
planning is nonlinear optimization. One of the important
papers that lay down the basics of optimal motion plan-
ning for wheeled vehicles is the work of Howard and Kelly
(2007), where the authors are driving a planetary rover on
rough terrain. Since than, optimization based algorithms
are often used to solve various motion planning setups. In
Zhang et al. (2019) optimal model predictive techniques
are used to plan collision-free trajectories for multiple vehi-
cles simultaneously. Mixed-integer quadratic programming
is used to in Qian et al. (2016) to incorporate obstacle
avoidance and traffic rule constraints in the optimization
problem. In Mote et al. (2016) the authors are dealing with
a collision-tolerant formulation to be able to handle scenar-
ios where a collision is inevitable with minimal damage. A
major shortcoming of optimization-based methods is that
depending on the complexity of the underlying system,
they require significant computational effort in most cases.
Because of this, real-time application is often impossible,
restricting the usability of these methods to simulation
purposes. There are examples in literature such as the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 15856



work in Ziegler et al. (2014) and Majd et al. (2018) for
real-time solutions, but this comes at the price of using
very simple kinematic vehicle models. This paper aims
to present an algorithm, where the efficient implemen-
tation and the reduction of control parameters for the
optimization allow real-time performance despite that a
fairly complex vehicle model is used to ensure dynamical
feasibility. Our main goal was to prove the applicability of
the proposed method not only by simulation but with real
vehicle measurements as well.

2. OPTIMAL TRAJECTORY PLANNING

During trajectory planning, the primary goal is to drive
the vehicle from a given initial state to a desired end state,
through a set of allowed states. The motion of the vehicle
can naturally be divided into a longitudinal and a lateral
part. Considering the lateral motion, the vehicle’s position
x, y and yaw (heading) angle ψ have to be considered at
least. Another important state variable that may worth
dealing with is yaw rate ψ̇ as stated in Hegedüs et al.
(2017). The longitudinal part of the motion is character-
ized by the (longitudinal) velocity v of the vehicle. The

Fig. 1. Motion planner architecture

motion planning problem is then to find a trajectory that

reaches the prescribed final state Xf = [xf yf ψf vf ]
T

starting from the given initial state Xi = [xi yi ψi vi]
T

,
while moving through a safe and dynamically feasible re-
gion of the environment. Dynamical feasibility is achieved
by the model-based prediction of the resulted motion.
Due to the limited extent of the paper however, collision
avoidance strategies are not part of the presented work.
To reach passenger satisfaction, the planned motion must
be comfortable and fast as well. The different passenger
requirements can be considered through the optimization
process. Although energy-efficiency and emission topics
are also very important, they are not dealt with as the
planned motion is too short-term to be able to address
these aspects properly.

2.1 Cubic Spline Path Planning

The reference path of the vehicle is chosen as a cubic
spline y = S(x). The spline’s end points are defined by the
initial xi, yi and final xf , yf positions of the vehicle. The
path spline is not a natural spline; the end point second
derivatives are not stipulated to be zero (McKinley and
Levine (1998)). Instead of that, the first derivative values
are constrained at the end points to match the initial ψi
and final ψf yaw angle of the vehicle:

S′(xi) = tanψi and S′(xf ) = tanψf . (1)

To get a path spline, n ≥ 1 intermediate points have
to be defined as well. Fig. 2 shows a set of cubic spline

vehicle paths planned with one (top) and two (bottom)
intermediate points.

Fig. 2. Cubic path splines

As the end point values and derivatives are fully defined
by the end states of the vehicle, the intermediate points of
the path are remaining the free parameters of the planning.
By varying the location of intermediate points, a whole set
of paths can be generated that are leading from the initial
end state to the final one. To further reduce the number of
variables, intermediate points are distributed equidistantly
along the longitudinal coordinate:

xj = xi +
xf − xi
n+ 1

j j = 1 . . . n. (2)

This leaves only the vector of lateral coordinates of the

intermediate points py = [y1 y2 . . . yn]
T

free to vary.

For the sake of simplicity, a linear velocity profile is
assigned to the cubic spline path, changing the vehicle
velocity linearly in time from vi to vf .

For simulation and measurement usage, the resulted tra-
jectory T is represented numerically in form of way points:

Xk = [xk yk ψk vk]
T
, k = i, 1, · · · , n, f ,

T = [Xi X1 · · · Xn Xf ] .
(3)

The values of the path spline y = S(x) can be calcu-
lated numerically with an equidistant sampling of the
longitudinal coordinate x. The resolution here must be
relatively dense ≈ 1 cm to provide a smooth result, as the
path function can change rapidly. To be able to calculate
velocity values for every coordinate pairs, and to provide
a more compact representation, the coordinates are re-
calculated with equidistant sampling along the arc length,
where a resolution of ≈ 10 cm is suitable.

2.2 Motion Prediction

During motion planning, the nonholonomic dynamics of
road vehicles has to be considered to ensure the dynamical
feasibility of the trajectory. Namely, the vehicle has to be
able to track the planned motion. This can be reached by
a model based simulation of the vehicle’s motion along the
planned trajectory.

Vehicle Dynamics For the prediction of the vehicle’s
motion, a precise nonlinear single track model is used
which is basically the same as the one used in Hegedüs
et al. (2019). The model describes the planar motion of
the vehicle chassis as well as the rotational motion of the
front and rear axles, reduced into two virtual wheels. It
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includes a dynamic wheel slip model in order to provide
a feasible solution also in case of critical maneuvers. To
sufficiently model the steering actuator of the vehicle,
an additional first order steering dynamics is introduced,
which is described by:

δ̇ =
ks
Ts
δsw −

1

T
δ, (4)

where δsw is the steering wheel angle, ks is the steering
ratio, and Ts is the time constant of the steering mecha-
nism.

Tracking Control Path tracking is realized by a Stan-
ley controller. Stanley controller is a nonlinear feedback
control that ensures asymptotic tracking of the reference
path. The wheel level steering angle of the front axle is
calculated as

δs = eψ + arctan(Ks
elat
v

), (5)

where eψ is the yaw tracking error, and elat is the lateral
tracking error of the vehicle, and Ks is a gain parameter.
The tracking errors are calculated compared to a reference
point on the path. This reference point is the closest
point of the path curve to the center of the front axle.
As the path curve is given in discrete samples, the exact

Fig. 3. Reference point interpolation

intersection way point Xr = [xr yr ψr vr]
T

has to be in-
terpolated. It is important to provide smooth interpolation
results, as the yaw and lateral tracking errors are directly
influencing the value of the steering angle. Fig. 3 shows
the tracking error calculation. The true reference point
(green) is calculated by a second order interpolation using
the closest and the two neighboring way points (blue). For
efficiency, the closest way points are searched in two steps.
Firstly, only an equidistant subset of way points is checked
in a reasonably sized surrounding of the vehicle to find the
region in which the closest way points lie. Then, all the way
points inside this region are evaluated again.

The Stanley controller was chosen over infinite horizon
LQR control because it provides similar performance but
its realization is much more simple, as it does not require
the calculation of the vehicle’s lateral velocity as well as the
tracking error derivatives, which would only be possible by
an additional state observer (Snider et al. (2009)). Fig. 4
shows the tracking of a circular path with a longitudinal
velocity of 20 m/s. The tracking errors of the Stanley and
LQR controllers are in the same range.

Longitudinal velocity tracking is carried out by an infinite
horizon LQR control which is adjusting the total driving

Fig. 4. Path tracking (above) and tracking errors (below)
with Stanley and LQR controllers

or braking torque of the vehicle by a state feedback of the
longitudinal velocity and the velocity tracking error.

2.3 Optimization Problem Formulation

The goodness of a trajectory regarding dynamical feasibil-
ity can be expressed as the motion that can be followed
with the minimal tracking errors. To provide a faster
journey, travel time can be minimized as well. Regarding
comfort, the magnitude of lateral acceleration is also often
kept at a minimum level (Shin et al. (2018), Zhang et al.
(2013)). Considering the factors presented above, a cost
functional can be expressed:

J(X(t, py)) = wtt+
1

t

∫ t

0

(welat |elat|+weψ |eψ|+way |ay|)dt,

(6)
where welat , weψ , way , and wt are weighting factors, ay is
the lateral acceleration of the vehicle, and t is the travel
time along the trajectory. The resulting optimization prob-
lem can be mathematically formulated as:

minimize
py

J(X(t, py))

subject to Ẋ(t, py) = f(X(t, py), Xi, Xf ),
(7)

where the function f represents the common dynamics
of the vehicle and the tracking control. The meaning
of Eq. 7 is that given the current initial state Xi and
the desired final state Xf , we are searching the optimal
lateral coordinate values py for the cubic spline path
function, that will minimize the travel time t as well as
the average absolute value of tracking errors elat eψ and
lateral acceleration ay, as the vehicle is driven through the
trajectory.

2.4 Implementation

For real-time performance the vehicle and controller mod-
els were implemented in C++ using the linear algebra
package Eigen. The differential equation system of the
vehicle and controllers are solved by an own implementa-
tion of the 4th order Runge-Kutta method. The step size
for the solution is chosen as 1 ms, so that the transient
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wheel slip model provides plausible output also in case
of dynamically demanding scenarios. The optimization
problem is solved by an Interior-point method. The exit
criterion for the step size of the optimization variable py is
set to ≈ 1 mm. The algorithm is fast enough to be used for
real-time measurements in case of one or two intermediate
points applied in the cubic spline trajectory.

3. TEST EQUIPMENT

The main purpose of present work was to test the de-
veloped algorithm under real circumstances. To prepare
for vehicle measurements, a quasi real-time simulation
environment was set up first to provide absolutely safe
testing capabilities. The real test drives were then carried
out at the and of May 2019 at the newly established
test track ZalaZone. ZalaZone is an innovative automotive
proving ground that incorporates traditional features con-
centrating on driving dynamics with research and develop-
ment infrastructure elements for the validation of highly
automated road vehicles (Szalay et al. (2018)). The test
maneuvers were driven at the dynamic platform which is
circular surface with a diameter of 300 m, covered with
special quality asphalt.

3.1 Vehicle Interface

The interface to the test vehicle is shown on Fig. 5. Just
as in the internal motion prediction phase of the planner,
the trajectory is executed by separate longitudinal (veloc-
ity tracking) and lateral (path tracking) controllers. For

Fig. 5. Test vehicle interface

velocity tracking, only the target velocity vt is specified
as the test vehicle has its own longitudinal control imple-
mentation. Steering control is however realized with the
trajectory planner’s Stanley controller, and the resulted
steering wheel angle δsw is provided to the vehicle.

The position and orientation of the vehicle are obtained
in form of geodetic latitude φ, longitude λ and heading
(attitude) angle ψ. For the evaluation of control law Eq.
5, the actual vehicle velocity v is also needed. Similarly,
the lateral acceleration ay is taken to calculate the value
of cost functional Eq. 6 for evaluation purposes.

As the trajectory Eq. 3 is calculated in flat Earth coordi-
nates, the vehicle position which is provided as geodetic
latitude and longitude has to be transformed. For the
conversion, the origin of the flat Earth coordinate system

is chosen as φ = 46.895038 ◦, λ = 16.843526 ◦, which is
the approximate center of the dynamic platform.

On the physical level, all the signals are received from and
transmitted to the test vehicle’s main CAN (Controller
Area Network) communication bus.

3.2 Simulation Environment

The real-time simulation environment aims to provide the
same interface as the real test vehicle. The simulation
utilizes the same vehicle model and longitudinal control
as the trajectory planner’s motion prediction layer. To
model the CAN communication, MATLAB and Vehicle
Network Toolbox is used. Timing is carried out using an
internal timer object with a rate of 10 ms. To get geodetic
latitude and longitude, a conversion from flat Earth vehicle
position is needed with the same origin as in case of the real
vehicle. During the simulation, all required vehicle signals
can be plotted in real-time to help with the debugging of
the planning algorithm.

3.3 Test Vehicle

Our test vehicle is a Smart Fortwo which is electronically
controllable and is used for testing various automated
functions (Tihanyi and Szalay (2017)). The car is shown
on Fig. 6. On sensor side it is equipped with a precision
INS/GNSS (Inertial Navigation System / Global Navi-
gation Satellite System) navigation system iTrace, which
is providing vehicle position, velocity and attitude data.
Accelerations and turn rates of the vehicle chassis are also
measured by a Bosch IMU (Intertial Measurement Unit)
with 6 degrees of freedom. The test vehicle is mounted
with a front view camera for lane detection, and a middle
range front radar as well as two scanning lidars for object
detection. The motion planning and tracking software is

Fig. 6. Test vehicle

running on a Windows PC which is connected to the
vehicle’s main CAN network via a Vector CANcase XL
interface. On low level, the vehicle’s actuators are con-
trolled by a DSpace AutoBox real-time computer unit. The
internal speed controller is responsible for maintaining the
desired target speed vt by calculating the required driving
or braking torque, and the required gear. The vehicle’s
original throttle pedal travel sensor is producing an analog
voltage output. Based on the amount of required driving
torque, this signal is calculated and provided to the engine
control unit. During braking, the original brake pedal is
pushed by a linear actuator trough a mechanism. The force
control of the linear actuator is solved by commercial servo
controller units. These are served with analog reference

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15859



signals as well, computed based on the required amount
of braking torque. The original vehicle has a robotized
gearbox already, so the AutoBox is simply connected to a
small electronics that mimics the behavior of the original
gear stick. The required steering wheel angle δsw is set
by the internal steering control. The steering actuator is
a BLDC (Bushless Direct Current) servo motor equipped
with a servo control unit. Its position is measured via an
analog potentiometer.

4. RESULTS

During the real test drive, lane change and curved lane
keeping like trajectories were planned and tracked at
the dynamic platform of the test track. The longitudinal
velocity vt of the vehicle was kept at 30 km/h for safety
reasons, as this was the first time that the planning
algorithm was used in real working conditions. The test
drives were carried at from standstill position. The start
of trajectory planning and tracking was triggered when
the test vehicle first reached the target velocity. Weighting
factors for the optimization problem (6) were welat = 1,
weψ = 0.2 180

π , way = 0.5, and wt = 0.

4.1 Lane change maneuver

Fig. 7 shows the planned, predicted, and actual path of
the vehicle (top), as well as the applied steering wheel
angle δsw (bottom) in case of a lane change maneuver. The
results show that despite the test vehicle is tracking the
reference trajectory well, the required steering wheel angle
to do so is greater. The main reason for this phenomenon

Fig. 7. Lane change path (top) and steering angle (bottom)

lies in the poor weather conditions during testing. The
asphalt surface of the test track was covered with water
during the whole period of measurements which reduced
the value of friction coefficient below the value µ = 0.9
that was used for planning. Another likely cause of the
relatively big deviance is that there was no sufficient time
to tune the parameters of the vehicle model, especially the
steering ratio ks, to optimally match the actual parameters
of the test vehicle. The tracking errors during motion
prediction and real test drive are shown on Fig. 8. The
lateral acceleration ay of the vehicle exceeds 3.4 m/s2 along

Fig. 8. Lateral (top) and heading (bottom) errors during
lane change

this trajectory, which is considerable. The test vehicle
is able to track the trajectory with a maximal lateral
error of ≈ 80 cm and heading error of ≈ 5 ◦. The
results are sufficient, but the errors are greater than in
the simulation case. As the lateral controller was tuned
with the simulation environment as a preparation before
the actual measurement took place, the tracking was
unfortunately not working with maximum performance.

4.2 Curved lane keeping maneuver

Fig. 9 shows the path and steering wheel angle δsw in
case of a lane keeping maneuver. The required steering
wheel angle to track the trajectory is again greater in the
real world case. Trajectory tracking is carried out with a

Fig. 9. Lane keeping path (top) and steering angle (bot-
tom)

maximal lateral error of ≈ 95 cm and heading error of
≈ 2 ◦ as shown on Fig. 10. The result is again accept-
able considering that the vehicle’s lateral acceleration ay
exceeds 2.5 m/s2.
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Fig. 10. Lateral (top) and heading (bottom) errors during
curved lane keeping

5. CONCLUSIONS

In this paper a model-based real-time optimal trajectory
planner was presented for road vehicles. The algorithm
first plans a cubic spline trajectory from the given initial
state to the required end state and then optimizes the
shape of this trajectory to reach maximum dynamical
feasibility and comfort by the prediction of the resulted
motion. The efficient implementation in C++, and the
small number of optimization variables allows real-time
usage. Results show that the algorithm is capable to
drive a real vehicle to the required target state at an
acceptable tracking error level considering the dynamically
demanding scenarios. A future development goal is to
test the method not only when performing short-term
individual maneuvers, but also in case of driving along
a longer route, e.g. a race track. The parameters of the
motion prediction layer shall be tuned to match the
behavior of the actual vehicle as much as possible. For
optimal tracking performance, the control parameters shall
be also adjusted. The current work is not dealing with
obstacle avoidance strategies, which are however essential
and must be part of future research. Currently it is an open
question if the optimization problem extended with the
obstacle avoidance constraints could be solved fast enough
to be used in real-time.
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