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Abstract: This work mainly discusses the attitude tracking issue of spacecraft which ensures
fixed-time convergence property. To achieve this, the attitude tracking dynamics model is first
established. Then a novel sliding manifold is constructed based on the presented sufficient
condition of fixed-time stability. Moreover, a sliding mode controller is developed to ensure
fixed-time convergence. Also, the closed-loop fixed-time stability of the whole system is proven
to be guaranteed based on Lyapunov stability theory. Finally, the simulation results are provided
to verify the superior performance of the designed controller.
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1. INTRODUCTION

The spacecraft attitude is vital for the space exploration
activities, such as earth and planet imaging, communica-
tion, solar panel charging, etc.. Thus, the attitude control
schemes for the current and forthcoming spacecraft are
subject to specific performance requirements. Among these
requirements, most of the spacecraft are always required
to track the desired attitude trajectories with high ac-
curacy. Therefore, plenty of works focus on the attitude
tracking controller formulation. And various techniques
have been applied to achieve satisfying control precision,
which mainly include optimal control (Crassidis et al.
(2000)), backstepping control (Kristiansen et al. (2009)),
robust control (Jin and Sun (2009)), sliding mode control
(Pukdeboon et al. (2010)), input-output linearization con-
trol (Tafazoli and Khorasani (2006)), nonlinear estimator-
based approach (Xiao et al. (2017)), etc.. Note that these
methods could achieve asymptotical convergence of the
tracking errors, which may not be enough for some mis-
sions (such as imaging, agile maneuvering and so on) with
specific settling time requirements (Karpenko et al. (2014);
Marsh et al. (2018)).

To further improve the settling time property, finite time
control technique is introduced to guarantee the stability
of system within finite time (Bhat and Bernstein (2000);
Yu et al. (2005)). Then terminal sliding mode control
(TSMC) (Zhu et al. (2011)), time-varying sliding mode
control (TVSMC) (Xiao et al. (2015)) , adding a power
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integrator (API) (Du et al. (2011); Li et al. (2009)) are uti-
lized to construct finite time controllers. For the spacecraft
attitude stabilization and tracking task, TSMC is adopted
in (Zhu et al. (2011); Lu and Xia (2013)) to ensure finite
time convergence property. And the potential singular
issue of traditional TSMC is discussed and solved among
the existing works (Lu and Xia (2013); Zou et al. (2011);
Wu et al. (2011); Song et al. (2014)) by using modified fast
TSMC method. Also, the chattering phenomenon of slid-
ing mode control is avoided through boundary layer and
neural network. However, the convergence time of finite
time control schemes rely on the system initial conditions,
which owns conservatives to some extent. Considering this
situation, the fixed time control concept is extended by
researchers, which makes the upper bound of settling time
irrespective of any initial or instantaneous system condi-
tions.

The fixed time stability is firstly presented by Polyakov
in (Polyakov (2012))for the linear systems. And further
discussions about the Lyapunov-based fixed time stabi-
lization are provided in (Polyakov et al. (2015); Polyakov
and Fridman (2014)). Zuo, et al. (Zuo (2015); Zuo et al.
(2018a,b)) made efforts to apply the fixed-time consensus
into the multi-agent networks with second-order and high-
order dynamics. Recently, Basin, et al. (Basin et al. (2018))
designed a fixed-time controller for the mechatronic equip-
ment. Gao, et al. (Gao and Cai (2015)) investigated the
attitude tracking issue of spacecraft via terminal function
to ensure fixed-time convergence. Jiang, et al. introduced
the fixed time control technique into the spacecraft atti-
tude stabilization (Jiang et al. (2016a)) and rendezvous
missions (Jiang et al. (2016b)) respectively, which yielded
satisfying time-related performance. In addition to the
controller formulation, it is necessary to develop novel
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sufficient conditions of fixed time stability with less param-
eters and more compact form. This is also appreciating for
the practical spacecraft attitude tracking controller design
issue.

The objective of this work is to provide a simple and
novel fixed time control scheme for the spacecraft attitude
tracking task. Then the main contributions of this paper
are generalized as:1) a new sufficient condition of fixed
time stability is proposed with a unified governing term,
which yields less parameters to be chosen; 2) the designed
sliding mode controller for the attitude tracking mission
guarantees closed-loop stability in the sense of fixed time
convergence, and the upper bound of the settling time
owns a more concise expression than the existing ones.

The rest of this paper is organized as follows. Section
2 introduces the spacecraft attitude tracking dynamics
model and the novel sufficient condition of fixed time sta-
bility. Sliding mode controller with fixed-time convergence
is designed in Section 3. Section 4 provides numerical
simulation results to demonstrate the effectiveness of the
developed controller. General conclusions of this work are
summarized in Section 5.

2. PROBLEM FORMULATION

Throughout this investigation, several key notations are
defined as follows: Let ‖·‖ represent the Euclidean norm.
For a given vector x = [x1, x2, x3]T ∈ R3, xm =
[xm1 , x

m
2 , x

m
3 ]T ∈ R3, sigm(x) = [sigm(x1), sigm(x2), sigm

(x3)]T ∈ R3, where m ∈ R, sigm(xi) = sign(xi) ·
|xi|

m
, (i = 1, 2, 3), x/ tanhx = [x1/ tanhx1, x2/ tanhx2, x3

/ tanhx3] ∈ R3, x× is the skew-symmetric matrix which
satisfies x×y = x × y,∀x, y ∈ R3. I3 denotes the 3 × 3
identity matrix.

2.1 Spacecraft Attitude Dynamics Model

To investigate the attitude dynamics issue, two coordinate
frames should be introduced, namely inertial frame Fi

and body-fixed frame Fb. The unit-quaternion is chosen
as the attitude representation tool. Let q = [qTv , q4]T =
[q1, q2, q3, q4]T ∈ R3 × R1 denote the attitude orientation
of the frame Fb regarding to Fi expressed in frame Fb . The
transformation matrix between frames Fi and Fb could be
obtained as R(q) = (q24 − qTv qv)I3 + 2qvq

T
v − 2q4q

×
v . Then

the kinematics and dynamics model of a spacecraft with
four reaction wheels is given as

q̇v = Qω, q̇4 = −0.5qTv ω. (1)

Jω̇ = −ω×Jω +Du. (2)

wherein Q = 0.5(q4I3 + q×v ), J is the inertia matrix of the
spacecraft, ω = [ω1, ω2, ω3]T represents the angular veloc-
ity of the spacecraft, D is the reaction wheel configuration
matrix, u = [u1, u2, u3, u4]T denotes the control torque
from the reaction wheels. The redundant configuration of
four reaction wheels is presented in Fig. 1, which leads the
detailed expressions of D:

D =

[
1 0 0 cosA · cosB
0 1 0 cosA · sinB
0 0 1 sinA

]
. (3)

where A,B are the alignment angles of the reaction wheel
4 (namely, RW4).

O

x
y

z

A

B

Fb

Fig. 1. Reaction wheel configuration

2.2 Attitude Tracking Dynamics Model

The spacecraft is always needed to track the desired
attitude for some specified tasks. The desired attitude is
represented by a desired frame Fd , and it is expressed by
qd = [qTdv, qd4]T = [qd1, qd2, qd3, qd4]T when referring to Fi.
The governing law of desired attitude is q̇dv = 0.5(qd4I3 +
q×dv)ωd , q̇d4 = −0.5qTdvωd ,where ωd = [ωd1, ωd2, ωd3]T

is the desired angular rate. Then the dynamics model of
the relative motion between the actual attitude and the
desired one is described by

q̇ev = Qeωe, q̇e4 = −0.5qTevωe. (4)

Jω̇e = −ω×Jω + J(ω×
e R(qe)ωd −R(qe)ω̇d) +Du. (5)

wherein Qe = 0.5(qe4I3 + q×ev), qe = [qTev, qe4]T =
[qe1, qe2, qe3, qe4]T represents the attitude tracking error
between the frames Fb and Fd , along with qev = qd4qv −
q4qdv + q×v qdv , qe4 = qd4q4 + qTdvqv , the angular ve-
locity tracking error is obtained as ωe = ω − R(qe)ωd

, and the rotation matrix between frames Fb and Fd is
R(qe) = (q2e4 − qTevqev)I3 + 2qevq

T
ev − 2qe4q

×
ev.

To establish a more compact form of (4)-(5), several
tedious but straightforward algebraic manipulations lead
to

Mq̈ev + Cq̇ev + PTH = PTDu. (6)

where M = PTJP , C = PTJṖ − PT (JP q̇ev)×P , P =
Qe

−1, H = (P q̇ev)×J(R(qe)ωd) + (R(qe)ωd)×J(P q̇ev +
R(qe)ωd)− J(ω×

e R(qe)ωd −R(qe)ω̇d).

Remark 1. The invertible condition of Qe is required to
be ensured (Xiao et al. (2015)). This is a mild restriction
for the quaternion-based attitude trajectory, which corre-
sponds to qe4 6= 0.

2.3 Definitions and Lemmas

Consider the system

ẋ(t) = f(x(t)), f(0) = 0, x(t) ∈ Rn. (7)
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where f : U0 → Rn is continuous in the open set U0 around
the origin. The unique solution of (7) exists in forward time
under all initial conditions.

Lemma 1. (Polyakov (2012)): For the system in (7), sup-
pose there exists a continuous Lyapunov function V (x(t))

such that V̇ (x(t)) ≤ −(g1 · V m(x(t)) + g2 · V n(x(t)))K

holds, where g1, g2,m, n,K ∈ R+ and satisfies mK <
1, nK > 1 . Then system (7) is fixed-time stable. The
settling time upper bound, which does not rely on the
initial states x(0) , yields

T (x(0)) ≤ 1/(gK1 (1−mK)) + 1/(gK2 (nK − 1)). (8)

Lemma 2. (Jiang et al. (2016a)): For any n > 1, x, y ∈ R,
we can always have |x+ y|n ≤ 2n−1 |xn + yn|.
Lemma 3. For the system in (7), suppose there is continu-

ous Lyapunov function V (x(t)) accounting that V̇ (x(t)) ≤
−kV (g+2)/2(x(t))/ tanhV 1/2(x(t)), where k ∈ R+ and
0 < g < 1. Then the origin of system (7) is fixed-time
stable. The convergence time is upper bounded by a user-
determined function, which does not depend on system
initial conditions. That is

T (x(0)) ≤ 2/[kg(1− g)]. (9)

Proof. As V̇ (x(t)) ≤ −kV (g+2)/2(x(t))/ tanhV 1/2(x(t)),

we could easily obtain V̇ (x(t)) < −kV (g+2)/2(x(t))

for V (x(t)) > 1 and V̇ (x(t)) ≤ −kV (g+1)/2(x(t)) for
V (x(t)) ≤ 1. Therefore, the dominant term ensures
V (x(t)) ≤ 1 when t ≥ T1 = 2/(kg) for any initial
conditions such that V (x(0)) > 1 . Correspondingly, the
governing term guarantees that V (x(t)) = 0 at t ≥ t0 +
T2 = t0 + 2/[k(1 − g)] for any conditions satisfying that
V (x(t0)) ≤ 1 . Hence, the system convergence is ensured
within fixed-time T ≤ T1 + T2 = 2/[kg(1 − g)] for any
initial conditions. The proof is thus completed.

Remark 2. The advantages of our proposed Lemma 3
mainly lie in its unified governing term, which could
guarantee the convergence property in both far and near
neighborhoods of the origin. This term differs from the
traditional one in Lemma 1 with less parameters and more
compact form. Besides, the upper bound function of the
settling time is more concise than the existing ones.

3. NOVEL FIXED-TIME SLIDING MANIFOLD
CONTROLLER

In this part, a novel sliding manifold is formulated based
on the proposed sufficient condition of fixed-time stability.
Then, a fixed-time controller is constructed in the frame-
work of sliding mode control technique. Furthermore, the
closed-loop stability in the sense of fixed-time convergence
is guaranteed via Lyapunov stability theory.

3.1 Novel Sliding Manifold Formulation

Consider the relative motion model (6) and the presented
Lemma 3, a novel fixed-time convergent sliding mode
surface is established as

S = q̇ev + k1Snft. (10)

wherein Snft = [Snft1, Snft2, Snft3]T ,0 < p < 1,Snfti ={
sigp(qei) · qei/ tanh qei, if S̄i = 0 or S̄i 6= 0, |qei| > ε
aqei + bsig2(qei), if S̄i 6= 0, |qei| ≤ ε

,

k1 = diag[k11, k12, k13] > 0, S̄ = [S̄1 , S̄2 , S̄3 ]T , S̄i =
q̇ei + sigp(qei) · qei/ tanh qei , a = (1 − p) · εp/ tanh ε +
εp+1/tanh2ε− εp+1, b = p · εp−1/ tanh ε− εp/tanh2ε+ εp,
ε is a positive scalar to be chosen.

Theorem 1. If the developed sliding manifold (10) satisfies
that S = S̄ = 03×1 , then the relative tracking error qev
could converge to zero within fixed time. The upper bound
of the convergence time is expressed by

T (qev) ≤ 1/[k1minp(1− p)]. (11)

where k1min = min{k11, k12, k13}.

Proof. Due to S = S̄ = 03×1 , it follows that q̇ei =
−sigp(qei) · qei/ tanh qei . The Lyapunov function is es-
tablished as Vei = q2ei, (i = 1, 2, 3) , and its derivative

yields V̇ei = −2k1iV
(p+2)/2
ei / tanhV

1/2
ei . Based on Lemma

3, it can be readily obtained that the upper bound of
settling time for qei is Tei ≤ 1/[k1ip(1 − p)] . Therefore,
the relative tracking error would be fixed-time stable with
T (qev) ≤ 1/[k1minp(1 − p)] . This completes the proof
procedure.

3.2 Fixed-Time Controller Design

To achieve the fixed-time attitude tracking, a novel con-
troller based on Lemma 3 is designed as

u = D+[−QTM · k2 · diag(sigp∗(S)) · (S/ tanhS)

−QTM · k1Ṡnft +QTCq̇ev +H]
. (12)

wherein k2 = diag[k21, k22, k23] > 0,D+ = DT (DDT )−1,
diag(sigp∗(S)) = diag[sigp∗(S1), sigp∗(S2), sigp∗(S3)],0 <
p∗ < 1.

Theorem 2. Consider the relative attitude motion dynam-
ics model (6) while utilizing control law (12) with the
sliding manifold (10), it could be concluded that the fixed-
time convergence stability of the closed-loop system is
guaranteed, and the upper bound yields that

TF (qev) ≤ 2p∗/[k2minp∗(1− p∗)] + 1/[k1minp(1− p)]. (13)

where k2min = min{k21, k22, k23}.

Proof. As a stepping stone, a positive definitive Lya-
punov function is defined as

VS = STS. (14)

Then the derivative of VS with respect to time is obtained
by substituting control scheme (12) as

V̇S = 2ST Ṡ

= 2ST [M−1(−Cq̇ev − PTH + PTDu) + k1Ṡnft]
= −2ST k2 · diag(sigp∗(S)) · (S/ tanhS)

= −2

3∑
i=1

(k2i|Si|p∗+2
/ tanh |Si|)

≤ −2k2min

3∑
i=1

[|Si|p∗+2
/ tanhV

1/2
S ]

≤ −21−p∗ · k2min · V (p∗+2)/2
S / tanhV

1/2
S

. (15)

According to Lemma 3, it can be readily obtained that
the reaching phase is completed within fixed time. The
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corresponding time upper bound is TS ≤ 2p∗/[k2minp∗(1−
p∗)]. Combing Theorem 1, the closed-loop system is fixed
time stable, and the settling time is bounded by

TF (qev) ≤ 2p∗/[k2minp∗(1− p∗)] + 1/[k1minp(1− p)]. (16)

Remark 3. The presented sliding mode control strategy
achieves fixed-time convergence for the attitude tracking
task of the spacecraft from a new viewpoint. Although
this work mainly addresses the spacecraft attitude tracking
control issue, such method could also easily extend to other
second-order systems which aims to achieve similar fixed
convergence time property.

4. SIMULATION TESTS AND ANALYSES

In this section, related parameters and system conditions
are offered to illustrate the effectiveness of the presented
control strategy through simulation experiments. The ini-
tial conditions for the spacecraft rotation motion are

chosen to be [qTv (0), q4(0)]
T

= [−0.1, 0.5,−0.2,
√

0.7]T ,
ω(0) = [−0.01, 0.02, 0.01]rad/s. Assume the initial value
for the desired rotation motion is [qTdv(0), qd4(0)]T =
[0, 0, 0, 1]T with the angular rate ωd = [0.03 sin(0.01t),
0.02 sin(0.01t), 0.01 sin(0.01t)]rad/s .The spacecraft is set
with the inertia matrix as follows

J =

[
20 1.2 0.9
1.2 17 1.4
0.9 1.4 15

]
kg ·m2. (17)

For the redundant reaction wheel, its alignment angles
are chosen to be A = arcsin(

√
3/3) , B = π/4 .The

maximum magnitude of the control torque for a single
reaction wheel is 1Nm. To further present the superior
performance of the designed controller, the quaternion-
based backstepping control scheme in (Kristiansen et al.
(2009)) is selected as the comparison method. The control
parameters for the developed strategy in this work are set
as k1 = diag[0.15, 0.15, 0.15], k2 = diag[0.09, 0.09, 0.09],
ε = 0.0003, p = p∗ = 0.6. The relevant parameters for the
comparative scheme are chosen as k1 = diag[3, 3, 3] and
k2 = diag[3, 3, 3].

The simulation results of the quaternion tracking errors
under the preceding two controllers are shown in Fig. 2
respectively. It is obvious that the presented controller
achieves faster convergence rate than the comparative one.
To make this more straightforward, the history of the Euler
angle tracking errors is illustrated in Fig. 3. Besides, Fig. 4
shows the angular rate tracking errors of the two methods.
And it can be concluded that the designed controller is
superior to the other one with shorter convergence time
and less overshot in Fig. 4. Furthermore, the corresponding
control torque responses for each reaction wheel are pro-
vided in Fig. 5. It is apparent that the developed controller
does not lead to too much control torque saturation situ-
ation as the comparison method, especially at the initial
stages of attitude tracking operation. In addition, an index

defined as E =
∫ T

0
‖u‖2dt is introduced to evaluate the

energy consumption of reaction wheels. Then the energy
indexes in Fig. 6 show that the proposed controller con-
sumes much less energy than the rest one. Overall, the
presented method in this work owns excellent performance,
guaranteeing fixed-time convergence, while achieving high-
accuracy attitude tracking motion.
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Fig. 2. Quaternion errors

5. CONCLUSION

In this work, we have presented a fixed-time control strat-
egy for the attitude tracking mission of spacecraft. The
developed controller is built in the sliding mode control
framework, which is based on the novel sufficient condi-
tions of fixed time stability. In contrast to the existing
fixed-time control schemes, the proposed controller owns
a unified dominant term, which ensures faster convergence
and higher accuracy in both large and small scales of track-
ing errors. The simulation results further show that the
designed fixed time controller achieves rapid convergence
and high precision in the attitude tracking task. The future
work would focus on handling the saturation and failure
issues of the reaction wheels while designing the fixed-time
controller.
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