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Abstract: Reinforcement Learning (RL) has proven a stunning ability to learn optimal policies
from data without any prior knowledge on the process. The main drawback of RL is that
it is typically very difficult to guarantee stability and safety. On the other hand, Nonlinear
Model Predictive Control (NMPC) is an advanced model-based control technique which does
guarantee safety and stability, but only yields optimality for the nominal model. Therefore, it
has been recently proposed to use NMPC as a function approximator within RL. While the
ability of this approach to yield good performance has been demonstrated, the main drawback
hindering its applicability is related to the computational burden of NMPC, which has to be
solved to full convergence. In practice, however, computationally efficient algorithms such as
the Real-Time Iteration (RTI) scheme are deployed in order to return an approximate NMPC
solution in very short time. In this paper we bridge this gap by extending the existing theoretical
framework to also cover RL based on RTI NMPC. We demonstrate the effectiveness of this new
RL approach with a nontrivial example modeling a challenging nonlinear system subject to
stochastic perturbations with the objective of optimizing an economic cost.
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1. INTRODUCTION

Reinforcement Learning (RL) is a powerful data-driven
technique which aims at optimizing the performance of a
Markov Decision Process (MDP), typically without relying
on a model of the state transition probability. Most RL
methods rely purely on the observed stage cost and state
transition in order to estimate and optimize the closed-
loop performance. The potential of RL has been recently
demonstrated by several successful implementations in-
cluding, e.g., robots learning to walk or fly (Wang et al.,
2012; Abbeel et al., 2007), or computers beating chess and
go champions (Silver et al., 2016).

Some RL methods optimize the performance indirectly,
by parametrizing the action-value function and learning a
good approximation of the optimal action-value function
underlying the MDP. The optimal policy is then obtained
by optimizing the action-value function with respect to the
action. Other RL methods, instead, directly parametrize
the policy and estimate its gradient in order to optimize
the policy parameter. Both direct and indirect approaches
typically rely on derivative-based stochastic optimization,
such that the function approximator must be differentiable
in the parameter.

Deep Neural Networks (DNN) are a common choice to
support the parametrization of either the action-value
function or the policy. While DNN can be very effective in
practice, they pose difficulties in the analysis of closed-loop
stability or in imposing hard constraints on the evolution
of the state of the real system. An alternative to DNNs
has been proposed in (Gros and Zanon, 2020), where

it has been suggested to use nonlinear Model Predictive
Control (MPC) as a function approximator. Strategies to
provide strict constraint satisfaction guarantees have been
investigated in (Gros et al., 2020a) by using projection
approaches and in (Zanon and Gros, 2019; Gros and
Zanon, 2020b) by using robust MPC schemes. The use
of mixed-integer MPC formulations has been investigated
in (Gros and Zanon, 2020a). Furthermore, the use of MPC
as a function approximator gives one the possibility to
easily introduce any available information on the system
dynamics. Which MPC parameter to adapt using RL is a
design decision and can include, e.g., the cost Hessian and
gradient, some model or constraint parameter, etc.

One of the main drawbacks of MPC, however, is the
need to solve an optimal control problem in real time.
While this issue is less significant for linear systems, for
nonlinear MPC (NMPC) tailored algorithms are required
in order to limit the computational burden and guarantee
real-time feasibility for many applications of interest. In
particular, the real-time iteration (RTI) scheme (Diehl
et al., 2005) obtains the complexity reduction by solving
an individual quadratic program (QP), i.e., one step of
sequential quadratic programming (SQP). By exploiting
the similarity between two consecutive MPC problems,
the solution of the first can be used to construct a good
initial guess for the second. As a result, each OCP solve
is reduced to one (or a small number) of QP solves, which
can be performed quickly using contemporary solvers.

The use of RTI-based NMPC as a function approximator
for RL is a natural means of making MPC-based RL appli-
cable in real time to a wide class of systems. In order to be
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able to deploy standard RL techniques, one must be able to
compute the sensitivities of RTI-based NMPC with respect
to the RL parameter. The necessary sensitivity analysis
for fully converged NMPC has been proposed in (Gros
and Zanon, 2020), by relying on results on parametric
optimization. However, the analysis of (Gros and Zanon,
2020) does not apply to the RTI scheme, since it assumes
that the NMPC problem is solved to full convergence. In
this paper, we set the theoretical foundations which allow
one to deploy the RTI scheme within RL and demonstrate
the effectiveness of our approach in simulations by mini-
mizing the economic cost of a nonlinear system subject to
stochastic perturbations.

The paper is structured as follows. In Section 2, we provide
some background on Q-learning and OCPs as function
approximation. In Section 3 we present nonlinear MPC
and the RTI scheme; we provide the sensitivity analysis for
the RTI scheme in Section 4; and in Section 5 we discuss
the adaptation of classic RL methods when deploying them
in combination with NMPC. We report on some numerical
simulations in Section 6. In Section 7 we conclude the
paper and outline future research directions.

2. REINFORCEMENT LEARNING BACKGROUND

Consider a system whose dynamics are described by a
Markov Process (MP) with with continuous state s and
action (or control) a, and state transition s,a → s+
described by probability density

P [s+ | s,a] . (1)

Note that often system (1) is written as s+ = f(s,a,w),
with w stochastic process noise described by probability
density Pw. We Associate with system (1) the stage cost
`(s,a) and the discount factor γ ∈ [0, 1] to define a Markov
Decision Process (MDP).

Consider a deterministic policy delivering the control input
a = π(s), resulting in state distribution τπ. Reinforcement
Learning aims at finding the best policy π?, i.e., at solving

π? := arg min
π

J(π) := Eτπ

[ ∞∑
k=0

γk` (sk,π (sk))

]
. (2)

Important quantities in RL are the action-value function
Q?(s, a) and value function V ?(s) associated with the
optimal policy π? (s), defined by the Bellman equations:

Q? (s, a) = ` (s, a) + γE [V ?(s+) | s, a] , (3a)

V ? (s) = Q? (s, π? (s)) = min
a

Q? (s, a) . (3b)

Several RL algorithms have been proposed in the literature
and two popular approaches are Q-learning and policy
gradient methods (Sutton and Barto, 2018). We provide
next a brief description of these two approaches.

2.1 Q-learning

Q-learning parametrizes the action value function as
Qθ(s,a), where θ is a vector of parameters whose values
have to be learned, and aims at minimizing ‖Q?(s,a) −
Qθ(s,a)‖22. Standard algorithms rely on the recursive pa-
rameter update (Sutton and Barto, 2018)

δk = `(sk,ak) + γ min
ak+1

Qθ(sk+1,ak+1)−Qθ(sk,ak), (4a)

θ ← θ + αδk∇θQθ(sk,ak). (4b)

Q-learning has been successfully applied in, e.g., (Watkins,
1989; Mnih et al., 2015; Theocharous et al., 2015).

2.2 Actor-Critic Policy Gradient

Policy gradient approaches parametrize the policy as πθ

and directly aim at approximately solving (2) as

θ? = arg min
θ

J(πθ). (5)

This typically involves some form of stochastic descent
algorithm where, in a deterministic policy gradient frame-
work based on actor-critic methods, we have

∇θJ(πθ) = Eπθ
[∇θπθ∇aAπθ

] , (6a)

θ ← θ + α∇θJ(πθ), (6b)

with advantage function Aπθ
(s,a) = Qπθ

(s,a)− Vπθ
(s).

2.3 Function Approximation based on MPC

The use of NMPC to parametrize the action-value function
has been first investigated in (Gros and Zanon, 2020),
where it has been proven that NMPC is a universal
function approximator in the sense that it can be used
to support the action value function Qθ, value function
Vθ and corresponding policy πθ at once. We remark
that NMPC is a nonlinear function approximator which
typically requires to be formulated using a positive-definite
cost. In general, however, the cost to be optimized by RL
can be indefinite.

As proven in (Gros and Zanon, 2020) this does not limit
the applicability of NMPC in the RL context, provided
that an initial cost term is added to the problem formu-
lation to perform a so-called cost rotation. This rotation
makes it possible to approximate an indefinite Q while
using a positive-definite cost in NMPC.

We ought to stress that the RL-NMPC framework pro-
posed in (Gros and Zanon, 2020) and further investigated
in (Zanon et al., 2019; Zanon and Gros, 2019; Gros and
Zanon, 2020b,a) does not provide strict stability guaran-
tees. Such guarantees would be given in case the discount
factor were γ = 1 and suitable terminal conditions were
formulated (Rawlings and Mayne, 2009; Grüne and Pan-
nek, 2011). Clearly, one can formulate the NMPC problem
by using γ = 1 even when the MDP has γ < 1. However,
the ability of NMPC to approximate Q?, V?,π? has not
been thoroughly investigated. This is the subject of ongo-
ing research, but beyond the scope of this paper.

3. NMPC

In this paper, we consider function approximators based
on OCP parametrized by θ of the form

Qθ(s,a) = min
z

λθ(s) + γNV f
θ (xN ) +

N−1∑
k=0

γk`θ(xk,uk)

(7a)

s.t. x0 = s, u0 = a, (7b)

xk+1 = fθ (xk,uk) , (7c)

g (uk) ≤ 0, (7d)

hθ (xk,uk) ≤ 0, hf
θ(xN ) ≤ 0, (7e)

where z = (x0,u0, . . . ,xN ). The stage and terminal cost

`θ, V
f
θ , the system dynamics and constraints fθ,hθ,h

f
θ and
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the initial cost λθ are parametric functions of θ. Note that
in MPC the initial constraint (7b) typically only involves
the state, i.e., u0 = a is not present, since the goal is to
compute an optimal policy. The policy πθ(s) and value
function Vθ(s) are obtained by solving Problem (7) with
constraint u0 = a removed. This is fully equivalent to

πθ(s) = arg min
a

Qθ(s,a), Vθ(s) = min
a

Qθ(s,a). (8)

In standard NMPC, parameter θ is typically considered as
follows. The system dynamics and constraints fθ,hθ,h

f
θ,

are derived as mathematical models of the physical process
that needs to be controlled. System identification tech-
niques are deployed to compute parameter θ such that
the model predictions fit experimental data sufficiently
accurately. Concerning the cost, instead, parameter θ is
a tuning parameter which should be chosen by the control
engineer to ensure that the closed-loop system perfor-
mance is satisfactory, e.g., in terms of disturbance rejection
and asymptotic stability. Alternatively, if—similarly to
RL—a clear objective is available, so-called economic MPC
schemes directly optimize the prescribed objective (Rawl-
ings and Mayne, 2009; Grüne and Pannek, 2011).

In order to address feasibility issues in Problem (7) we
propose to adopt an exact relaxation of state-dependent
constraints, as proposed in (Scokaert and Rawlings, 1999)
and used in the context of RL in (Gros and Zanon, 2020;
Zanon et al., 2019; Zanon and Gros, 2019).

3.1 Real-Time NMPC

Problem (7) is a parametric nonlinear programming prob-
lem, the solution of which can be computationally de-
manding. Several approaches have been proposed in order
to solve Problem (7) approximately but quickly, e.g., the
Real-Time Iteration (RTI) scheme (Diehl et al., 2002),
the Advanced Step NMPC Controller (Zavala and Biegler,
2009) and the continuation/GMRES approach (Ohtsuka,
2004). All these approaches are based on pathfollowing
techniques for parametric NLPs, where the parameter of
interest is the initial state s, and essentially rely on the
(approximate) solution at the previous time instant to
build a good initial guess for the problem at the current
time in a predictor-corrector framework. For the sake of
simplicity, we focus on the RTI scheme, which is based on
sequential quadratic programming and operates as follows.

We write Problem (7) in the compact form

min
z

Fθ(z) s.t. Gθ(z) = 0, Hθ(z) ≤ 0, (9)

with Lagrange multipliers ξ,υ associated with G,H re-

spectively. Given an initial guess y(0) = (z(0), ξ(0),υ(0)),
Sequential Quadratic Programming (SQP) solves (9) by
computing a suitable step size t and updating

y(i+1) = y(i) + tyQP,

where yQP is the primal-dual solution of the quadratic
program (QP)

min
z

1

2
z>L(i)z +∇zLθ

(
y(i)
)>

z (10a)

s.t. ∇zGθ

(
z(i)
)>

z + Gθ

(
z(i)
)

= 0, (10b)

∇zHθ

(
z(i)
)>

z + Hθ

(
z(i)
)
≥ 0, (10c)

with Lθ

(
y(i)
)

the Lagrangian of Problem (7), and L(i) a

suitable approximation of ∇2
zzLθ

(
y(i)
)
.

The RTI scheme solves only one QP per time instant,
uses t = 1, and relies on the initial value embedding,
i.e., constraints (7b) are not eliminated from the problem.
Additionally, computations are split in a preparation phase
in which the sensitivities are evaluated and the QP KKT
matrix is factorized. Once the initial state is available, the
QP is solved and the control is applied to the system. All
details on the RTI scheme can be found in (Diehl et al.,
2005; Gros et al., 2020b) and references therein.

By considering y� as a function of s, implicitly defined
as the optimal primal-dual solution of Problem (8), the
RTI scheme can be viewed as a pathfollowing predictor-
corrector scheme. Since NMPC predicts the future evolu-
tion of the system, provided that the perturbations acting
on the system are not excessively large, the state at the
next time step i will satisfy si+1 ≈ x?1(si). RTI then
exploits the good model prediction ability and the fast
contraction of Newton-type methods to closely track the
optimal solution y�(s). Similar considerations apply to
the primal-dual solution y? of Problem (7), provided that
‖a− πθ‖ is small.

4. SENSITIVITY ANALYSIS

In order to be able to use NMPC as a function approx-
imator for Q-learning or actor-critic methods, one needs
to be able to compute the parametric sensitivities ∇θQθ,
∇θVθ, ∇θπθ. In the following, we first recall the results
for the case in which NMPC is solved to full convergence.
Afterwards, we discuss the case of the RTI scheme, which
is constructed using a similar reasoning.

Note that the parametric sensitivities of optimization
problems exist under the assumption that linear inde-
pendence constraint qualification and the strong second-
order sufficient conditions hold (Nocedal and Wright, 2006;
Büskens and Maurer, 2001). Therefore, extreme care must
be taken to ensure that Problem (7) satisfies both condi-
tions.

4.1 Sensitivities of Fully Converged NMPC

We detail next how to compute the derivatives of the
action-value function with respect to the parameters, in
the same way as in (Gros and Zanon, 2020). To this
end, we define the Lagrange function underlying NMPC
problem (7) as

Lθ(y) = λθ(x0) + γNV f
θ (xN ) + χ>0 (x0 − s) + µ>Nhf

θ(xN )

+

N−1∑
k=0

χ>k+1 (fθ (xk,uk)− xk+1) + ν>k gθ (uk)

+ γk`θ(xk,uk) + µ>k hθ (xk,uk) + ζ>(u0 − a),

where χ,µ,ν, ζ are the multipliers associated to con-
straints (7b)-(7e) and y = (z,χ,µ,ν, ζ). Note that, for
ζ = 0, Lθ(y) is the Lagrange function associated to the
NMPC problem defining the value function minaQθ(s,a).
We observe that (Büskens and Maurer, 2001)

∇θQθ(s,a) = ∇θLθ(y?) (12)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5289



holds for y? given by the primal-dual solution of (7). Note
that this equality holds because constraints (7b) are not
an explicit function of θ. The gradient (12) is therefore
straightforward to build as a by-product of solving the
NMPC problem (7). We additionally observe that

∇θVθ(s) = ∇θ min
a
Qθ(s,a) = ∇θL(y�), (13)

where y� is given by the primal-dual solution to (8), i.e.,
(7) with constraint u0 = a removed and ζ� = 0.

The derivative of the optimal primal-dual solution with
respect to the parameters is given by

∇θy� = −∇yξθ (y�)
−1∇θξθ (y�) , (14)

where ξθ(y) gathers the primal-dual KKT conditions un-
derlying the NMPC scheme (7). We remind here that
the component of ξθ(y) coincide with the gradient of the
Lagrangian ∇yLθ(y) with the components corresponding
to the inactive constraints removed. For a complete dis-
cussion on parametric sensitivity analysis of NLPs we refer
to (Büskens and Maurer, 2001) and references therein.

4.2 RTI Sensitivities

The sensitivity equations provided in the previous sub-
section are only valid if the NMPC problem is solved to
full convergence. In case RTI or another approximate algo-
rithm is used instead, the sensitivities must be computed
differently. To that end, rather than considering RTI as
a scheme approximately solving Problem (7) or (8), it is
best to view it as a scheme solving the QP Problem (10)
to compute Qθ, Vθ, and πθ. Note that these function
approximations depend on the initial guess used in the
computation of the QP data. However, since RTI always
uses a good initial guess which is close to the optimal
solution, the impact of variations in the initial guess on
the function approximations is small.

Analogously to the fully converged case, we denote the
solution to (10) as y?QP, y�QP to respectively refer to the
cases in which u0 = a is enforced or not. Then, based on
the results provided above, the sensitivities are given by

∇θQθ(s,a) = ∇θLQP
θ (y?QP),

∇θVθ(s) = ∇θLQP
θ (y�QP),

∇θy�QP = −∇yξ
QP
θ

(
y�QP

)−1
∇θξ

QP
θ

(
y�QP

)
.

We stress for completeness that, for y = ȳ + ∆y and
L(i) = ∇2

zzLθ

(
y(i)
)
, the QP Lagrangian satisfies

LQP
θ (y) = Lθ(ȳ) +∇yLθ(ȳ)>∆y + ∆y>∇2

yyLθ(ȳ)∆y

= Lθ(y) +O
(
‖∆y‖3

)
,

such that

ξQP
θ (y) = ξθ(ȳ) +∇yξθ(ȳ)>∆y +O

(
‖∆y‖2

)
.

5. RL BASED ON RTI NMPC

In this section, we revise the standard RL algorithms
presented in Section 2 and introduce some adaptations in
order to account for the peculiarities of using NMPC as a
function approximator.

The update (4b) can also be written as the solution to a
fitting problem. To that end, we introduce the linearization

Qlin
θ̄ (sk,ak) = Qθ(sk,ak)−∇θQθ(sk,ak)(θ̄ − θ).

Then, (4b) is equivalent to θ ← θ̄
∗
, with θ̄

∗
computed as

the optimal solution of the fitting problem

min
θ̄

(
`(sk,ak) + γVθ(sk+1)−Qlin

θ̄ (sk,ak)
)2

+
1

α

∥∥θ̄ − θ
∥∥2
2
.

(15)

In order to guarantee that the NMPC cost is positive-
definite, we propose to compute θ∗ as the solution of a
slightly modified version of (15), i.e.,

min
θ̄

(
`(sk,ak) + γVθ(sk+1)−Qlin

θ̄ (sk,ak)
)2

+
1

α

∥∥θ̄ − θ
∥∥2
2

(16a)

s.t. ∇2`θ � 0, ∇2V f
θ � 0, ∀ s,a ∈ dom{(7)}. (16b)

Constraint (16b) imposes that the Hessian of the stage
and terminal cost is positive-definite everywhere. We left
this formulation intentionally implicit, since it can be
enforced in several ways. For quadratic functions it can,
e.g., be formulated as an LMI. Alternatively, one can rely
on parametrizations which deliver a positive-definite func-
tion by construction. Note that the positive-definiteness
requirement is only necessary for those state-action pairs
for which all NMPC problems have a solution. In principle,
this set could be further restricted to the state-action pairs
which will be visited when operating the system.

Additionally to the enforcement of positive-definiteness, as
stressed in (Zanon et al., 2019), the other main advantage
of formulating Q-learning as a fitting problem is the pos-
siblity to introduce globalization strategies such as, e.g.,
line search. This feature provides at least the guarantee
that the proposed update ∆θ reduces the TD-error for
the current sample, which is not the case with (4b).

Similarly to Q-learning, for actor-critic methods, the pa-
rameter update (6) can be replaced by θ ← θ∗ with θ∗

solution of

min
θ
∇θJ(πθ(sk))>

(
θ̄ − θ

)
+

1

α

∥∥θ̄ − θ
∥∥2
2

(17a)

s.t. ∇2`θ � 0, ∇2V f
θ � 0, ∀ s,a ∈ dom{(7)}. (17b)

with ∆θ∗ = θ̄
∗ − θ. The considerations made for Prob-

lem (16) also apply to Problem (17).

Remark 1. Both in Problem (16) and (17) one could use
the nonlinear model of Q and J rather than the linear one.
The thorough investigation of the effects of this choice are
the subject of ongoing research.

6. SIMULATIONS

In this section we demonstrate the effectiveness of the
proposed combination of RL and RTI-based NMPC with
an example from the process industry, i.e., the evaporation
process modelled in (Wang and Cameron, 1994; Sonntag
et al., 2006) and used in (Amrit et al., 2013; Zanon et al.,
2016) to demonstrate the potential of economic MPC in
the nominal case. The model equations are given by

MẊ2 = F1X1 − F2X2, CṖ2 = F4 − F5, (18)

where

T2 = aP2 + bX2 + c, T3 = dP2 + e,

λF4 = Q100 − F1Cp(T2 − T1), T100 = fP100 + g,
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Q100 = UA1(T100 − T2), UA1 = h(F1 + F3),

Q200 =
UA2(T3 − T200)

1 + UA2/(2CpF200)
, F100 =

Q100

λs
,

λF5 = Q200, F2 = F1 − F4,

with states x = (X2, P2) (concentration and pressure) and
controls u = (P100, F200) (pressure and flow). The model
parameters are given in (Amrit et al., 2013). The model
further depends on concentration X1, flow F2, and temper-
atures T1, T200, which are assumed to be constant in the
control model. In reality, these quantities are stochastic.
In this example, we assume a uniform distribution around
the nominal value with interval ∆X1

= ±1, ∆F1
= ±2,

∆T1
= ±8, ∆T200

= ±5. Additionally, the controller must
satisfy bounds (25, 40) ≤ (X2, P2) ≤ (100, 80) on the
states and 100 ≤ (P100, F200) ≤ 400 on the controls. In
particular, the bound X2 ≥ 25 is introduced in order to
ensure sufficient quality of the product. The state bounds
are relaxed as (x− xl −σ,xu − x−σ), where σ is a slack
variable introduced as a ficticious control and penalized
in the cost in order to introduce an exact constraint re-
laxation (Scokaert and Rawlings, 1999). The stage cost is
then given by

`(x,u) = 10.09(F2 + F3) + 600F100 + 0.6F200

+ σ>Bσσ + b>σσ.

For the given stage cost, the nominal model is optimally
operated at the steady state xs = (25, 49.74), us =
(191.71, 215.89), with stage cost `(xs,us) = `s.

We parametrize an NMPC controller as in (7), i.e., a
nonlinear MPC formulation, with N = 10. Functions
λθ, V

f
θ , `θ are quadratic of the form

† =

[
x− xs

u− us

]>
B†

[
x− xs

u− us

]
+ b>†

[
x− xs

u− us

]
+ c†,

defined by Hessian B†, gradient b†, and constant c†,
with a minimum in xs, us, and † = {λθ, V f

θ , `θ}. The
model is parametrized as the nominal model with the
addition of a constant, i.e., fθ(x,u) = f(x,u) + cf . The
control constraints are fixed and the state constraints are
parametrized as simple bounds, i.e., hθ(x,u) = (x− xl −
σ,xu − x− σ). The parameter vector reads as:

θ = (Bλ,bλ, cλ, BV f ,bV f , Bl,bl, cf ,xl,xu).

Constants bσ = 1051, Bσ = I are fixed and assumed to
reflect the known cost of violating the state constraints.

We apply Q-learning and use α = 10−3. In order to induce
enough exploration, we use an ε-greedy policy which is
greedy 90 % of the samples, while in the remaining 10 %
we apply the action

a = sat(e,ul,uu), e ∼ N (0,
√

10I),

where sat(·,ul,uu) saturates the input between its lower
and upper bounds ul,uu, respectively.

We initialize the ENMPC scheme by the naive initial guess
H` = I, HV f = I, cλ = `s, xl = (25, 40), xu = (100, 80),
while all other parameters are 0. As displayed in Figure 1,
the algorithm converges to a constant parameter value
while reducing the average TD-error.

We performed a simulation to compare the RL-tuned RTI
NMPC scheme to the same scheme using as parameter (a)
the naive initial guess, and (b) the nominal model and the

Fig. 1. Evolution of the parameters (increment w.r.t. the
initial guess value) and of the TD error (averaged over
the preceding 10000 samples).
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cost tuned using the economic-based approach proposed
in (Zanon et al., 2016). The economic gain obtained by
RL is approximately 21 % and 15 % respectively.

Note that when RL is deployed with fully converged
NMPC as function approximator, the obtained optimal
parameters are different from those obtained with RTI
NMPC as function approximator.

7. CONCLUSIONS AND OUTLOOK

In this paper we have extended the framework of RL
based on NMPC in order to make it possible to deploy
computationally efficient algorithms for NMPC such as the
RTI scheme and we have demonstrated the effectiveness of
the approach with an example from the process industry.

Future research will aim at further developing the frame-
work of MPC-based RL by providing a thorough stability
analysis, as well further extending the analysis on rigorous
safety guarantees started in (Zanon and Gros, 2019; Gros
and Zanon, 2020b).
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Diehl, M., Bock, H., Schlöder, J., Findeisen, R., Nagy,
Z., and Allgöwer, F. (2002). Real-time optimization
and Nonlinear Model Predictive Control of Processes
governed by differential-algebraic equations. Journal of
Process Control, 12(4), 577–585.

Gros, S. and Zanon, M. (2020). Data-Driven Economic
NMPC Using Reinforcement Learning. IEEE Transac-
tions on Automatic Control, 65(2), 636–648.

Gros, S. and Zanon, M. (2020a). Reinforcement Learning
for Mixed-Integer Problems Based on MPC. In 21st
IFAC World Congress. (accepted).

Gros, S. and Zanon, M. (2020b). Safe Reinforcement
Learning Based on Robust MPC and Policy Gradient
Methods. IEEE Transactions on Automatic Control
(submitted).

Gros, S., Zanon, M., and Bemporad, A. (2020a). Safe
Reinforcement Learning via Projection on a Safe Set:
How to Achieve Optimality? In 21st IFAC World
Congress. (accepted).

Gros, S., Zanon, M., Quirynen, R., Bemporad, A., and
Diehl, M. (2020b). From Linear to Nonlinear MPC:
Bridging the Gap via Real-Time Iteration. International
Jounal of Control.
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