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Abstract: In this work, a model-based temperature controller for an induction heating system
for moving thin metal strips is developed. The most significant disturbance of the system is an
uncertain air gap geometry caused by flatness defects of the metal strip. A computationally
expensive calculation of the electromagnetic field is avoided by using an equivalent circuit
model and the energy balance. A thermal model of the moving strip is derived in the form
of a convection-reaction equation and simplified to a linear time-invariant model. A 2-degrees-
of-freedom controller is designed based on the simplified model and tested using a finite-
element simulation model of the induction heating system. The simulations demonstrate that
the proposed controller clearly outperforms standard feedback control strategies.

Keywords: Induction heating, metals industry, temperature control, 2-degrees-of-freedom
control

1. INTRODUCTION

Induction heating (IH) is a versatile heating technology
for conductive materials because of its high power density,
its high energy efficiency, and its capabilities of local re-
heating. Industrial applications cover the heating, melting,
and hardening of rods, slabs, gear wheels, and other parts.
As described by Lućıa et al. (2014), induction heating
systems typically consist of power electronics, magnetic
components including the workpiece, and a control system.
The controllers applied in this field can be divided into
power control, feedforward (FF) control based on magnetic
field computations, and temperature control.

Most published control solutions focus on the power sup-
plied to the inductor. The power can be controlled by
the amplitude of the supply current, which was shown by
Park et al. (2007), Fujita and Akagi (1996), and Egalon
et al. (2012). Additionally, Ngoc et al. (2011) eliminated
parasitic coupling effects between multiple inductors. For
a single inductor system, Zerad et al. (2014) developed a
controller that tracks the resonance frequency and thus
minimizes the reactive load for the power supply. How-
ever, controlling the power supplied to the inductor does
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not guarantee that the desired heating power enters the
workpiece.

One option to capture the difference between the supply
power and the actual heating power are magnetic field cal-
culations, which are typically performed by finite-element
(FE) software. Pham et al. (2012) and Nguyen et al. (2012)
use FE simulations to pre-calculate the distribution of in-
duced currents and utilize these mappings for FF control.
These works focus on domestic stoves, where the main
objective is homogeneous heating rather than temperature
control. Optimal FF temperature control was considered
by Rhein and Graichen (2015). The drawback of their
approach is that the necessary FE calculations cannot be
performed in real time.

With the exception of (Goodwin et al., 2013), the litera-
ture lacks reports on feedback (FB) temperature control
for industrial IH systems. Goodwin et al. (2013) designed
a nonlinear model predictive controller based on a finite-
difference model of a cylindrical rod with a surrounding
coil. In this scenario, changes of the air gap geometry due
to an excentric rod position are practically negligible.

The current paper focuses on IH of moving, thin, para-
magnetic strips with uncertain flatness defects. Therefore,
the impact of a time-varying air gap between the strip and
the inductor is investigated in detail. For pure FF control,
a highly accurate and detailed process model would be
required. To avoid this, a 2-degrees-of-freedom (2DOF)
control structure is designed, where the FB loop facilitates
the use of a simpler process model for the FF controller
despite the uncertain air gap width. A central objective of
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the current work is to develop a reliable, computationally
undemanding, and easy-to-use control strategy.

The paper is structured as follows. In Section 2, the consid-
ered system is described and a detailed FE model is devel-
oped. The model undergoes a number of simplifications in
Section 3 to obtain a control-oriented computationally un-
demanding model. Based on this model, a 2DOF controller
structure is designed in Section 4. Numerical results are
shown in Section 5 and final remarks are given in Section 6.

2. PROCESS MODEL

The considered IH system is used by Plansee SE (Reutte,
Austria) to reheat molybdenum strips and is outlined
in Fig. 1. A thin molybdenum strip (domain Ωp⊂R3,
boundary ∂Ωp) moves under a longitudinal inductor coil
winding (domain Ωc⊂R3 for the conductor). In this way,
a narrow stripe of the metal strip is reheated. Along
this stripe, a downstream slitting shear cuts the strip.
The quality of the cutting edge depends on the strip
temperature.

The metal strip Ωp has a thickness of ly and moves with
the constant velocity vx along the direction x. Because
of residual stresses generated during an upstream rolling
process, the strip exhibits uncertain flatness defects. For
the IH process, the resulting non-zero curvature in the x-y
plane is relevant insofar as it entails an uncertain and time-
variant air gap width ag(x, t). The strip entry temperature
T in(t) and the exit temperature T out(t) are measured by
pyrometers on the upper surface at the points [x, z]=[0, 0]
and [x, z]=[lx, 0], respectively. Throughout Ωp, the com-
monly observed temperature non-uniformities cause only
insignificant thermal stresses.

The winding Ωc is a hollow conductor with rectangular
cross-section and internal water cooling. Magnetic cores
of width lz enclose the conductor and guide the magnetic
flux. The coil reaches from x=∆l to x=lx−∆l.

The inductor is part of a parallel resonant circuit with a
capacitor Cr. The capacitor and the inductor are coupled
by an ideal transformer with the ratio 1:at. The resonant
circuit is driven by an AC voltage source with adjustible
RMS voltage U s and angular frequency ω. The RMS
voltage U s and the RMS current Is at the voltage source
and the RMS current I through the inductor are known
from measurements.

The goal of the temperature controller is to heat the metal
strip to the desired value T out

d (t) with a tolerance of ±50◦C
at the center of the stripe (z=0). The time-varying air gap
ag(x, t) is an unknown disturbance.

As a basis for all further derivations, a 3D FE model of the
magnetic field is formulated and implemented in Comsol
Multiphysics.

2.1 Electromagnetic Field

Consider Maxwell’s equations for the dominant-magnetic
case, i.e., electrostatic charges and changes of the electric
displacement field are neglected. With the magnetic field
H, the magnetic flux density B, the electric field E, and
the current density J , Maxwell’s equations have the form

∇×H = J , ∇×E = −∂tB, ∇ ·B = 0. (1)

Us Is

Cr

1:at

I

x

y

z

x=0

∆l
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∆l
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Ωc, coil
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with surface ∂Ωp
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y
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∆l

Ωc, coil

Ωp, metal strip

Fig. 1. IH system: Inductor coil and plate geometries as
parts of a resonant circuit.

The associated constitutive equations are 1

B = µH, J = σE, (2)

where µ and σ are the magnetic permeability and the
electric conductivity, respectively. Initial and boundary
conditions are appropriately chosen.

Using the magnetic vector potential A defined in the form

B = ∇×A, (3)

(1) and (2) can be consolidated into (cf. Jackson (2011))

∇× (µ−1∇×A) = J =

{
Jc(I), Ωc

−σ∂tA, else.
(4)

Jc(I) is the current density in the conductor, depending
on the externally controlled current I. The term −σ∂tA
represents the induced current density in the remaining
volume. If induction takes place inside Ωc, the two cases
of (4) are mixed accordingly.

For IH, it is sufficient to consider time-harmonic solutions
of the electromagnetic system. Therefore, the harmonic

formulations A=Re
(
Âejωt

)
and Jc=Re

(
Ĵ

c
ejωt

)
, with

the imaginary unit j and the complex amplitudes Â and

Ĵ
c
, are used. The steady-state version of (4) is thus

∇× (µ−1∇× Â) =

{
Ĵ

c
, Ωc

−jωσÂ, else,
(5)

again with appropriate boundary conditions.

For the remainder of this paper, the time scale of the
electromagnetic field problem is considered several orders
of magnitude faster than the heat transfer dynamics. Thus,
all time dependencies of the electromagnetic quantities are

1 In case of a ferromagnetic strip, a nonlinear material law B(H), cf.
(2), has to be considered in (1). In this context, an in-line estimation
approach is proposed by Jadachowski et al. (2020).
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considered on the larger time scale of the heat transfer
problem.

2.2 Heat Transfer

Due to the cooling water in the hollow conductor, all
material points outside the strip domain Ωp are assumed
to have a constant uniform temperature. Heat transfer is
thus considered in the domain Ωp. For this domain, the
heat conduction equation with advection due to the strip
movement along the x direction and the heating due to IH
reads as (cf. Incropera et al., 2007)

ρcp(∂tT + vx∂xT ) = ∇ · (λ∇T ) +
σω2

2
‖Â‖22. (6a)

Here, T , ρ, cp, and λ denote the temperature, mass density,
specific heat capacity, and thermal conductivity of the
strip, respectively.

Each material point of the strip stays in the magnetic field
domain only for a few seconds. Due to this short time
span, the losses due to radiative and convective cooling on
∂Ωp are neglected. Using the derivative operator ∂n along
the surface normal direction, (6a) is supplemented by the
boundary conditions

T − T in = 0, x = 0, (6b)

−λ∂nT = 0, on ∂Ωp, (6c)

and by the initial condition T=T0 at t=0.

2.3 Implementation and Validation

The model (5) and (6) was implemented in Comsol Mul-
tiphysics. For validation of the model, a heating exper-
iment was conducted at the industrial plant and the ob-
tained time-averaged measurement values were compared
to the results of the model for a quasi-stationary scenario.

Experiment. The signals ω, U s, Is, T in, T out, and ag

were recorded and their time averages ω, U
s
, I

s
, T

in
,

T
out

, and ag, respectively, were computed. These time
averages are given in Table 1. Due to the low temperatures,
the pyrometer readings T in and T out are sensitive to
disturbances. The mean air gap ag was extracted from
video data using the canny algorithm (cf. Canny, 1986).

Table 1. Data from the heating experiment.

Quantity Magnitude Max. uncertainty

ω 2π × 7746rad s−1 ±2π × 10rad s−1

U
s

679.5V ±0.5V

I
s

150.7A ±0.1A

T
in

30◦C ±5◦C

T
out

268◦C ±5◦C
ag 8.4mm ±0.5mm
vx 0.1m s−1 ±0.01m s−1

In these experiments, the current I entering the inductor
(cf. Fig. 1) and the phase angles of U s and Is were not
measured. The transformer ratio 1:at is also not known
exactly. These missing quantities were estimated before
the simulation model was evaluated. For this purpose, the
following inverse problem was solved.

Inverse problem. The complex power Ss supplied by
the voltage source is distributed to the capacitor and the
inductor, i.e., Ss=S(I)−jωCr |U s|2. S(I) is the complex
power supplied to the inductor and can be computed by
the FE model. To compute the inductor current I, the
inverse problem

min
I

(∣∣∣U s
I

s
∣∣∣− ∣∣∣S(I)− jωCr|U s|2

∣∣∣)2

, s.t. ω = ω (7)

is solved using the algorithm snopt (cf. Gill et al., 2005).

Model validation. At the steady state, the process model
yields the exit temperature

T out = 290◦C. (8)

Based on the solution of (7), the sensitivity

∂T out

∂ag

∣∣∣∣
ag=ag

≈ −86◦C mm−1 (9)

of T out with respect to ag was calculated by finite differ-
ences. With the given uncertainty of 0.5mm for ag, it holds
that∣∣T out︸︷︷︸

(8)

− T
out︸︷︷︸

Table 1

∣∣ = 22◦C < 86◦C mm−1︸ ︷︷ ︸
(9)

× 0.5mm︸ ︷︷ ︸
Table 1

. (10)

This implies that the FE model is within the uncertainties
of the given measurement data and thus conforms to the
recorded measurements.

The validated 3D FE model is mainly used to evaluate the
performance of the proposed controller by simulations.

3. CONTROL-ORIENTED MODEL

Based on the process model (5) together with (6), a
reduced model suitable for real-time control is derived for
controller design.

3.1 Reduction to a 2D Problem

Using the specific enthalpy

h(x, y, z, t) =

∫ T (x,y,z,t)

0

ρcp(T
′)dT ′, (11)

(6) can be rewritten in the form

∂th + vx∂xh = ∇ ·
(
λ

ρcp
∇h

)
+

σω2

2
‖Â‖22, (12a)

with the boundary and initial conditions

h(0, y, z, t) = hin(t) (12b)

∂nh(x, y, z, t) = 0, on ∂Ωp, x 6= 0 (12c)

h(x, y, z, 0) = h0(x, y, z). (12d)

Simulations show that the convective term vx∂xh in (12a)
dominates the heat transfer along the x direction. Conduc-
tion contributes only 4% to the longitudinal heat transfer
and is therefore neglected. Along the lateral direction z,
however, there is no motion of the strip and conductive
heat transfer is relevant. The lateral heat flux will be
denoted by q̇z=− λ

ρcp
∂zh.

Furthermore, stray magnetic fields along the z direction
will be neglected. Hence, the calculation domain can be
limited to the stripe |z|<lz/2 and Â can be considered as
independent of z. Finally, examining isothermal surfaces
in the 3D model shows that the assumption of a uniform
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strip temperature T along the thickness direction y is
reasonable.

With these simplifications, (12a) reduces to

∂th(x, t) + vx∂xh(x, t) =
σω2

2
‖Â‖22 −

1

lz
q̇z
∣∣z= lz

2

z=− lz
2

,

x ∈ (0, lx), t > 0, (13)

where h and σω2

2 ‖Â‖
2
2 denote mean values over the cross-

section of the stripe |z|<lz/2. The boundary and initial
conditions likewise transform into

h(0, t) = h
in

(t), h(x, 0) = h0(x). (14)

3.2 Equivalent Circuit Formulation

In order to further simplify the right-hand side of (13),
consider the equivalent circuit diagram shown in Fig. 2.
This is a lumped-parameter approximation of the electro-
magnetic field problem (5).

The ohmic losses in the conductor Ωc and the strip Ωp

are represented by the resistors Rc and Rp, respectively.
The inductors Lcσ and Lpσ describe the stray magnetic flux,
while Lh describes the coupling between the coil and the
strip. The resistor RFe accounts for losses in the magnetic
cores.

The active electrical power P=Re (S(I)) supplied to the
coil can only be dissipated by the resistors. Hence, P can
be split into

P (t) = Rc|I(t)|2 + P p(t) + P l(t), (15)

where P p is the power that effectively heats the stripe in
the area |z|<lz/2. Other losses in the magnetic core and
due to lateral heat diffusion q̇z, or gains due to proximity
effects, are summarized in the term P l(t). Therefore,

σω2

2
‖Â‖22 −

1

lz
q̇z
∣∣z= lz

2

z=− lz
2

= b(x, t)P p(t) (16)

can be substituted for the right-hand side of (13). The
function b(x, t) has the unit m−3 and describes the spatial
distribution of the heating power P p along x. It must be
obtained from measurements, calculation, or estimation.
Energy conservation for the domain Ωp requires

∀t > 0 : lylz

∫ lx

0

b(x, t)dx ≡ 1. (17)

Insertion of (16) into (13) and consideration of (15) yields
the control-oriented model

∂th(x, t)+vx∂xh(x, t) = b(x, t)
(
P (t)−Rc|I(t)|2 − P l(t)

)
,

(18)
with (14) and the output equation

h
out

(t) = h(lx, t) + n(t). (19)

The term n(t) represents the pyrometer measurement
noise at x=lx. For the unknown power loss P l, the dis-
turbance model

d

dt
P l(t) = w(t), P l(0) = P l0, (20)

with the process noise w(t), is formulated.

The control-oriented model (18), (14), (19) does not con-
tain any material parameters of the strip. Transformations
between the specific enthalpy and the temperature based
on (11) can be done outside of the control loop. The power
losses P l(t) have to be estimated in real time.

Rc Lcσ Lpσ

RFe Lh Rp

IIs

CrUs

Fig. 2. Equivalent circuit diagram of the IH system.

3.3 Discretization

The control-oriented model (18), (14), (19), and (20) is
discretized in space and time using the finite volume
method and the upwind scheme. Let the uniform spatial
step size be ∆x=lx/N and the constant sampling time
∆t. They have to satisfy the Courant-Friedrichs-Lewy
condition (cf. Courant et al. (1928)) C=vx∆t

∆x ≤ 1. This
yields the discrete-time model[

hk+1

P lk+1

]
=

[
Φ −Γk
0T 1

] [
hk
P lk

]
+

[
Γk Γin

0 0

] [
uk
hin
k

]
+

[
0

∆t

]
wk

(21a)

yk = cThk + nk, (21b)

with the state vector

hk = [h(j∆x, k∆t)]j=1,...,N , (22a)

the system matrices

Φ =


1− C 0 0 . . .
C 1− C 0 . . .
0 C 1− C . . .
...

...
...

. . .

 , (22b)

Γk =

[
∆t

∆x

∫ j∆x

(j−1)∆x

b(x, k∆t)dx

]
j=1,...,N

, (22c)

Γin = [C 0 0 . . .]
T
, (22d)

cT = [0 . . . 0 1] , (22e)

and the signals

uk = P (k∆t)−Rc|I(k∆t)|2,

P lk = P l(k∆t), wk = w(k∆t), hin
k = h

in
(k∆t),

yk = h
out

(k∆t), nk = n(k∆t). (22f)

To validate the reduced control-oriented model (21), Fig. 3
shows the response of T out to a step change of the input
I, which corresponds to a step change in P , computed
by both the FE model (6) and the control-oriented model
(21). For this scenario, a homogeneous air gap ag is chosen,
and for the distribution b(x, t) of the heating power P p(t)

b(x, t) =

{
((lx − 2∆l)lylz)

−1
∆l < x < lx −∆l

0 else.
(23)

The parameter values are taken from Table 1. For the
power losses P l0=2kW is used, for the process noise wk=0,
and for the measurement noise nk=0.

4. TEMPERATURE CONTROL

The unknown distribution b(x, t) is assumed as in (23).
Consequently

Γk = Γ = const., (24)

and (21) becomes a linear, time-invariant (LTI) model.

For output tracking control, the 2DOF controller structure
shown in Fig. 4 is designed.
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Fig. 3. Step responses of the 3D FE model and the control-
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4.1 Feedforward Controller

From (21) and (24), the disturbance-free (P lk=0, wk=0,
nk=0) LTI FF model reads as

hff
k+1 = Φhff

k + Γuff
k + Γinhin

k (25a)

yff
k = cThff

k (25b)

with the initial condition hff
0 = h0 .

The input-output representation of (25) can be written as

yff
k = Guy(δ)uff

k + cT (δI −Φ)
−1 (

h0δ0 + Γinhin
k

)︸ ︷︷ ︸
=y0

k

, (26)

with the forward time shift operator δ for one sampling
interval, the discrete-time impulse δ0, the identity matrix
I, and the transfer function operator from uff

k to yff
k

Guy(δ) = cT (δI −Φ)
−1

Γ. (27)

Choosing yff
k equal to the desired output yd,k and assuming

a stationary specific input enthalpy hin
k =hin

s and h0=1hin
s ,

such that y0
k=hin

s , yields the FF control law

uff
k = G−1

uy (δ)
(
yd,k − hin

s

)
. (28)

Although G−1
uy (δ) is not proper 2 , the FF controller (28)

can be realized because the reference input yd,k is known
for a sufficient time in advance.

The error yfb
k =yk−yd,k is passed to a FB controller, which

is designed in the following steps.

4.2 Feedback Controller

Let hfb
k =hk − hff

k and ufb
k =uk − uff

k . The task of the FB
controller is to control the output yfb

k of the error system

2 Due to the distance ∆l from the coil to the output temperature
pyrometer, see Fig. 1, the output is delayed by a dead time of m∆t,
with m=d∆l/(vx∆t)e and the ceiling operator d·e.

(34)
Plantyd,k

yd,k+m

P lk

yk
−

− ufb
k

uk

−
(28)

hin
s

uff
k

(31)

Fig. 4. 2DOF control structure with LQG controller.

[
hfb
k+1

P lk+1

]
=

[
Φ −Γ
0T 1

] [
hfb
k

P lk

]
+

[
Γ
0

]
ufb
k +

[
0

∆t

]
wk (29a)

yfb
k = cThfb

k + nk, (29b)

with the initial condition hfb
0 = 0 .

For (29), a linear-quadratic Gaussian (LQG) controller
consisting of a Kalman filter (KF) observer and a linear-
quadratic regulator (LQR) will be designed.

Observer. The observability of (29) can be easily proven
by an eigenvector test. For the design of a KF for (29), let

x̂ek=[(ĥ
fb

k )T, P̂ lk]T be the estimated values of hfb
k and P lk.

With

Φe =

[
Φ −Γ
0T 1

]
, Γe =

[
Γ
0

]
, Ge =

[
0

∆t

]
, ce =

[
c
0

]
,

Qe = cov (wk) = (1W s−1)2,

Re = cov (nk) = (3.16× 104J m−3)2, (30)

the steady-state KF reads as

x̂ek+1 = Φex̂ek + Γeufb
k + K̂

e
(yfb
k − (ce)Tx̂ek). (31)

The gain vector K̂
e

follows from the algebraic Riccati
equation

P e = ΦeP e(Φe)T+GeQe(Ge)T−K̂
e
(ce)TP e(Φe)T

(32a)

K̂
e

= ΦeP ece
(
(ce)TP ece+Re

)−1
. (32b)

The parameters Qe and Re serve as tuning factors for the
estimator.

Controller. For the controller design, consider the
disturbance-free error system

hfb
k+1 = Φhfb

k + Γufb
k (33a)

yfb
k = cThfb

k . (33b)

A steady-state LQR with disturbance feedforward

ufb
k = KTĥ

fb

k + P̂ lk (34)

is designed, where the FB gain K satisfies the algebraic
Riccati equation

P = cQcT+ΦTPΦ−
(
ΓTPΦ

)T

KT (35a)

KT = −
(
R+ΓTPΓ

)−1

ΓTPΦ, (35b)

with the positive tuning factors

Q = (1m3 J−1)2, R = (3.16× 104W−1)2. (36)

5. RESULTS

The proposed 2DOF controller was tested in simulations
for the validated FE model from Section 2 as the plant.
The Comsol Multiphysics model was embedded in
a Matlab/Simulink model similar to (van Schijndel,
2014).

Test Scenario. In the considered test scenario, the air
gap ag used in the FE model varies in space and time
according to

ag(x, t) = ag
0 − âg cos (kg(x− vxt)) , (37)

with the parameters ag
0=7.5mm, âg=5mm, kg=π

2 m−1. The
desired output temperature T out

d describes a transition
from ambient temperature of 30◦C to 300◦C and then
remains constant.
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LQG (2-LQG) and 2DOF PI (2-PI) controllers.

Simulations. In the simulations, the 2DOF controller
proposed in this paper is compared to two proportional-
integral (PI) controllers. The first one is a näıve 1DOF
PI controller tuned for the system (25) with Rc=0. The
second one is a 2DOF PI controller. The PI part is derived
from the proposed LQG controller by means of balanced
truncation.

The results for all three controllers are depicted in Fig. 6.
The proposed 2DOF controller meets the control goal,
namely to keep the output error within the desired toler-
ance of ±50◦C. Also, the reduced 2DOF PI controller pro-
duces very similar results. This shows that the FF branch
of the proposed 2DOF controller and the introduction of
the virtual input uk are key components of this approach.

6. CONCLUSIONS

This paper demonstrates that induction heating of thin
metal strips is subject to heavy disturbances from uncer-
tain air gap geometries and that these disturbances can
be efficiently compensated by a 2DOF control structure.
A computationally expensive calculation of the electro-
magnetic field was avoided by employing an equivalent
circuit model and the energy balance. Difficulties arising
from nonlinear material parameters are circumvented by
using the specific enthalpy as a system state instead of the
temperature. Remaining model errors are captured by an
estimated input disturbance, which is compensated by the
FB controller. The resulting temperature controller is real-
time capable and clearly outperforms the most commonly
used 1DOF PI controller.
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