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Abstract: Distributed cooperative control of multi-agent systems, typically requires some form
of information exchange in order to achieve coordination between individual agents. Especially
in wireless communication systems, communication delays can lead to instability and can not
be neglected during the design of the control law. We propose a novel coordination scheme for
Euler-Lagrange systems taking into account constant communication delays. Additionally, in
order to save limited resources, we propose an event-triggered strategy for the communication
between agents, as well as for the local actuator updates of the individual agents. We show
that with the proposed algorithms a stable interaction in consensus tasks can be guaranteed.
Simulations illustrate the theoretical results.
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1. INTRODUCTION

Distributed control of multi-agent systems has become a
major research direction, including problems such as agree-
ment/consensus, formation control, and distributed opti-
mization and estimation. Practical applications include,
but are not limited to, search and rescue, cooperative
manipulation, and surveillance (Budde gen. Dohmann and
Hirche, 2020; Olfati-Saber et al., 2007; Cao et al., 2013).
For those types of systems exchange of information is re-
quired in order to meet the coordination aspect of the task,
typically achieved by embedding the agents in a common
communication network. As a result, issues arise regarding
the networked data transmission, since it is well known
that high network traffic increases communication delays
and the chance of packet dropouts. This is of particular
relevance in the case of limited communication bandwidth,
as it is common in wireless networks. In addition, with
decreased weight and size of future multi-agent systems,
embedded microprocessors become more important for
the implementation of the control algorithms. Since many
real-world applications require high update frequencies, it
becomes unfeasible to implement the underlying control
laws in time-driven fashion, while maintaining the often
required real-time capabilities of the system. A common
plant model for such applications is given by the Euler-
Lagrange equations of motion, since they describe mechan-
ical systems. Due to the highly non-linear dynamics of such
systems, classical results for first order or linear system
can not be directly applied and the dynamics have to be
explicitly addressed during the design of the control law.
? This work was supported by the German Research Foundation
(DFG) within the Joint Sino-German research project Control and
Optimization for Event-triggered Networked Autonomous Multi-
agent Systems (COVEMAS).

A common tool for designing multi-agent systems is given
by the passivity framework, since multiple systems can
be easily interconnected (Arcak, 2007). Due to the in-
herent passivity of Euler-Lagrange systems, such types
of algorithms are especially useful in this context. An
additional important property of passive systems is the
possible extension to deal with time-delays via the well-
known scattering transformation (Anderson and Spong,
1989). Originally proposed for teleoperator systems, the
concept can be extended for the consensus problems of
Euler-Lagrange systems (Wang, 2013). Scattering like ap-
proaches have also been investigated for event-triggered
systems (Yu and Antsaklis, 2014), which has been applied
to Euler-Lagrange systems in a teleoperation scenario (Hu
et al., 2016). However, in those approaches merely the
communication between agents is in even-triggered fash-
ion, while the feedback passivation and with that the
controller updates are obtained in time-continuous fashion.
In contrast, (Liu et al., 2016) provide a solution for a
complete event-triggered framework for Euler-Lagrange
systems with parametric uncertainties, including event-
triggered communication and actuator updates. However,
in this work time delays are neglected and some continuity
assumptions have to be made for the underlying dynamics,
in order to show Zeno freeness of the triggering scheme. In
addition, such model-based approaches which are typically
used for feedback passivation are sensible to modeling
errors and can be computationally demanding. Consensus
for Euler-Lagrange systems with unknown time-delays and
event-triggered control and communication remains an
open problem.

In this work we present a distributed control approach
for cooperating Euler-Lagrange systems. We provide a
strategy allowing for event-triggered communication and
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controller updates, while considering constant delays in the
communication between agents. This is done by exploiting
the properties of first order auxiliary systems, which are
coupled to the agent dynamics in an energetically passive
fashion. In contrast to previous works, no information
about the plant dynamics is required or estimated and as
a result, no assumptions on the Euler-Lagrange dynamics
are needed.

The remainder of this work is structured as follows. After
introducing some preliminaries and the problem statement
in Section 2, we present the general idea of how to deal
with the communication delays by presenting the basic
control law in time-continuous fashion in Section 3.1.
In Section 3.2 the event-triggering mechanism for the
communication between agents is introduced and extended
to the local feedback control of the individual agents
in Section 3.3. The proposed algorithm is illustrated in
simulation in Section 4.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Notation

For any given vector xi ∈ Rn and matrix Ai ∈ Rn×n,
where the index refers the quantity to agent i, we denote
with x ∈ RnN and A ∈ RnN×nN the column vector
obtained by stacking the individual vectors for all N
agents and A = blockdiag(A1, . . . ,AN ), respectively.
The smallest eigenvalue of A is denoted with λmin(A).
The n× 1 vector 1n denotes a column vector full of ones,
while In is the n×n identity matrix and 0n×m is the n×m
zero matrix. The Kronecker product operator is denoted
as⊗. The Euclidean norm of a vector and the matrix norm,
induced by the Euclidean norm, are denoted by ‖(·)‖2.
Define ‖x‖A = xTAx, for any symmetric positive definite

matrix A. Given a function f(t) : R+
0 → Rn, we denote

with f(t−) the limit of f(s) when s approaches t from
the left. For notational convenience we will omit the
dependence of a function f(t) on the time t, if it is clear
from the context. A function α : R+

0 → R+
0 is said to be of

class K∞, if it is continuous, strictly increasing, α(0) = 0,
and α(s)→∞ if s→∞.

2.2 Euler-Lagrange Systems

In this work we consider N agents, where the dynamics
of the ith agent can be modeled via the Euler-Lagrange
formalism as

Mi(qi)q̈i +Ci(qi, q̇i)q̇i = τi, (1)

where qi ∈ Rn and τi ∈ Rn are the vector of general-
ized coordinates and control inputs of the ith agent and
the inertia and Coriolis/centrifugal matrix are denoted
with Mi ∈ Rn×n and Ci ∈ Rn×n, respectively. The
following basic properties can be found in any textbook
about Euler-Lagrange systems.

P(1) The matrix Mi(qi) is symmetric positive definite and
bounded from above.

P(2) The matrixCi(qi, q̇i) containing the Coriolis and cen-
trifugal terms is bounded for bounded velocities q̇i.

P(3) The matrix 1
2Ṁi(qi) − Ci(qi, q̇i) is skew symmetric

and as a result xT
(

1
2Ṁi(qi)−Ci(qi, q̇i)

)
x = 0 for

any x ∈ Rn.

2.3 Graph Theory

In this work we model the interaction between the N
individual agents with a weighted communication graph
G = (V, E ,W ), with vertex set V = {1, ..., N} representing
the N agents and edge set E ⊆ V × V, where two agents
communicate with each other if (i, j) ∈ E . The neighbor-
hood of agent i is defined as Ni = {j ∈ V|(i, j) ∈ E}. The
weight matrix W is a positive definite block-diagonal ma-
trix with weight Wk ∈ Rn×n on the diagonal for each edge
k ∈ E . For the sake of exposition we assume Wk = wkIn,
where wk ∈ R+, but the results can be easily extended to
the more general case. In this work we consider undirected
and connected graphs, i.e. if (i, j) ∈ E ⇔ (j, i) ∈ E and
there exists a path between any two vertices i and j.

2.4 Problem Statement

The goal of this work is to achieve consensus for a multi-
agent system consisting of N agents with dynamics (1) in
distributed fashion. This is said to be achieved if

‖qi − qj‖2 = 0

‖q̇i‖2 = 0,

for all i, j = 1, ..., N . In this context distributed means
that each agent i has access only to the states of its neigh-
bors in Ni, characterized by the communication graph.
We assume constant unknown communication delays, such
that at time t agent i can only access the state of agent j
delayed by a finite amount of time Tji. It should be noted
that the delays Tji,∀(i, j) /∈ V do not have any physical
meaning since the state j is not accessible by agent i and
we simply chose Tji = 0,∀(i, j) /∈ V. In addition to solv-
ing the problem in time-continuous fashion, we consider
the case of event-triggered communication and actuation
updates. As a result, signal transmissions between agents
and actuation updates only occur during certain discrete
time instances. The goal for such schemes is to design a
triggering condition, which online determines the event-
times tki

and tci for the communication and actuation
updates, respectively, as

tki+1 = inf {t > tki
|φi(t) ≤ 0} , (2)

tci+1 = inf {t > tci |ϕi(t) ≤ 0} , (3)

where φi and ϕi are functions to be designed. In between
events, the respective value is hold constant with a zero-
order hold. Important for the design of event-triggered
systems is avoidance of the so called Zeno behavior which
describes the occurrence of infinite events in a finite time.
More formally, a system is said to exhibit Zeno behavior
if there exist finite ki or ci such that tki+1 − tki

= 0
or tci+1− tci = 0. It should be noted that the triggering is
desired to be asynchronous, since all agents transmitting
their data at the same time would defy the purpose of
the triggering in the communication. In addition, only
locally available information can be used for deciding the
event times. Finally, we desire a model-free algorithm
in the sense that the system dynamics are assumed to
be completely unknown and no estimation/adaptation is
required.
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3. MAIN RESULTS

In this section, we first introduce the basic ideas with a
continuous control law. Then we present a strategy to
dynamically obtain the communication instants tki and
extend the result to event-triggered actuator updates at
times tci , which occur independently of communication
events.

3.1 Time-continuous Communication and Control

Starting with the time-continuous case, we present the
following control law

τi(t) = −Diq̇i(t)−Ki (qi(t)− xi(t)) , (4)

with symmetric positive definite Ki,Di ∈ Rn×n and
where xi ∈ Rn is the state of the dynamical system

ẋi(t) = −
∑
j∈Ni

wij (xi(t)− xj(t− Tji))−Kiq̇i(t). (5)

Note that the xi dynamics consist of two parts. The idea
is to exploit the robustness of the first order agreement
problem to time delays as reported in (Münz et al., 2010).
As such, the first term consists of a standard first order
agreement problem with communication delays. The sec-
ond term is the velocity feedback from the ith agent. With-
out the first term, xi would simply integrate the ith agents
velocity as commonly done in coordination algorithms for
port-Hamiltonian systems (Vos et al., 2014). The dynamics
of the ith agent are then coupled to their corresponding
controller state with a simple position feedback and a local
damping term in (4), ensuring stability of the system as
given in the following theorem.

Theorem 1. Consider the multi-agent system consisting
of N agents with Euler-Lagrange dynamics (1), driven
by the time-continuous control law (4) with controller
dynamics (5). If the underlying communication graph is
connected, then the agents asymptotically reach consensus
with zero velocity, i.e. ‖q̇‖2 → 0 and ‖qi − qj‖2 → 0.

Proof. Define

V =
1

2

‖q̇‖2M + ‖q‖2K︸ ︷︷ ︸
Va

+ ‖x‖22︸ ︷︷ ︸
Vc

 . (6)

Now consider the Lyapunov candidate

V1 = V +
∑

(i,j)∈E

∫ t

t−Tij

wij ‖xi‖22︸ ︷︷ ︸
Vd

, (7)

where wij > 0 is the weight of the edge (i, j). The
derivative of (7), along the solutions of (1) with (4) and
(5), evaluates to

V̇1 = −q̇TDq̇ − 1

2

N∑
i=1

∑
j∈Ni

wij ‖xi(t)− xj(t− Tji)‖22 (8)

and ‖q̇‖2 , ‖xi − xj‖2 → 0,∀i, j follows immediately. Com-
bined with the dynamics (1), (4), qi → xi can be con-
cluded. 2

Remark 2. Note that the Lyapunov candidate (7) can be
divided into Va and Vc + Vd, corresponding to the agent
and controller dynamics, respectively. From a passivity

point of view, it can be shown that with the proposed
control law the agent and controller dynamics are passive
with input-output pairs (xi,Kiq̇i) and (−Kiq̇i,xi), re-

spectively, since V̇a ≤ xT
i Kiq̇i and V̇c + V̇d ≤ −xT

i Kiq̇i.
This is achieved by introducing the term Kiq̇i in (5). As
a result, the cross term in the Lyapunov function vanishes
and the feedback interconnection of the two systems is
stable. In addition, with output xi, the synchronization
of the controller states can be interpreted from a scatter-
ing transformation point of view. In this work however,
since the synchronization is achieved for the first order
system (5) and the agents dynamics (1) are merely coupled
to those, no knowledge of the agents dynamics is required.

3.2 Event-Triggered Communication

With the control law presented in the last section, the
controller states xi are send over the communication net-
work in time-continuous fashion, leading to an inefficient
use of the communication bandwidth. Here we present a
modified version, where transmissions between agents are
limited to occur only at certain discrete time-instances tki .
For this consider the modified controller dynamics with
event-triggered communication

ẋi(t) = −
∑
j∈Ni

wij (x̄i(t)− x̄j(t− Tji))−Kiq̇i(t), (9)

where
x̄i(t) = xi(tki

). (10)

Following (Girard, 2015), we design a dynamic triggering
law based on the auxiliary variable ηi with dynamics

η̇i(t) = −α(ηi(t)) + fi(t), (11)

with initial condition ηi(0) > 0, class K∞ function α, and

fi(t) =
1

2

∑
j∈Ni

σiwij ‖x̄i(t)− x̄j(t− Tji)‖22

−

∥∥∥∥∥∥
∑
j∈Ni

wij(x̄i(t)− x̄j(t− Tji))

∥∥∥∥∥∥
2

‖x̂i(t)‖2 ,
(12)

with 0 < σi < 1, and the trigger induced error is given by

x̂i(t) = xi(t)− xi(tki). (13)

With the triggering law

tki+1 = inf {t > tki |ηi(t) + θifi ≤ 0} , (14)

with θi > 0, we can establish following lemma, which will
prove useful for the analysis to follow.

Lemma 3. If the event-times tki+1 are chosen according to
(14), then ηi(t) > 0,∀0 ≤ t <∞.

The proof follows (Girard, 2015) and is omitted here. The
triggering instances in (14) are determined by the state of
the auxiliary system (11) and the triggering function (12).
The latter is commonly used to maintain stability of the
triggered system (Tabuada, 2007), while the former can
increase the triggering performance and allows us to show
that no Zeno behavior occurs. The control scheme with
event-triggered communication is depicted in Fig. 1. With
the proposed triggering strategy, we obtain the following
stability result.

Theorem 4. Consider the multi-agent system consisting
of N agents with Euler-Lagrange dynamics (1), driven by
the time-continuous control law (4) with event-triggered
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Event detector (14)
+ηi dynamics (11)

Controller
dynamics (9)

Event detector (14)
+ηj dynamics (11)

Controller
dynamics (9)

Hold

Hold

...
... Network

Synchronization Controller i

Synchronization Controller j

x̄j∈Ni
(t− Tji)

x̄i∈Nj (t− Tij)

xi

xj

Fig. 1. Block diagram of the event-triggered communica-
tion scheme. For clarity the local dynamics of the
plant are omitted.

controller dynamics (9). If the underlying communication
graph is connected and the triggering instances tki are lo-
cally chosen by each agent i as (14) then the agents asymp-
totically reach consensus with zero velocity, i.e. ‖q̇‖2 → 0
and ‖qi − qj‖2 → 0 and no Zeno behavior occurs.

Proof. Consider the Lyapunov candidate

V2 = V +
∑

(i,j)∈E

∫ t

t−Tij

wij ‖x̄i‖22 +

N∑
i=1

ηi, (15)

the derivative of which, along the solutions of (1) with (4)
and (9), evaluates to

V̇2 =− q̇TDq̇ −
N∑
i=1

∑
j∈Ni

wij(x̂i + x̄i) (x̄i − x̄j(t− Tji))

−
N∑
i=1

∑
j∈Ni

[wij

2
x̄j(t− Tji)T x̄j(t− Tji)−

wij

2
x̄T
i x̄i

]

+

N∑
i=1

[fi − α(ηi)]

≤−
N∑
i=1

[
λmin(Di) ‖q̇i‖22 + α(ηi)

]
−

N∑
i=1

1− σi
2

∑
j∈Ni

wij ‖x̄i − x̄j(t− Tji)‖22

and as a result ‖q̇i‖2 , ‖x̄i − x̄j(t− Tji)‖2 , ηi → 0. Note
that due to (14) and Lemma 3, fi ≥ 0 and thus

‖x̂i(t)‖2 ≤
∑

j∈Ni
σiwij ‖x̄i(t)− x̄j(t− Tji)‖22

2
∥∥∥∑j∈Ni

wij(x̄i(t)− x̄j(t− Tji))
∥∥∥
2

. (16)

Since ‖x̄i − x̄j(t− Tji)‖2 → 0, it follows that x̂i(t) → 0
and thus ‖xi − xj(t− Tji)‖2 → 0 can be concluded.

Finally, from ‖q̇i‖2 → 0 and the dynamics (1), (4) it can be
concluded that qi → xi and thus ‖qi − qj(t− Tji)‖2 → 0.
Note that ‖x̂(tki

)‖2 = 0 at the triggering instances tki
and

with above stability results it can be verified that

d

dt
‖x̂(tki

)‖2 ≤ γ, (17)

in the interval t ∈ [tki , tki+1), where γ > 0. As a result we
obtain by integration over [tki , t],

‖x̂(t)‖2 ≤ (t− tki
)γ. (18)

In addition, note that due to the triggering condition (14)
events can only occur in the case

∥∥x̂i(t
−
ki+1)

∥∥
2
≥ ε > 0

and thus we obtain

(t−ki+1 − tki
) ≥ ε

γ
> 0. (19)

2

3.3 Event-Triggered Control and Communication

In the previous section, we introduced event-triggered
communication between agents in order to achieve a more
efficient use of the communication bandwidth. However,
some applications with limited computational resources
might also not be able to cope with the high sampling
frequencies typical used to mimic time-continuous behav-
ior. In order to overcome this limitation, we extend the
proposed control law with an event-triggered controller
update strategy, as

τi(t) = −Diq̇i(tci)−Ki(qi(tci)− xi(tci)), (20)

where the dynamics of xi are given as in (9). Similar to
the previous section, we design a dynamic triggering law
based on the auxiliary variable µi with dynamics

µ̇i(t) = −β(µi(t)) + hi(t), (21)

with initial condition µi(0) > 0, class K∞ function β, and

hi(t) = −‖τ̃i‖2 ‖q̇i‖2 + δiλmin(D) ‖q̇i‖22 , (22)

with 0 < δi < 1 and the trigger-induced error defined as

τ̃i(t) = τ c
i (t)− τi(tci), (23)

where τ c
i refers to the time-continuous control law (4).

Note the difference between xi(t) − xi(tci) in τ̃i(t) and
x̂i(t) = xi(t) − xi(tki

). The error xi − xi(tci) is induced
by the triggering in the control-law (20), while x̂i is related
to the event-triggered communication in the controller
dynamics (9). This also means that there is asynchronous
triggering for the communication and control. This allows
for a certain degree of flexibility, since event-triggering in
the communication and control are motivated by different
factors and can thus be designed independently with the
concrete task characteristics in mind. Similar to Lemma 3,
if the event-times tci+1 are chosen according to

tci+1 = inf {t > tci |µi(t) + ϑihi ≤ 0} , (24)

with ϑi > 0, the following lemma can be easily verified.

Lemma 5. If the event-times tci+1 are chosen according
to (24), then µi(t) > 0,∀0 < t <∞.

The complete control and communication architecture
can be found in Fig. 2. With the proposed triggering
strategy, we can state the following stability result for the
asynchronous event-triggered communication and control
law.
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Agent i (1)

Synchronization
Controller i (Fig. 1)

Network

Control law (20)

Event detector (24)
+µ dynamics (21)

Local dynamics i

q̇i

xi

qi

τ̄i

x̄i x̄j∈Ni(t− Tji)

Fig. 2. Block diagram of the control scheme with event-
triggered control and communication.

Theorem 6. Consider the multi-agent system consisting
of N agents with Euler-Lagrange dynamics (1), driven by
the event-triggered control law (20), with event-triggered
communication in the controller dynamics (9). If the
underlying communication graph is connected and the
triggering instances tki

and tci are locally chosen by each
agent i according to (14) and (24), respectively, then the
agents asymptotically reach consensus with zero velocity,
i.e. ‖q̇‖2 → 0 and ‖qi − qj‖2 → 0 and no Zeno behavior
occurs.

Proof. Consider the Lyapunov candidate

V3 = V2 +

N∑
i=1

µi. (25)

the derivative of which, along the solutions of (1) with (20)
and (9), evaluates to

V̇ =

N∑
i=1

[
q̇Ti τ̃i + fi − α(ηi) + hi − β(µi)

]
+

N∑
i=1

x̂T
i

∑
j∈Ni

wij(x̄i − x̄j(t− Tji))

− q̇TDq̇ −
N∑
i=1

∑
j∈Ni

wij

2
‖x̄i − x̄j(t− Tji)‖22

≤−
N∑
i=1

[
(1− δi)λmin(D) ‖q̇i‖22 + α(ηi) + β(ηi)

+
1− σi

2

∑
j∈Ni

wij ‖x̄i − x̄j(t− Tji)‖22
]
.

The rest of the proof follows the same argumentation as
the proof of Theorem 4 and is omitted here. 2

4. SIMULATIONS

In this section we present simulation results in order to
illustrate the presented results. Due to space limitations
we only provide results for the more general case with
event-triggered control and communication as proposed in
Section 3.3.

4.1 Setup

The dynamics (1) and the initial positions of the agents,
moving in two dimensional space, are chosen as in (Liu

Table 1. Simulation parameters

Di Ki w δi σi ηi(0) µi(0) θi, ϑi

15In 10In 10 0.9 0.45 5 2.5 0.1

0

2

4

6
Task error

0

0.5

1

1.5

‖q̇‖22

0 2 4 6 8 10
0

10

20

Time (s)

Synchronization error

0 2 4 6 8 10
0

10

20

Time (s)

‖x− q‖22

Fig. 3. Clockwise: Task Error (26), velocity error

‖q̇i‖22, synchronization error (27) and tracking error

‖x− q‖22 of the proposed event-triggered communi-
cation and control scheme.

et al., 2016) and the communication graph corresponds
to a circular graph, where each agent has two neighbors
with equal edge weights wij = w,∀(i, j) ∈ E . The
controller parameters can be found in Table 1 and we
chose αi(ηi) = ηi and βi(µi) = µi. The simulation
frequency is chosen as 1

ts
= 10kHz and lasts for 10s.

The results are obtained with a communication delay
of Tij = 100ms,∀(i, j) ∈ E .

4.2 Results

The convergence of the relevant quantities is depicted
in Fig. 3. In the top left plot the task error is defined
as

N∑
i=1

∑
j∈Ni

‖qi(t)− qj(t− Tji)‖22 , (26)

and describes the achievement of the consensus task. This
is a result of the convergence of the synchronization error
defined as

N∑
i=1

∑
j∈Ni

‖xi(t)− xj(t− Tji)‖22 (27)

to zero, as shown in the bottom left, and the fact the vector
of generalized coordinates converges to the state of the
controller, i.e. ‖x− q‖2 → 0 as depicted in the bottom
right plot. Finally, it can be seen in the top right plot
that the velocity ‖q̇‖2 → 0 and the system remains in the
equilibrium. Additionally, the control scheme is illustrated
by providing the first dimension of the individual state
trajectories for the agents and controller in Fig. 4. Re-
garding the triggering, it becomes apparent from Table 2
that the events for all agents can be drastically reduced
to less than 100 and 150 events in the 10s of simulation
for the communication and controller, respectively. This is
further supported by the minimum inter-event time, which
is bigger than 0.015 = 150ts for all agents. In addition, this
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i

Fig. 4. Trajectories of the systems states for each agent i.
From top to bottom: vector of generalized coordinates
qi, velocity thereof q̇i, and controller state xi. For
clarity, the results are presented only for the first
dimension of each state.
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Time (s)

A
ge

n
t
i

Fig. 5. Event-times tki
for the communication for all agents

using the proposed event-triggered communication
and control scheme.

Table 2. Number of event and minimum inter-
event times for the event-trigger in the com-

munication (14) and control (24).

i Events (14) Events (24) tmin (14) tmin (24)

1 85 133 0.0353 0.0202

2 80 136 0.0303 0.0185

3 96 143 0.0299 0.0165

4 90 144 0.0293 0.0198

5 92 149 0.0303 0.0158

result confirms that no Zeno behavior occurred during the
simulation, which can also be observed from Fig. 5, depict-
ing the event-times tki for the communication instances of
all agents. Similar figures can be obtained for controller
updates, but are omitted here due to space limitations.

5. CONCLUSION

In this work we present a control law for the consensus
problem for distributed Euler-Lagrange systems. We pro-
vide an even-triggering strategy in order to reduce the
number of transmission between the agents, as well as
the actuator updates of the controller, in order to safe
valuable resources. In order to cope with communication
delays we use results on first order agreement problems
and introduce an auxiliary system, which is then coupled
to the agent in an energetically passive fashion. As a result
no knowledge and with that no assumptions on the Euler-
Lagrange dynamics are required.
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