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Abstract: The wave energy converter control competition (WECCCOMP) allowed several
real-time control approaches to be assessed, both in numerical and physical experiments. The
solution retained by IFP Énergies Nouvelles (IFPEN), which won the numerical simulation and
experimental evaluation phases, consists of a receding-horizon MPC algorithm, including an
estimator and a predictor for the wave excitation torque. The control objective function, solved
by a quadratic programming (QP) optimiser in the real-time implementation, is weighted over
the receding time horizon by means of weighting coefficients, which are optimised off-line for each
sea state, in order to take into account the non-ideal power take-off (PTO) efficiency. Given the
potential complexity of the interaction between the different components involved in the control
implementation (estimation, prediction, QP solution, choice of weightings), it is useful to carry
out an ex-post analysis, in order to understand if, and how, the solution proposed by IFPEN
could have been improved. To that end, a Fourier spectral control algorithm is implemented,
which is able to calculate the optimal trajectory and control torque for the totality of a signal,
simulated from WECCCOMP sea states, taking the non-ideal PTO efficiency into account.
By comparing MPC results with the theoretically optimal solutions provided by the spectral
method, it is found that, in the studied WECCCOMP sea states, the IFPEN MPC algorithm
performance lies within approximately 10% of the optimal solution, in terms of electric power.
The influence of the MPC forecast accuracy and prediction horizon is examined. Finally, some
challenges associated with the offline MPC weighting optimisation are identified.

Keywords: Wave energy converters, Power-maximising control, Model predictive control,
Spectral control, Non-smooth optimal control

1. INTRODUCTION

Real-time power-maximising control is seen as a promis-
ing path towards cheaper wave energy harvesting, see
for example Ringwood et al. (2014). A large variety of
wave energy converter (WEC) control algorithms have
thus been investigated, from relatively simple parametric
controllers to more sophisticated model predictive control
(MPC) algorithms, as reviewed by Faedo et al. (2017).
However, comparison between existing control approaches
is difficult, because published works, regarding different
control strategies, also typically differ with respect to
the WEC models and sea states considered. Furthermore,
few studies exist reporting the implementation of control
strategies in physical experiments. Announced in 2017 by
Ringwood et al. (2017), the WEC control competition
(WECCCOMP) provided a framework for a fair com-
parison between different algorithms, including physical
experiments on a scale WEC model in a wave tank.

The objective of WECCCOMP contestants consisted in
designing a real-time power-maximising control algorithm
for a scale model of the Wavestar device 1 , evaluated in
both numerical and physical experiments, corresponding
to the two phases of the competition:

• In the numerical simulation phase, the competing
solutions were assessed in a WECSIM 2 simulation
environment, in wave excitation signals generated
from six different sea states.

• Experimental tests took place in Aalborg University
(Denmark) in May 2019, consisting of 3 realisations
for each of the six sea states of the competition.

In addition to the requirements usually associated with
WEC control, such as wave excitation estimation and
prediction, the WECCCOMP control evaluation frame-
work presents several specific challenges from a control
implementation perspective. Firstly, the small scale of the

1 http://wavestarenergy.com/
2 https://wec-sim.github.io/WEC-Sim/
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device, and the corresponding short wave periods of the
competition sea states, imply shorter control time steps
than in a full-scale implementation, thus making the real-
time compatibility of the proposed algorithms more chal-
lenging. Furthermore, the WECCCOMP model includes
an electrical power take-off (PTO) system with a non-ideal
efficiency function, which results in a non-quadratic, non-
convex objective function with discontinuous derivatives,
to be optimised by the control algorithm at each control
update.

The control solution proposed by IFP Energies Nouvelles
(IFPEN), which is a receding-horizon MPC scheme de-
tailed by Tona et al. (2019), came first in the two phases
of the competition. However, this success only constitutes
a relative result, as it does not indicate how far all com-
petitors were from the actual optimal power, which could
have been achieved by the WECCCOMP model in the
same sea states, under optimal control.

In this paper, a spectral method, derived from Mérigaud
and Ringwood (2017), is employed to compute the optimal
control torque, trajectory and mean electrical power, for
the WECCCOMP model in random realisations of the
competition sea states. Such results assume that the total-
ity of the wave excitation signal is known and are not lim-
ited by the requirements of real-time compatibility; they
therefore constitute an upper bound to the performance
of any control algorithm working in a real-time, receding-
horizon configuration.

An ex-post analysis of IFPEN’s MPC algorithm is carried
out in two steps. Firstly, the MPC algorithm is compared
with the spectral control method in identical realisations,
representative of the WECCCOMP sea states. This al-
lows for assessing the performance of IFPEN’s algorithm
in absolute terms, through comparison with an optimal
control solution. Then, various hypothesis are investigated
in order to explain the differences observed between the
MPC performance and optimal control results, and to find
paths of improvement.

In the present study, in order to facilitate the interpre-
tation of control results, the following simplifications are
made with respect to the two WECCCOMP phases:

• The PTO internal dynamics are not considered, as
those had been found to have very minor effects
upon the controller’s performance in the numerical
evaluation framework, and were not emulated in the
experimental evaluation phase.
• The hydromechanical model used to optimise and

assess the controllers is linear (unlike the numerical
model implemented in the WECSIM environment,
which includes mechanical non-linearities); therefore
the controllers are evaluated in simulations based on
the nominal WEC model.
• Only the average electric power is optimised, as

opposed to the WECCCOMP evaluation criterion,
that also penalises large position, control input and
power excursions.

The rest of this paper is organised as follows:

• In Section 2, the mathematical model of the WECC-
COMP device is introduced, and the control problem
is formulated.

• Section 3 presents the MPC solution retained by
IFPEN.

• Section 4 details the offline spectral control method
employed in this study.

• The numerical experiments and their results are de-
scribed and commented in Section 5.

• Conclusions are presented in Section 6.

2. THE WECCCOMP CONTROL PROBLEM

2.1 WEC dynamical model

In the present study, the Wavestar mathematical model
is linearised around the mean angular position of the
rotational arm 3 . The model expresses the balance between
torques calculated at the rotation point. It is identical
to that, identified by the competition organisers and
documented by Ringwood et al. (2017), and takes the form
of the well-known Cummins equation:

(I + I∞)ẍ+ cvẋ+ kr ~ ẋ+Kx = e+ u (1)

of which the terms can be thus detailed:

• x is the angular position deviation.
• I is the rotational inertia of the float and its arm in

the rotation point.
• The moment, in the rotation point, of radiation

forces, is expressed as the sum of inertial terms I∞ẍ,

and memory effects, kr ~ ẋ =
∫ t
0
kr(τ)ẋ(t − τ)dτ ,

where kr(τ) is the convolution kernel corresponding
to radiation forces in the rotation point. However,
in the WECCCOMP model, the convolution term
is approximated by means of a state-space model of
order 2, see Ringwood et al. (2017).

• cvẋ represents a damping term, which aims at taking
into account friction, both in the fluid and at the arm
joint.

• Kx represents the hydrostatic stiffness moment.
• e is the moment of the excitation wave torque exerted

onto the floater by incident waves.
• u is the moment of the force applied by the linear

generator. u is the control variable which has to be
optimised.

The dynamical equations can also be expressed in the
frequency domain in the following manner:

z(ω)x̂(ω) = ê(ω) + û(ω) (2)

where z(ω) = K − ω2(I + ar(ω))− jω(cv + br(ω)), and ar
and br are frequency-dependent added-mass and damping
terms, respectively, which are related to I∞ and kr through
formula given by Ogilvie (1964).

3 Note that, in the first WECCCOMP phase, the simulation frame-
work included some non-linear effect in the mechanical arm rotation
and torque calculations. In contrast, in the present study, the linear
model is employed both by the controller and in the numerical
simulations, which avoids modelling inconsistencies between linear
hydrodynamics and non-linear rotational motion representation, and
considerably simplifies the analysis.
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2.2 Optimal control problem formulation

In the WECCCOMP case study, the non-ideal PTO sys-
tem is modelled by means of a non-unity efficiency factor
µ = 0.7 so that, denoting the instantaneous absorbed
hydromechanical power as pa(ẋ, u) = −u(t)ẋ(t), the in-
stantaneous electric power is expressed as follows:

pe(ẋ, u) =

µpa(ẋ, u) if pa(ẋ, u) ≥ 0
1

µ
pa(ẋ, u) if pa(ẋ, u) ≤ 0

(3)

Define h(pa) the efficiency function, equal to µ for positive
pa, and 1/µ for negative pa. Such a discontinuous function
is undesirable from a control implementation perspective,
for both spectral and MPC approaches. How this dis-
continuous efficiency function is dealt with, within the
MPC and spectral control frameworks, will be specified
in corresponding Sections 3 and 4.

Define L{x} := (I+I∞)ẍ+cvẋ+kr~ ẋ+Kx. The optimal
control problem takes the following form:max f(x, u) =

1

Th

∫ Th

t=0

pe(ẋ, u)dt

s.t. L{x} = u(t) + e(t)

(4)

where Th is the control time horizon, and the equality
constraint expresses the fact that the dynamical equation
(1) must be satisfied at every instant. Finally, like in
IFPEN’s WECCCOMP solution, an additional constraint
is added onto the control input magnitude, in the form
|u| ≤ umax, where umax = 10 N.m.

3. THE IFPEN MPC SOLUTION

The main advantage of MPC, as applied to WEC con-
trol, is the ability to solve the power maximising control
problem in a receding-horizon configuration, using wave
excitation moment predictions, based on a discrete-time
model of the WEC dynamics. MPC is also well known
for efficiently coping with actuator and state constraints.
At each time step of an MPC algorithm, the optimal
control problem is solved over the receding time horizon.
The resulting control input is only applied at the current
time step and, at the next time step, the optimal control
problem is solved again, with updated variables.

IFPEN’s real-time MPC strategy, an overview of which is
given by Nguyen et al. (2016), was tested on a Wavestar
scale model in the Aalborg University wave basin in 2015,
and again in 2019 for the WECCCOMP. It comprises the
three main components shown in Fig. 1: wave excitation
moment estimation, short-term wave excitation moment
prediction, and online control problem solution. A brief
description of each component is given in the following
subsections. For further details on the MPC scheme, the
reader should refer to the article by Nguyen et al. (2016)
and other works by the same authors.

3.1 WEC dynamical model for control

From Eq.(1), a linear state-space model is derived. The
resulting design model is a 4th-order linear state-space
representation and is expressed as follows:

Ac =

 0 1 01×2

− K

I + I∞
−Dr + cv
I + I∞

− Cr

I + I∞
0 Br Ar

 ,
Bc =

 0
1

I + I∞
02×1

 , Cc =

[
1 0 01×2
0 1 01×2

] (5)

where 0i×j is a i-row and j-column zero matrix and Ar, Br,
Cr, Dr are the state-space representation matrices of the
2nd order radiation model, with entries provided by the
organisers, see Ringwood et al. (2017). In the following,
X = (x, ẋ, xr)

T denotes the state variables, with xr the
state vector of radiation state-space model, U = e + u
denotes the input variable and Y = (x, ẋ)T , the output
variables.

IFPEN’s MPC solution requires a discretisation of the
WEC dynamics and control problem. The WEC dynamics
are discretised using bilinear Tustin’s method to obtain
matrices Ad, Bd and Cd from Ac, Bc and Cc.

3.2 Wave excitation moment estimation and prediction

The wave excitation moment is not directly available to
measurement during WEC operation, and hence must be
estimated from the WEC dynamics. To achieve this, a
linear Kalman filter (LKF), whereby the wave excitation
randomness is represented by means of a random walk
model, is used to estimate the state X, based on the
model described by (5). The time series, obtained with
present and past estimated values of excitation moments,
is employed by an adaptive bank of Kalman filters (AKF)
to compute the prediction over a short time horizon. The
AKF method is designed to automatically adapt auto-
regressive (AR) coefficients to the current sea state. Both
LKF and AKF run with a sample time of 50 ms. An AR
model of order 16 and a prediction horizon of Np = 25
samples (1.25 s) were used during the WECCCOMP.

The chosen estimation and prediction approaches are dealt
with more specifically by Nguyen and Tona (2018). Note
that, in the current study, no model mismatch exists be-
tween the nominal and actual WEC models; furthermore,
no measurement noise is simulated. This certainly simpli-
fies the task of the wave excitation estimator, although
the latter demonstrated accurate performance in the 2019
physical experiments.

3.3 MPC optimal control formulation

Once the wave excitation moment prediction is obtained,
the optimal control is computed over the prediction hori-

Primary
Converter

Nonlinear
MPC

Short-term Wave
Force Prediction

Wave Excitation
Force and State

Estimation

PTO

Measurements from avail-
able sensors (e.g. x(k),
ẋ(k), ẍ(k), fP T O(k))

Action on
PTO fsp

P T O(k)

Wave Excitation
Force fex(k)

fest
ex (k){f̂est

ex (k + 1), . . . ,

f̂est
ex (k + Np)}

fP T O(k)

WEC

X̂(k)

Fig. 1. IFPEN’s MPC scheme
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zon to maximise the average electrical power, taking into
account the PTO efficiency h.

The discrete-time optimal control problem, over the pre-
diction horizon of Np time steps, can be formulated as fol-
lows, using the second-order Runge-Kutta method (trape-
zoidal rule) for accurate discretisation:

max
u(k|k),...,u(k+Np−2|k)

Np−2∑
j=0

Pe(k + j|k)

s.t.

{
X(k + j + 1|k) = AdX(k + j|k) +BdŨ(k + j|k)

−umax ≤ u ≤ umax

(6)
where:

• The discretised electric power is expressed as Pe(k +
j|k) = h(k+j|k)u(k+j|k)[ẋ(k+j|k)+ ẋ(k+j+1|k)].

• X(k + j|k) and Ũ(k + j|k) := u(k + j|k) + ẽ(k + j|k)
denote, respectively, the predicted state and input
variables at time k + j from time step k, where
ẽ(k + j|k) is the wave excitation moment predicted
from the AKF.

• h(k + j|k) and ẋ(k + j|k) denote, respectively, the
predicted PTO efficiency and angular velocity at time
k + j from time step k.

3.4 Dealing with a non-ideal efficiency function

Solving (6) is computationally challenging, as h is a
nonlinear, discontinuous function. The discontinuity could
be addressed by approximating h with a smooth function,
but the convexity of the resulting optimisation problem
would still not be guaranteed. To deal with non-convexity,
a new discrete objective function is introduced, with
fixed coefficients qj which replace h(k + j|k) in (6), thus
weighting the instantaneous mechanical power values over
the prediction horizon. The weightings qj ≥ 0 then become
tuning parameters for a new optimisation problem, which
is a convex quadratic programming (QP) problem.

Those weightings, which form the key aspect of the pro-
posed MPC optimisation scheme, are optimised off-line
on a sea-state by sea-state basis, in order to ensure that
optimising the new objective function also optimises, as
much as possible, the original objective function in (6).
An offline procedure, based on repeated simulations of
the MPC scheme, is used to obtain the set of weight-
ings which maximises average electric power, for a given
sea state or for a combination of sea states. A gradient-
free optimisation method is required to cope with the
singularity and non-convexity of the underlying objective
function. The Nelder-Mead simplex (NMS) method, which
is computationally compact and converges for a large class
of problems, see ?, was chosen.

Thus, all in all, this approach shifts the complexity of op-
timising the original objective function online to an offline
optimisation procedure, which is not subject to real-time
computational constraints. Once the optimal weightings
are found, running the MPC algorithm reduces to solving
a convex QP problem, which can be efficiently done online.
During the WECCCOMP experimental evaluation, for
instance, the whole MPC system was able to run in less
than 1 ms, well below the control time step of 50 ms.

Note that the weightings do not necessarily have a physical
interpretation. For instance, the magnitude of the optimal
weightings could be expected to be decreasing over the
prediction horizon, in order to penalise those time instants,
where predictions are less accurate. However, in general,
the weightings chosen by the offline optimisation proce-
dure do not exhibit any particular trend.

4. FOURIER SPECTRAL CONTROL APPROACH

4.1 Spectral optimal control formulation

The spectral control calculation approach, employed in
the present study, is an extension of that introduced by
Mérigaud and Ringwood (2017), to the case of a more
general objective function of the form α(x, ẋ, u).

At this stage, it must be made clear that the spectral
method, as employed in this work, is not implemented
in a receding-horizon fashion. Instead, the totality of a
simulated wave signal (Tsim = 40s, typically covering
between 20 and 40 wave periods) is considered, and the
spectral method is used to calculate the optimal control
solution over the whole wave signal at once. This provides
the performance which could be achieved, by a controller
having a perfect knowledge of wave excitation moments
for an arbitrarily long time into the future. Therefore,
while, in the MPC configuration, the period Th of Eq. (4)
corresponds to that of the receding horizon, in the context
of spectral control Th = Tsim represents the totality of the
wave signal duration.

Given the particular form of the dynamical equation (1),
u can be expressed as a function of the other variables, so
that Problem (4) can be recast as follows:

max f(x) =
1

Tsim

∫ Tsim

t=0

pe(ẋ,L{x} − e)dt (7)

where the variable u and the equality constraints are
eliminated, so that only the device trajectory is now
optimised.

Assume a periodic, polychromatic excitation signal with
period Tsim, of the form

e(t) =
1√
2
ê1 +

N∑
n=1

ê2n cos(ωnt) + ê2n+1 sin(ωnt) (8)

where the frequencies ωn are defined harmonically with
∆ω = 2π

Tsim
and ∀n ∈ {1...N}, ωn = n∆ω, with N

corresponding to the cutoff harmonic. In the following,
consistently with a periodic excitation signal, solutions x
are searched amongst periodic signals with period Tsim so
that, in essence, only steady-state solutions to the control
problem are considered. The WEC motion is also assumed
of the form:

x(t) =
1√
2
x̂1 +

N∑
n=1

x̂2n cos(ωnt) + x̂2n+1 sin(ωnt) (9)

The next step consists in discretising the integral objective
function, using a set of M equally-spaced points tm,
spanning the interval [0;Tsim], with typically M ≥ 2N+1,
so that the maximisation problem becomes:

max f̃(x) :=

M∑
m=1

pe(tm) (10)
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where, for the sake of conciseness, pe(tm) denotes the value
of pe when its arguments are evaluated at time instants tm.

Define the matrix Φ ∈ RM×(2N+1) as:

∀i ∈ {1...M}, j ∈ {1...N},


Φi,1 = 1/

√
2

Φi,2j = cos(ωjti)

Φi,2j+1 = sin(ωjti)

(11)

and the matrix

Ω =

Ω0 · · · 0
...

. . .
...

0 · · · ΩN

 (12)

where Ω0 = 0 and, ∀n ≥ 1, Ωn =

(
0 ωn
−ωn 0

)
.

Define vectors x̂ := (x̂1 · · · x̂N )
ᵀ
, ê := (ê1 · · · êN )

ᵀ
,

x := (x(t1) · · ·x(tM ))
ᵀ
, ẋ := (ẋ(t1) · · · ẋ(tM ))

ᵀ
and e :=

(e(t1) · · · e(tM ))
ᵀ
. Then, it is easy to see that x = Φx̂,

ẋ = ΦΩx̂ and e = Φê.

Furthermore, the terms of L evaluated at times t1...tM ,
l := (L{x}(t1) · · · L{x}(tM ))

ᵀ
, can be calculated as l =

ΦLx̂, where

L =

L0 · · · 0
...

. . .
...

0 · · · LN

 (13)

with blocks L0 = <{z(0)} and ∀n ∈ {1...N}, Ln =(
<{z(ωn)} ={z(ωn)}
−={z(ωn)} <{z(ωn)}

)
.

Finally, the objective function can be expressed as a
function of x̂, as follows:

f̃(x̂) = 1ᵀ
M×1pe(ΦΩx̂,ΦLx̂− Φê) (14)

where 1M×1 is the unit vector of size M×1, and pe denotes
the vector obtained when pe is applied component-wise to
the arguments, i.e. for example, pe(v) = (pe(v1)...pe(vM ))

ᵀ
.

The first- and second-order derivatives of f̃ , with respect to
the components of x̂, can be calculated explicitly; however,
for the sake of conciseness, the mathematical details are
not reproduced here. Those derivatives are used within
a gradient-based optimisation algorithm, to ensure a fast
convergence to the solution.

4.2 Dealing with a non-ideal efficiency function

The non-ideal efficiency function is undesirable for the
proposed spectral control implementation, which employs
1st- and 2nd-order derivatives of the objective function.
Therefore, for the spectral control calculations carried
out in this study, the efficiency function pe = h(pa) is
approximated by means of the following function:

h̃κ(pa) = A tanh(κpa) +B (15)

where A = 1
2 (µ − 1/µ), B = 1

2 (µ + 1µ), and κ > 0
is a real parameter, which governs the accuracy of the
approximation, as illustrated in Fig. 2.

For all (ẋ, u), pe(ẋ, u) ≤ pe,κ(ẋ, u). Therefore, the optimal

mean electric power, P
∗
e,κ, obtained with pe,κ, is an upper

bound to the optimal exact electric power, P
∗
e, which

would be obtained if Problem (10) could be solved using

-1 -0.5 0 0.5 1

Pa [W]

0

0.5

1

1.5

E
ffi
ci
en

cy

h, µ = 0.7

h̃κ, µ = 0.7, κ = 5

h̃κ, µ = 0.7, κ = 50

Fig. 2. Efficiency function h and its approximations h̃κ

the exact efficiency. Furthermore, for all κ1 ≤ κ2, for all

(ẋ, u), pe,κ2
(ẋ, u) ≤ pe,κ1

(ẋ, u), which implies that P
∗
e,κ

decreases monotonically with κ, and has P
∗
e as a limit

when κ→∞.

P
∗
e can also be bounded from below: consider the solution

x∗κ, u
∗
κ, obtained with the approximate objective function.

x∗κ, u
∗
κ is necessarily sub-optimal, with respect to the exact

objective function. Therefore, the exact mean electric
power, effectively achieved with (x∗κ, u

∗
κ), constitutes a

lower bound to P
∗
e, and is calculated as follows:

P
†
e,κ =

1

Tsim

∫ Tsim

t=0

pe(ẋ
∗
κ, u
∗
κ)dt (16)

Therefore the following inequality holds:

P
†
e,κ ≤ P

∗
e ≤ P

∗
e,κ (17)

Even if the true optimal electrical power P
∗
e cannot be

calculated for the exact efficiency, by setting κ to a large
enough value, it can be ensured that the electric power

P
†
e,κ, effectively achieved with the solution found, lies

within a prescribed percentage of P
∗
e.

Throughout the rest of this paper, mean electric power
values, obtained from the spectral control method, are in

fact P
†
e,κ, for κ chosen sufficiently large so that P

†
e,κ lies

well within 2% of P
∗
e.

5. NUMERICAL RESULTS

5.1 Numerical set-up

MPC and spectral control methods are assessed in 40s
wave signals, randomly generated from WECCCOMP sea
states 1 (JONSWAP with γ = 1,Hm0

= 0.0208m and Tp =
0.988s) and 3 (JONSWAP with γ = 1, Hm0

= 0.1042m and
Tp = 1.836s), abbreviated as SS1 and SS3. Although longer
signals would provide better statistical accuracy, 40s cover
between 20 and 40 typical wave periods, and were found
sufficient for relative performance assessment of spectral
and MPC approaches, while permitting efficient spectral
control calculations, and easing the offline MPC weighting
optimisation. Three 40s random realisations (R1, R2, R3)
are generated for each sea state, using a summation of
sinusoids with independent, uniformly distributed random
phases, and amplitudes derived from the wave spectrum.

Spectral control solutions are calculated in every random
realisation, taking into account PTO constraints, using the
interior point optimisation algorithm, readily implemented
in the Matlab 4 fmincon function.
4 www.matworks.com
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SS1 (.10−2) SS3

R1 R2 R3 R1 R2 R3

Spectral - µ = 1 3.14 3.14 3.14 1.31 1.32 1.25
Spectral - µ = 0.7 2.14 2.11 2.13 0.79 0.80 0.75

WECCCOMP MPC 1.96 1.93 1.93 0.71 0.72 0.66
MPC (perfect pred.) 2.01 1.95 1.96 0.71 0.74 0.68

Passive control 1.64 1.64 1.64 0.37 0.37 0.37

Table 1. Mean electrical power [W] from MPC
and spectral solutions

For both sea states, MPC weightings are optimised offline
using realisation R1, and the strategy is then evaluated in
R1, R2 and R3. As mentioned in the introduction, in a first
step, the MPC implementation parameters are set as close
as possible to the WECCCOMP conditions: the receding
horizon length is set to Np = 25 (1.25 s), and the offline
optimisation is initialised with all weightings equal to 1.
Wave excitation prediction is carried out using the AKF.
More information regarding the chosen baseline settings
may be found in Tona et al. (2020).

Subsequently, various paths are investigated, to explain
and reduce the difference between MPC and spectral
control results. In particular, excitation estimations and
predictions are replaced with their exact values, and the
influence of the receding horizon length Np is examined.
Furthermore, several initialisation methods are tested for
the offline weighting optimisation algorithm, with the hope
of converging to better weightings.

5.2 Comparison of MPC and spectral control results

Table 1 compares WECCCOMP MPC and spectral control
results, in SS1 and SS3. A look at the 2nd and 3rd rows
indicates that, for both sea states, the WECCCOMP MPC
solution lies reasonably close to the optimal electrical
power, calculated through the spectral method: approx.
8.5% for SS1, R1, and 10.5% for SS3, R1. The difference
further reduces to approximately 6% for SS1, R1, and
9.5% for SS3, R1, when perfect excitation predictions are
assumed (row 4 of Table 1). In addition, it is found that,
although MPC weightings are optimised solely based on
R1, the MPC performance, relative to optimal control,
is consistent across the three realisations, which demon-
strates the robustness of the proposed MPC scheme to the
random realisation employed for the offline optimisation
phase.

Additional points of comparison are provided by Table 1.
In the two WECCCOMP sea states, the optimal electric
power, achievable with µ = 0.7, is approximately 60%
of the ideal case with µ = 1, shown in the 1st row.
Furthermore, wave periods in SS1 are relatively close to the
WEC resonant period; therefore, the benefit of employing
active control strategies (spectral and MPC), with respect
to a simple linear damping constant (last row of Table
1), is relatively small. In contrast, SS3 is further away
from the WEC resonant frequency, and therefore makes
active control strategies highly beneficial, with a twofold
increase in mean electrical power with respect to the
simple damping constant.

MPC and optimal control results may also be compared in
terms of control solutions, which is done in Fig. 3 for SS1,
R1, and Fig. 4 for SS3, R1. However, before examining
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Fig. 3. Control solutions in sea state 1, in terms of velocity,

control input and electrical power, obtained with the
spectral method for µ = 1 (dotted green), and for
µ = 0.7 with the spectral (green) and MPC (orange)
methods. Also shown on the first graph, the wave
excitation torque (dotted blue).

the MPC solution, it is useful to first elaborate on optimal
control results obtained through the spectral method, with
a perfect PTO efficiency vs with µ = 0.7.

In SS1, with an ideal PTO, some reactive power (negative
values in the 3rd graph of Fig. 3) is employed to achieve
optimal power absorption. In contrast, when a non-ideal
PTO efficiency is considered, the optimal solution, ob-
tained through the spectral method, ensures that very
little reactive power is used. This is achieved through
significant modifications in the control input (see the dif-
ferences between the solid and dotted green curves, in the
second graph of Fig. 3).

In SS3, which has waves with periods further away from
the WEC resonant frequency, large amounts of reactive
power are employed to achieve optimal control, when
µ = 1 (dotted green line in the last graph of Fig. 4). This
greatly amplifies the contrast with the non-ideal PTO case,
for which optimal control requires the suppression of the
vast majority of reactive power. Consequently, differences
between the optimal solutions with ideal vs non-ideal PTO
are strongly marked, both in terms of velocity trajectory
(1st graph) and control input (2nd graph).

In both sea states, the WECCCOMP MPC scheme shows
velocity trajectories and control inputs which are relatively
close to the optimal ones, as can be appreciated by compar-
ing solid green and orange curves in Figs. 3 and 4. It can be
observed, from the 3rd graph in Figs. 3 and 4, that the pro-
posed MPC scheme succeeds in employing relatively little
reactive power, although less drastically than the optimal
control solution. Indeed, the MPC weightings can only be
optimised so as to take the non-ideal PTO efficiency into
account on average, for a given sea state.
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Fig. 4. Control solutions in sea state 3, in terms of velocity,
control input and electrical power, obtained with the
spectral method for µ = 1 (dotted green), and for
µ = 0.7 with the spectral (green) and MPC (orange)
methods. Also shown on the first graph, the wave
excitation torque (dotted blue).

5.3 Sensitivity analysis of MPC performance

In order to understand, and reduce further the differences
observed between MPC results and optimal spectral con-
trol, a sensitivity analysis on the prediction horizon is
carried out, using Np = 17, 25, 37, 49. Furthermore, perfect
excitation estimation and prediction are assumed, so as
to isolate better the different factors influencing MPC
performance.

In theory, under such conditions, increasing the predic-
tion horizon should necessarily improve MPC performance
since, for larger Np, the optimiser has more degrees of
freedom to improve the same objective function. However,
in practice, the objective function of the offline weighting
optimisation problem may have a complicated, non-convex
surface. Therefore, it is difficult to ensure that the NMS
optimiser converges to the true optimal weightings. In
order to investigate how the specific challenges of the
offline optimisation might impact MPC performance, three
different NMS initialisation methods (abbreviated as M1,
M2, M3) are considered:

• In M1, weightings are initialized with a vector of ones.
This method was applied during the WECCCOMP.
• In M2, weightings are initialized with independent

random values following a uniform distribution within
a limited range (0 to 4 in this work).
• In M3, weightings are initialized using the optimal

weightings, determined for a smaller value of Np,
padded with zeros for the remaining time steps.
This approach ensures that, when increasing Np, the
NMS optimiser always finds a solution with better
performance.

Figs. 5 and 6 show the results, in terms of electric power,
of the NMS optimisation on the first realisations of SS1
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Fig. 5. Optimisation results in SS1 with different predic-
tion horizons and initialisation methods
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Fig. 6. Optimisation results in SS3 with different predic-
tion horizons and initialisation methods

and SS3, with initialisation methods M1-3, and different
Np values. All results are normalised by spectral optimal
control values for R1, reported in Table 1.

With M1, in the two sea states, MPC performance im-
proves when increasing Np from 17 (0.85 s) to 25 (1.25
s) but, unexpectedly, plateaus or even degrades when Np
increases further to 37 and 49. Since, in this scenario,
wave estimations and predictions are perfect, such results
cannot be accounted for by the increase of prediction errors
with the time horizon, but should rather be attributed to
the behavior of the NMS optimiser, with the optimisation
problem considered and those initial values.

In order to clearly evidence the results sensitivity to the
choice of weighting initialisation, the optimisation is run
starting from randomly-chosen coefficients, following M2,
with Np = 25. As can be appreciated in Figs. 5 and
6, various initialisation possibilities yield diverse perfor-
mance values, with a particularly large spread of results
in SS1. However, very few of the random initial values
tested enable the optimiser to find better solutions than
starting from M1. Furthermore, weightings determined
starting from differing initial values, but having similar
performance, may have completely different values, as il-
lustrated in Fig. 7.

Finally, using M3 should ensure that increasing Np yields
better performance. More specifically, weightings opti-
mised with M1 and Np = 25 are used to initialise the
optimisation for Np = 37; the resulting weightings are, in
turn, employed to initialise the optimisation for Np = 49.
However, even with Np = 49 (i.e. twice the “baseline”
Np = 25), the difference between MPC and optimal control
results only decreases by 1.2% of P̄ ∗e for SS3 while, for
SS1, there is no significant improvement. While it could
be expected that increasing the prediction horizon would
bridge the gap between MPC and optimal control results,
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Fig. 7. Optimised weighting values for initialisation meth-
ods M1 and M2 in SS1

it doesn’t seem to be the case in practice. Furthermore, the
offline optimisation time (for NMS to converge) dramati-
cally increases with the control horizon: With Np = 49,
the NMS convergence time is almost three times that
associated with Np = 25.

6. CONCLUSION

Overall, this study demonstrates that the MPC scheme,
proposed by IFPEN for the WECCCOMP, is capable of
approaching optimal control results, in terms of electric
power (MPC results are only sub-optimal by 8 to 11%
in the two sea states considered), trajectory and control
input, which is a remarkable achievement, given the rela-
tively short prediction horizon, the errors necessarily as-
sociated with wave predictions, and the fact that the real-
time control solution relies on a quadratic approximation
of the true objective function.

It is interesting to explore how this relatively minor dif-
ference could be further reduced. Although perfect wave
predictions do improve MPC results by 1 or 2%, they are
clearly not sufficient to make the proposed methodology
reach optimal control performance, even when the predic-
tion horizon is simultaneously increased. The complexity
of the offline MPC weighting optimisation problem may
be an obstacle, which prevents longer prediction horizons
from improving control results significantly. Therefore,
employing another gradient-free search algorithm, such as
genetic optimisation, could be investigated in future work
to replace the NMS method.

However, it may also well be the case that most of the
observed difference, with respect to optimal control results,
is inherent to the proposed method, whereby the (non-
ideal) efficiency function is approximated by means of fixed
coefficients, which can only take the non-ideal efficiency
function into account on average for a given sea state.

In retrospect, amongst the possibilities considered here,
the MPC initialisation method and algorithm setup em-
ployed for the WECCCOMP, which had been essentially
chosen based on common sense, experience and trial and
error, indeed seem to have been an appropriate choice.

In future work, the WECCCOMP wave tank experimental
results could also be assessed in the light of spectral

optimal control solutions, although it may be difficult to
discriminate between the influence of modelling errors and
that of control algorithms.
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