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Abstract: Electrical impedance tomography (EIT) is an imaging technique with a promising
future. Several methods have been used for EIT image reconstruction, such as Simulated
Annealing, Gauss Newton, Kalman filter and D-Bar. Recently, some authors solved this problem
using artificial neural network (ANN) through pixel by pixel reconstruction, considering a
fixed resolution for the final image. This work proposes a reconstruction based on the EIT
forward problem. Two different meshes were considered: a coarse and a refined mesh. The
latter was used to produce simulated potentials, which are the inputs for ANN training. The
nodes conductivities, which used to create the outputs for training, defined in the coarser mesh.
Therefore, the proposed method consists of training the ANN with inputs from a refined mesh
and outputs from a coarse mesh. Two ANN architectures are proposed and compared: one based
on the LeNet architecture, and another based on the feed-forward fully connected ANN. The
obtained image is not dependent on any image resolution. The preliminary results show that
the LeNet architecture has better performance. Copyright c©2020 IFAC.
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1. INTRODUCTION

Electrical Impedance Tomography (EIT) is a novel,
promising, non-invasive method for obtaining conductivity
images of the interior of an object, from the electrical
potential measurements taken at the object boundary. EIT
is being largely used for dynamic, real-time monitoring of
industrial processes and biomedical analysis (Martins and
Tsuzuki, 2012; Silva et al., 2017).

In a typical EIT configuration, the electrodes are posi-
tioned at specific intervals along the contour of an object.
Then, a low amplitude current pattern is applied to the ob-
ject through the electrodes and the electric potentials are
measured at all electrodes. Just as an illustration, Fig. 1
shows two examples of current injection through a pair
of electrodes. For each injection, the electrical potential
Vi at each electrode i is measured relative to a grounded
electrode.

Several methods have been used for EIT image reconstruc-
tion: simulated annealing (Martins and Tsuzuki, 2015;
Martins et al., 2014), Gauss Newton (Camargo, 2013),
Kalman filter (Moura, 2013), D-Bar (Alsaker and Mueller,
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Fig. 1. Examples of current patterns applied to a cylindri-
cal domain. Electric potentials are measured at the
electrodes. Both domains have conductivity distribu-
tion σ(x, y).

2018). A good review on the different methods is avail-
able (Martins et al., 2019). The great majority of the
available methods, excluding the D-Bar method, solves
the inverse problem defined by the EIT, by iteratively
evaluating the forward problem. The Neural Network ap-
proach, similarly to the D-Bar, directly determines the im-
age reconstruction without any evaluation of the forward
problem.

The forward EIT problem is the determination of the
potential distribution in the domain, given the conductiv-
ity distribution σ(x, y) and the injected current In. The
fastest approach to solve the forward problem is using
GPGPU (Tavares et al., 2019). The forward problem is
used to train the neural network and, therefore, it is
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necessary to evaluate the forward problem many times
over. Although the speed up of the training phase does not
impact the performance of the solution, such improvement
is not negligible as it helps the development phase.

The inverse problem solution is affected by mesh defi-
ciencies. Hence, the image should be reconstructed using
meshes with higher densities, such that errors due to
the discretization are minimized. Martins et al. (2019)
showed that a correction error can be used to overcome
errors originated in the discretization, based on a theory
described n (Kaipio and Somersalo, 2004). In this work,
the proposed strategy consists of evaluating the forward
problems with refined meshes to train the artificial neural
network (ANN). The ANN will then be trained with negli-
gible discretization error data. However, the evaluated EIT
image will be reconstructed using a coarse mesh. Once an
ANN has been trained, the solution of an inverse problem
can be obtained in minimal time. Thus, ANN may be a
faster alternative for practical applications.

Some authors already employed ANNs to solve the EIT
inverse problem. Rymarczyk et al. (2019) used three dis-
tinct configurations of feed-forward fully connected ANN
(FFFC-ANN): 1. 96-10-1 (96 predictors, 10 hidden neu-
rons and 1 answer); 2. 96-10-10 (96 predictors, 10 hidden
neurons and e 10 answers); and, 3. 96-20-10 (96 predictors,
20 hidden neurons and 10 answers). Each of these config-
urations represent one pixel in the reconstructed image.
The EIT experiment consisted of 6 sets of measurements
on a 16 electrodes configuration. Li et al. (2017) considered
a topology with two stacked auto-encoders and a logistic
regression. The proposals presented in (Michalikova et al.,
2014; Wang et al., 2009) used an ANN with radial basis
function (RBF), similar to the one presented in (Rymar-
czyk et al., 2019). However, in the former case the image
is completely reconstructed using a unique ANN (928
predictors, 100 hidden neurons and 3.214 answers). Tan
et al. (2018) used the LeNet ANN (Lecun et al., 1998) to
solve the EIT problem.

Previous approaches reconstructed the EIT image at the
pixel level. A different approach is adopted herein. The
EIT image is reconstructed considering a coarse mesh and
the ANN evaluates the conductivity at the mesh nodes.
The final image can be zoomed in or out, as the resolution
of the image has no influence. Additionally, the ANN is
trained using a refined meshed such that it is not necessary
to consider the discretizaton error.

This paper has the following structure. Section 2 describes
the finite element formulation for the forward problem.
Section 3 describes two different proposed topologies of
ANN to solve the EIT problem. The first topology is based
on the LeNet architecture and the second topology is a
FFFC-ANN. Section 4 has the results and section 5 has
the conclusions and future works.

2. FINITE ELEMENT FORMULATION FOR THE
FORWARD PROBLEM

The forward problem determines the potential distribution
in the domain given the conductivity distribution and
current pattern applied to the electrodes as inputs. Due
to its ability to model arbitrary geometries and various

Fig. 2. Mesh example for the FEM with two regions:
external ring and internal circle.
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Fig. 3. Triangular element with nodes i, j and k.

boundary conditions, the finite element method (FEM) is
the most useful method currently used for the numerical
solution of EIT forward problems (Dong et al., 2005). For
the bidimensional case, the problem must comply with the
Laplace equation

∇ · [σ(x, y) · ∇φ(x, y)] = 0 (x, y) ∈ Ω (1)

where σ and φ are the conductivity and potential distribu-
tions, respectively, and Ω is the domain region. The zero
result indicates that there are no current sources inside the
domain (Martins and Tsuzuki, 2015; Martins et al., 2014).

In the FEM, the domain is discretized, generating a
mesh of smaller elements. A mesh with two regions is
proposed: external ring and internal circle (see Fig. 2). The
definition of two regions allows the use of distinct mesh
densities. The external ring is directly connected to the
electrodes. If more elements are desired in the external ring
then the electrode model must allow variable number of
elements as well. Both the internal circle and the electrodes
have independent and controllable refinement levels. The
external ring is a transition region between the electrode
and the internal circle (Tavares et al., 2014).

As the linear triangular element was chosen for the fi-
nite element model, a linear interpolation polynomial is
adopted to determine the potential inside the element.
Thus, using the notation shown in Fig. 3, the potential
inside the domain Ωe is given by

φ(x, y) = α1 + α2x+ α3y (2)

where α1, α2 and α3 are unknown constants to be deter-
mined. Therefore, the electrical potential on nodes i, j and
k of the triangular element are given by
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φi(x, y) = φ(xi, yi) = α1 + α2xi + α3yi
φj(x, y) = φ(xj , yj) = α1 + α2xj + α3yj
φk(x, y) = φ(xk, yk) = α1 + α2xk + α3yk

(3)

Thus follows that[
φi
φj
φk

]T
=

[
αi

αj

αk

]T
·

[
1 1 1
xi xj xk
yi yj yk

]
(4)

The solution for the α parameters is

αi =
1

2S
(aiφi + ajφj + akφk)

αj =
1

2S
(biφi + bjφj + bkφk)

αk =
1

2S
(ciφi + cjφj + ckφk)

(5)

where S is the area of the triangle and

ai = xjyk − xkyj aj = xkyi − xiyk ak = xiyj − xiyj
bi = yj − yk bj = yk − yi bk = yi − yj
ci = xk − xj cj = xi − xk ck = xj − xi.

(6)

Therefore, eq. (4) can be written as

φ(x, y) =
[
Ne

i Ne
j Ne

k

] [φi
φj
φk

]
= [N ]e[φ]e (7)

where

N2
i =

1

2S
(ai + bix+ cix)

N2
j =

1

2S
(aj + bjx+ cjx)

N2
k =

1

2S
(ak + bkx+ ckx)

(8)

The partial derivation of φ(x, y) is given by

[∇φ] =

[
∂φ/∂x
∂φ/∂y

]
=

1

2S

[
bi bj bk
ci cj ck

][φi
φj
φk

]
(9)

By setting

[BC]
e

=
1

2S

[
bi bj bk
ci cj ck

]
e

, (10)

the Laplace equation for the equivalent variational prob-
lem can be described as

F (φ) =

∫
s

1

2
σ

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
]
dxdy (11)

Then, combining eq. (9) with eq. (11) results in

Fe(φ) =

∫
Se

1

2
σ[∇φ]T [∇φ] dxdy

=
1

2
[φ]

T
e

{
σ

∫
Se

[BC]Te [BC]edxdy

}
[φ]e

=
1

2
[φ]

T
e [K]e[φ]e

(12)

where

[K]e =σ[BC]Te [BC]e

∫
Se

dxdy

=
σ

4S

[
bi ci
bj cj
bk ck

] [
bi bj bk
ci cj ck

]

=
σ

4S

 b2i + c2i bibj + cicj bibk + cick
bjbi + cjci b2j + c2j bjbk + cjck
bkbi + cick bkbj + ckcj b2k + c2k

 .
(13)

Fig. 4. Convolution example, where filters are applied to
identify input features.

The element matrix [K]e must be determined for all mesh
elements. Then, they are gathered according to the node
numbers to generate the global conductivity matrix K.
The FEM formulation for the EIT forward problem is then
given by

K · φ = I (14)

where I is the current vector and φ is the potentials vector,
which are unknowns. Both vectors have dimension of n,
which is the number of nodes. The matrix K is n× n and
is symmetric and sparse. Therefore, the forward problem is
converted into the solution of a linear system of equations.

3. PROPOSED METHODS USING ANN’S

In this section, two different topologies to solve the
EIT problem are proposed for ANNs. The first proposed
method is based on the LeNet architecture (Lecun et al.,
1998) and the second proposed method is a FFFC-ANN
with one hidden layer. Both approaches were trained using
forward problems evaluated with refined meshes, and the
outputs are conductivities at the coarse mesh nodes.

3.1 Convolutional ANN

A convolutional ANN consists of 3 steps: convolution,
activation function and pooling. Afterwards, it is possible
to pass it to a fully connected layer, as in the LeNet
architecture (Lecun et al., 1998).

In the convolution step, filters (kernels) that learn to iden-
tify characteristics of the input are applied. The convolu-
tion consists of multiplying a matrix of weights wi,j of size
m×n, centered at the element (p, q) of the original matrix,
with each value xi,j of the input where they overlap. Then,
all the values of the multiplication result are summed and
it is assigned to the pixel yp,q of the resulting matrix.
Therefore, the convolution process can be described by

yp,q =

m∑
i=1

n∑
j=1

(xi,j · wi,j) .

After the filter passed through the entire input, a matrix is
generated as a result. This process is illustrated in Fig. 4.

After the convolution, an activation function called ReLU
is applied to each value of the matrix and compared with
a bias bi,j of the output matrix. ReLU stands for Rectified
Linear Unit, and it is defined as

f(yi,j = xi,j · wi,j + bi,j) =

{
yi,j , yi,j ≥ 0

0, yi,j < 0
. (15)

Finally, in the pooling step, a filter of a determined size
is applied to with the resulting matrix, replacing its value
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Fig. 5. MaxPooling example with a 2× 2 filter.

Fig. 6. Comparison between real domain (left column)
and original LeNet output (right column) using the
validation data set.

with the maximum value in the filter range. This method
is called MaxPooling and it is used to prevent overfitting.
An example can be seen in the Fig.5.

A voltage matrix of shape 32 × 32 was used as input for
this architecture, and an one-dimensional array with 710
conductivity values was used as output.

The hyperparameters used were: batch size of 250 during
1000 epochs (while using Keras callbacks EarlyStopping
to monitor the validation loss parameter to prevent over-
fitting), Adam optmizer and Mean Squared Error loss
function. These parameters were used to train both the
original LeNet and the modified one.

Using the original LeNet architecture, the results were
not satisfactory, and this can be due to the fact that it
was built originally for a classification problem, which is
much simpler and has less output parameters. Therefore,
its architecture needed to be modified to be more complex.
The results for the original LeNet can be seen in Fig. 6.

3.2 Proposed modified LeNet architecture

The modified architecture for the convolutional neural
network has 7 layers, and each of layers is described. The
first layer is the input. The second layer is the convolution
with 30 filters of shape 5 × 5, activation function ReLU,
strides of 2×2 and padding. The third layer is the pooling
with kernels of shape 2 × 2 and strides of 2 × 2. The
fourth layer is the second convolution, similar to the first
convolution with 60 filters. The fifth is the second pooling
which is the same as the first pooling. The sixth layer
flattens the data and passes onto a hidden layer with

355 neurons with activation function ReLU, and finally,
the seventh layer, the output layer with 710 neurons and
activation function ReLU. The proposed architecture is
shown in the Fig. 7

Fig. 7. Architecture of the proposed LeNet with seven
layers.

3.3 Proposed FFFC-ANN architecture

The connections between FFFC-ANN nodes do not form
a cycle, and every node in layer i is connected with every
node in layer i − 1 for i > 1, where i is the layer number
starting at 1 on the first layer. For this kind of ANN, an
architecture with 3 layers was adopted (1 input layer, 1
hidden layer and 1 output layer), as shown in Fig. 8.

The ANN input is an array of size 1024 that describes
the potentials at the electrodes for each current pattern
applied to a domain. It follows that the first and second
members of the input array correspond, to the potentials
at electrode 1 and 2, the resulting matrix , for the first
current pattern applied. The 33rd member corresponds
to the the potential at electrode 1 for the second current
pattern; and so on until the last member, that corresponds
to the potential at electrode 32 for the 32nd current
pattern. The network output is an array with size n in
which the i−th value represents the electrical conductivity
at node i in the coarse mesh. Following literature such
as Fernández-Fuentes et al. (2018), hyperbolic tangent
was used as activation function for the input layer, and
Rectified Linear Unit (ReLU ) was used for the hidden
layer.

Fig. 8. Proposed FFFC-ANN architecture.
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Table 1. FFFC-ANN training parameters de-
termined by means of a random search. NHL:

neurons in hidden layer

NHL Loss Function Batch size Optimizer

173 MSE 107 Adam

The training parameters have been optimized by means
of a random search (see Fig. 9) which aimed to find the
parameters that would minimize the mean squared error
(MSE) calculated on the validation data set. Although the
number of epochs was kept at 1000, Early stopping with
a patience of 20 was used during training, which would
stop the training process if the MSE calculated on the
validation data set did not improve for 20 consecutive
epochs, and was triggered for all parameters tested. The
parameters that achieved the lowest MSE, which was
0.036, are shown in Table 1.

Fig. 9. Example of randomly generated conductivity dis-
tributions for a mesh with 43904 nodes (left column)
and 710 nodes (right column)

4. RESULTS

Training and validation data sets were created and used to
train the two proposed ANN architectures. Once trained,
the ANNs were evaluated with the validation data set and
tested with new data. Both ANN architectures outputs
were compared.

4.1 Synthetic Training Data Generation

The training data was generated by solving the forward
problem using a set of current patterns applied to a domain
with 32 electrodes with many randomly generated conduc-
tivity distributions. The set of current patterns chosen con-
sisted of a current with amplitude 1.9mA applied between
electrodes i and i+4 for 1 ≤ i ≤ 28 (skip-3). Therefore, 32
current patterns were applied to each domain generated.
The algorithm used to generate training examples had the
following steps:

(1) randomly define a circular domain with 32 electrodes
and 3 randomly placed circular regions with random
radius inside it so that the conductivity is 0.002 inside
the circular regions, 0.005 at the electrode contact
points and 0.3815 elsewhere;

(2) create 2 mesh files for the domain: a very refined one
with 43, 904 nodes, as shown in Fig. 10, and a coarse
one with 710 nodes, as shown in Fig. 2;

(3) solve the forward problem using the very refined mesh
for each one of the current patterns;

(4) restart from (1) until enough data have been gener-
ated.

The final output of the algorithm is a set of mesh files
with 710 nodes that describe the normalized domain
conductivity distribution and a .csv files with 1, 024 lines,
where the first 32 lines represent the normalized potentials,
calculated with a very refined mesh, at each electrode for
the first current pattern, the next 32 lines represent these
potentials for the second current pattern, and so on. Fig. 2
represents the mesh geometry and Fig. 9 shows examples
of normalized conductivity distributions generated for a
refined and a coarse mesh.

Fig. 10. Section of very refined mesh geometry with 43904
nodes

A data set with 10, 004 cases was created – 9, 500 cases
were used for training both proposed ANN architectures,
500 were used as validation data during training, and the
last 4 were kept aside and used for tests.

The modified LeNet and the FFFC-ANN were tested using
the same data set, which consisted of 4 cases. Fig. 11 shows
the real conductivity distributions from each case in the
test data set and the predictions from the FFFC-ANN
and LeNet ANN. Table 2 shows the absolute mean error
between the real and predicted conductivity distribution,
where the domain number i is corresponds to the ith row
in Fig. 11.

Table 2. Absolute error between real and pre-
dicted conductivities for the proposed FFFC-

ANN and LeNet ANN architectures

Domain number
(row in Fig. 11)

FFFC-ANN LeNet

1 0.089 0.052
2 0.092 0.039
3 0.088 0.057
4 0.088 0.053

5. CONCLUSION AND FUTURE WORK

Two ANN architectures were proposed to solve the EIT
image reconstruction problem. The training was performed
using two different meshes: a coarse mesh to obtain the
conductivities at its nodes and a refined mesh to obtain the
simulated potentials at the electrodes. The obtained re-
sults are not associated with any pixel resolution. As seen
in Table 2, they showed that the LeNet ANN archicture
has better performance when compared with the FFFC-
ANN.
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Fig. 11. Comparison between real domain (left column),
FFFC-ANN output (middle column) and modified
LeNet output (right column) using the test data set.

In this work, only the real part of the conductivities were
considered. As future work, capacitive effects, anisotropy
and three dimensionality should be contemplated by the
forward problem solver. Additional research also includes
electrode position and boundary geometry determination.
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Franco, I.o. (2018). Towards a fast and accurate eit
inverse problem solver: A machine learning approach.
Electronics, 7(12).

Geuzaine, C. and Remacle, J.F. (2009). Gmsh: A 3-D finite
element mesh generator with built-in pre- and post-

processing facilities. Int J Numer Meth Eng, 79(11),
1309–1331.

Kaipio, J.P. and Somersalo, E. (2004). Statistical and
computational inverse problems, volume 160. Springer.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proc IEEE, 86(11), 2278–2324.

Li, X., Lu, Y., Wang, J., Dang, X., Wang, Q., Duan, X.,
and Sun, Y. (2017). An image reconstruction framework
based on deep neural network for electrical impedance
tomography. In 2017 IEEE ICIP, 3585–3589.

Martins, T.C. and Tsuzuki, M.S.G. (2012). Electrical
impedance tomography reconstruction through simu-
lated annealing with total least square error as objective
function. In Proc 34th IEEE EMBC, 1518–1521. San
Diego, USA.

Martins, T.C. and Tsuzuki, M.S.G. (2015). EIT image
regularization by a new multi-objective simulated an-
nealing algorithm. In Proc 37th IEEE EMBC, 4069–
4072. Milan, Italy.

Martins, T.C., Fernandes, A.V., and Tsuzuki, M.S.G.
(2014). Image reconstruction by electrical impedance
tomography using multi-objective simulated annealing.
In IEEE 11th ISBI, 185–188. Beijing, China.

Martins, T.C., Sato, A.K., Moura, F.S., Camargo,
E.D.L.B., Silva, O.L., Santos, T.B.R., Zhao, Z., Möeller,
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