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Abstract: An observer based Restricted Structure Generalized Predictive Control (RS-GPC) algorithm is proposed. 

The novel feature is to assume the state-observer within the feedback loop is of reduced order. The aim is to inherit the 

natural robustness of low-order controllers and to provide a solution that may be easily simplified for real-time 
implementation. The nonlinear discrete-time, multivariable plant model is represented by a state-space system that may 
be in Linear Parameter Varying or State-Dependent forms. The controller gains are computed to minimize the type of 
cost-function that is found in traditional model predictive control but with some additional terms that enable gain 
magnitudes and the rate of change of control gains to be minimized. The cost-function also includes dynamically 
weighted tracking-error and control signal costing terms. The optimal controller includes a reduced order observer and 
a time-varying control gain matrix within the loop and background processing for the gain computations. Hard 
constraints may be imposed on the gain and rate of change of gain and on the control and output signals.  

Keywords: Observer, predictive, restricted structure, optimal, Linear Parameter Varying, state-dependent 

 

1 INTRODUCTION  

There have been many attempts to derive “low-order” 

restricted structure optimal controllers using direct 

optimization of parameters, such as the early work of Vladimir 

Zakian (1973) and Lucien Polak (1982) and colleagues, and 

the more recent work of Hast (2015) and Grimble (2004). The 

Quantitative Feedback Theory (QFT) design method provides 

a low-order robust control solution (Houpis et al., 2006). 

Richalet (1993) also developed an approach to predictive 

control that attempts to simplify the solution. For applications, 
Sato (2010) used a classical PID controller structure with a 

predictive approach for weigh feeder control. Eielsen et al., 

(2013), compared five fixed structure low-order controllers for 

Nano positioning systems. However, most advanced 

controllers used in applications have a Kalman filtering 

separation structure; optimal or suboptimal.   

Observer based control structures like the linear quadratic 

Gaussian problem solution where an optimal observer or 

Kalman filter is involved are very popular.  The structure is 

also used in many forms of nonlinear control law, even when 

the “separation principle” does not apply. There are many 

benefits of an observer-based solution, such as the ability to 
run the estimator without closing the control loop during 

commissioning. However, there is a disadvantage with an 

optimal control approach. That is, the order of the controller to 

be implemented within the feedback loop is often high. It is 

equal to the number of states in the combined plant model, 

disturbances, reference model and any cost-function dynamic 

weightings.  

The approach proposed here is to use a reduced-order observer 

or filter within the feedback loop that provides the state 

estimates ˆ ( )ex t . This observer can be based on a reduced-order 

model of the plant, obtained by system identification or by 

using model order reduction. The state-estimate feedback gain 

is found to minimise a predictive control cost-index on-line. 

The low-order observer or filter is assumed to have a form that 

is pre-specified. The optimal low-order “observer based” 

feedback controller that is obtained and implemented within 

the feedback loop is therefore of a Restricted Structure (RS). It 

relegates the optimization computations to background 

processing.  

Model Predictive Control (MPC) and so-called Generalized 

Predictive Control (GPC), is very successful in industry in its 

various model-based algorithm forms. The particular form of 
MPC algorithm is referred to as Restricted Structure 

Generalized Predictive Control (RS-GPC). The control is 

parameterized to have a state-estimate solution 

ˆ( ) ( ) ( )c eu t k t x t=  where ˆ ( )ex t denotes the estimate of states 

from the low-order observer.   It involves the online calculation 

of the gains ( )ck t , rather than the computation of the vector of 

future controls in “implicit MPC.” Hard and soft constraints 

may be applied to the state-estimate feedback-control gain 

terms, and to the rate of change of gains. There are options to 
simplify real-time implementation, such as storing the 

controller gains at different operating points and then using a 

scheduling algorithm as in “explicit MPC.”                       

Roadmap: The qLPV state-space model for the system is 

described in § 2 and the RS controller structure is introduced 

in § 3.  The cost-function and the solution of the RS-GPC 

problem is considered in § 4 and an application is presented in 

§ 5. 

2  SYSTEM DESCRIPTION 

The discrete-time multivariable plant model is represented by 

a quasi Linear Parameter Varying (qLPV), state-space model 

that can be open loop unstable. The system in Fig. 1 includes 
the plant, reference, noise and disturbance signals. The qLPV 

state-space model of the plant is assumed to be pointwise 
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stabilizable and detectable and can be represented by an 

operator: 

( )( ) ( )( )0 0 00k

k
u t z u t

−
=  (1) 

where the term 
kz I−

 denotes a diagonal matrix of delay 

elements with k > 0. The disturbance signal is a qLPV model 

driven by zero-mean white noise and a deterministic output 

disturbance component denoted ( )d t . The reference r(t) is 

deterministic, and the deterministic signals are known in the 

prediction horizon. The white measurement noise ( )v t has a 

constant covariance matrix 0T

f fR R=   and the zero-mean 

white noise source ( )t  has an identity covariance matrix.  

Measurement noise v(t) and driving noise ( )t  are also 

assumed zero-mean, independent, white noise.  

 

Fig. 1:   Plant Model and RS-GPC Controller 

2.1 State-Space qLPV/State-Dependent Plant        

The Linear Parameter Varying (LPV), State-Dependent or 

quasi-LPV state-space plant and disturbance model is shown 

in Fig. 2. This model can be augmented to include cost-

function output or error weighting terms. The weighted error 

can include any stable operator of the form as
1

c( ) ( ) ( )pe t z e t−= .  

Augmented state model: 

0( 1) ( ) ( ) ( ) ( )t t t dx t x t u t k t d t+ = + − + +  (2) 

Measured output: 
0( ) ( ) ( ) ( )t ty t d t x t u t k= + + −  (3) 

Observed output: 0( ) ( ) ( ) ( ) ( )t tz t d t x t u t k v t= + + − +  (4) 

The through term matrix t  is assumed full rank if the delay 

totals k-steps.  The inferred output or weighted error signal: 

0( ) ( ) ( ) ( )
pp pt pte t d t x t u t k= + + −  (5)                                                                      

where ,t t t t t pt pt, , , , ,  are state-dependent or qLPV 

matrices.  The known disturbance inputs at inputs and outputs 

are denoted ( )d t , ( )dd t , ( )pd t  and signal 0 ( ) ( ) ( )e t r t z t= − . 

The delay-free plant 0k t t t tB= + , where ( )
1

t tzI
−

= −  

2.2 State-Space qLPV Prediction Model 

Predicted states depend upon future inputs and current state. 

The future values of the states and outputs, at time t, may be 

obtained by repeated use of (2) to obtain the future state: 

 

Fig. 2:  Plant Model in qLPV State-Space Form 

 

1 2( ) ( 1) .... ( )dd t i t i tx t i d t i x t+ − + −+ = + − +                                      

( )1 2 1 0 1

1

.... ( 1 ) ( 1)
i

t i t i t j t j t j

j

u t j k t j+ − + − + + − + −

=

+ + − − + + −  (6) 

where the known disturbance term ( 1) 0for 0ddd t i− = = : 

1 2

1

( 1) .... ( 1) i 0
i

dd t i t i t j d

j

d t i d t j for + − + − +

=

+ − = + −   (7) 

and if j = i term 
1 2 ....t i t i t j+ − + − +

 is defined as the identity.  

The future states may be obtained from (6) as:   

1 2( ) ( 1) .... ( )dd t i k t i k t kx t i k d t i k x t k+ + − + + − ++ + = + + − + +           

( )1 1 0 1

1

... ( 1) ( 1)
i

t i k t j k t j k t j k

j

u t j t j k+ + − + + + + − + + −

=

+ + − + + + −

 (8) 

Collecting the deterministic disturbance signal terms together:                             

                        ( ) ( ) ( 1)
pd p pt i k ddd t i k d t i k d t i k+ ++ + = + + + + + −  (9)

 
The weighted error ( )pe t at future times for i 1 : 

0( ) ( ) ( ) ( )
pp pt i k pt i ke t i k d t i k x t i k u t i+ + + ++ + = + + + + + + +   (10)                                                                                             

Introduce the notation: 1 2 ...i m

t m t i t i t m

−

+ + − + − +=
 
for i m , 

where  0

t m I+ =  for i m=  and  1 2 ...i

t t i t i t+ − + −=
 
for 

0i  , where
 

0

t I=  for 0i = , where 

1 2 ...i j

t k j t i k t i k t j k

−

+ + + + − + + − + += . Using this notation, the future 

tracking error: 

0( ) ( ) ( ) ( )
pd

i

p pt i k pt i k t ke t i k d t i k u t i x t k+ + + + ++ + = + + + + + +

( )1 0 1

1

( 1) ( 1)
i

i j

p t i k t k j t j k t j k

j

u t j t j k−

+ + + + + + − + + −

=

+ + − + + + −    (11) 

2.3 Vector Matrix Prediction Equation 

Introducing an obvious notation these signals they may be 

collected in the N+1 vector form (Ordys and Clarke, 1993) as: 

, , , , ( )Pt k N Pt k N Pt k N t k NE x t k+ + + += + +

0

, , , , , , ,( )Pt k N t k N Pt k N t N Pt k N t k N t k NU+ + + + + ++ + +   (12) 

For   1N  , the N+1 square block matrices follow as:  

, 1{ , ,..., }Pt k N pt k pt k pt N kdiag+ + + + + +=     
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, 1{ , ,..., }Pt k N pt k pt k pt N kdiag+ + + + + +=  (N+1 square)                             

,

t k

t k

t kt k N

N

I

+

+

++

 
 
 
 =
 
 
 
 

1

2 , , 1 1

1 2

1 2 1 1

0 0 0 0

0 0

0 0

0

t k

t k N t k t k t k

N N

t k t k t k t k t k N

+

+ + + + + +

− −

+ + + + + + + + + −

 
 
 
 =
 
 
 
 

1  

, 1 1

1 2

1 2 1 1

0 0 0

0

0

t k

t k N t k t k t k

N N

t k t k t k t k t k N

+

+ + + + + +

− −

+ + + + + + + + + −

 
 
 
 =
 
 
 
 

,      

,

( )

( 1)

( 1)

t N

t

t

t N







 
 

+
  =
 
 

+ − 

, 
,

( )

( 1 )

( )

p

p

Pt k N

p

e t k

e t k
E

e t N k

+

+ 
 

+ +
 =
 
 

+ +  

, 

0

00

,

0

( )

( 1)

( )

t N

u t

u t
U

u t N

 
 

+
 =
 
 

+ 

, 
,

( )

( 1)

( )

r

r

t N

r

r

u t

u t
U

u t N

 
 

+
 =
 
 

+ 

, ,

( )

( 1)

( )

pd

pd

pd

Pt N

d t

d t

d t N

 
 

+
 =
 
 

+  

 (13) 

Matrix 
,t N denotes a vector of future white noise inputs, 0

,t NU  

denotes a block-vector of predicted controls and ,t N

rU  is a 

vector of future reference controls.  From (8) the end-state:  

1 2( ) ( 1) .... ( )dd t N k t N k t kx t N k d t N k x t k+ + − + + − ++ + = + + − + +  

0

, , , ,t k N t N t k N t k NU+ + ++ +                                                   (14) 

where 1

, 1 1, , , 0N

t k N t k t k t N k

−

+ + + + + + −
 =  

 

and 
1

, 1 1, ,N

t k N t k t k t N k

−

+ + + + + + −
 =   . The end-state 

error:  

( ) ( ) ( ) ( )x x xe t N k r t N k x t N k r t N k+ + = + + − + + = + +  

0
, , ,,

( 1) ( )N

dd t k t k N t k N t k Nt N
d t N k x t k U+ + + +− + + − − + − −                (15) 

The k steps-ahead tracking error ,Pt k NE + , includes any 

dynamic weighting and may be written, using (12), as: 

, , , ,

0

, , , , , , ,

( )

( )

Pt k N Pt k N Pt k N t k N

Pt k N t k N Pt k N t N Pt k N t k N t k N

E x t k

U

+ + + +

+ + + + + +

= + + +

+ + 

0

, , , , , , , ,( )Pt k N Pt k N t k N Pt k N t N Pt k N t k N t k Nx t k U+ + + + + + += + + + +   (16) 

where , , , ,Pt k N Pt k N t k N Pt k N+ + + += +                                     (17)            

2.4 Prediction Equations 

The i-steps ahead prediction of the weighted error signal may 

be found by noting (11), assuming future controls are known. 

Let the prediction error ˆ ˆ( | ) { ( ) | }p pe t i k t E e t i k t+ + = + +
 

then:  

0
ˆ ( | ) ( ) ( )

pdp pt i ke t i k t d t i k u t i+ ++ + = + + + +

1 0

1

ˆ( | ) ( 1)
i

i i j

p t i k t k pt i k t k j t j k

j

x t k t u t j−

+ + + + + + + + + −

=

+ + + + −   (18)

     

 

Noting (16), the vector of prediction errors ,
ˆ

Pt k NE +  follows as: 

0

, , , , , ,
ˆ ˆ( | )P t k N Pt k N Pt k N t k N Pt k N t NE x t k t U+ + + + += + + +  (19)  

The estimation error , , ,
ˆ

Pt k N Pt k N Pt k NE E E+ + += −  follows as:     

, , , , , , , ,
ˆ( ) ( | )Pt k N Pt k N t k N Pt k N t k N t k N Pt k N t k NE x t k x t k t+ + + + + + + += + +  − +

, , , , ,( )Pt k N t k N Pt k N t k N t k Nx t k t+ + + + += + +   (20) 

where state estimation error ˆ( ) ( ) ( | )x t k t x t k x t k t+ = + − + . 

If the plant and model mismatch is ignored the state estimation 

error is independent of the choice of control.  Recall 

ˆ( | )x t k t+  and ( | )x t k t+  are orthogonal and the expectation 

of the product of the future values of the control action 

(assumed known in the prediction equation), and the white 

noise driving signals, is null.  It follows ,
ˆ

Pt k NE +  in (19) and 

,Pt k NE +  are orthogonal. 

Time-Varying Kalman Estimator: The Kalman filter 

algorithm may be written in Predictor and Corrector form as: 

0
ˆ ˆ( 1| ) ( | ) ( ) ( )t t dx t t x t t u t k d t+ = + − +  (21) 

( )1
ˆ ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1| )f tx t t x t t z t z t t++ + = + + + − +  (22) 

1 1 0
ˆˆ( 1| ) ( 1) ( 1| ) ( 1 )t tz t t d t x t t u t k+ ++ = + + + + + −  (23) 

Observe that ˆ( | )x t k t+  only depends upon past values of the 

control signal.  This is a full-order optimal estimator with 

different states to those of the reduced-order observer ˆ ( | )ex t t . 

3 OBSERVER BASED RS PREDICTIVE CONTROL 

The GPC cost-index that motivates the criterion to be 

minimised, can contain a dynamic error weighting (Ordys and 

Clarke, 1993): 

2

0 0

0

{ e ( ) e ( ) ( ) ( )) }
N

T T

p p j

j

J E t j k t j k u t j u t j t
=

= + + + + + + +  (24) 

where {.| } E t denotes the conditional expectation, conditioned 

on measurements up to time t and j denotes a scalar control 

weighting.  The future optimal control signal is to be calculated 

for the interval [ , ]t t N  + .    

As mentioned above the state-space models generating the 

signals pr  and py  may include any dynamic cost-function 

weighting 1( )c z− , such as a low-pass filter to penalise the 

low-frequency disturbances. The cost-function for the problem 

of interest can be defined to have a similar form but with some 

enhancements.
 

A term to limit the gains of the controller 

(denoted ( )ck t ) may be added into the cost-index, so that large 
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gain magnitudes are penalized.  The rate of gain variations 

( )ck t may also be costed, where: 

( ) ( ) ( 1)c c ck t k t k t = − −  (25) 

A terminal or end-state cost-term, which represents the error 

in the desired end-state, can also be included to allow 

robustness and stability properties to be modified.  This end-

state error: 

( ) ( ) ( )x xe t i k r t i k x t i k+ + = + + − + +  

where ( )xr t i k+ +  denotes an end-state setpoint.  In some 

nonlinear applications, the steady-state control 
,t N

rU , to 

provide a given output, is calculable, and this can be used in 

the criterion.     

3.1 Optimal Control Cost-Function and Solution  

The multi-step RS-GPC cost-function { }tJ E J t=  is to be 

minimized that can be written in a concise vector-matrix form 

using the additional gain terms as follows: 

0 2 0 2

, , , , , ,( ) ( ) ( ) ( ){ T T T

Pt k N Pt k N t N t N N t N t N c K c

rT rJ E E E U U U U k t k t+ += + −  − +                       

2( ) ( ) ( ) ( ) }T T

c D c x s xk t k t e t N k P e t N k t+   + + + + +  (26) 

The weightings and signals being penalized include:  

• The signal 
,Pt k NE +

 represents the dynamically 

weighted future tracking error terms. 

• The cost-weightings on the future inputs 0u  are defined 

as 2 2 2 2

0 1{ , ,..., }N Ndiag    = . 

• The cost-weightings on the controller gains ( )ck t  are 

defined as
2 2 2 2

0 1{ , ,..., } 0
NkK diag    =  .   

• The weighting on the increment of the gains ( )ck t  is 

2 2 2 2

0 1{ , ,..., }
NkD diag    =  and on end-state error

0sP  . 

The integer N is the prediction horizon and Nk is the number 

of states in the low-order observer fed back through gains 

( )ck t . Assume a Kalman filter is used for state-estimation and 

prediction in the optimization (background processing), then 

the vector of future errors can be replaced by the orthogonal 

predicted errors and estimation error terms.   From (26) obtain:  

0 2 0

, , , , , , , ,
ˆ ˆ( ) ( ) ( ) ( ){ T T

Pt k N Pt k N Pt k N Pt k N t N t N N t N t N

rT rJ E E E E E U U U U+ + + += + + + −  −  

2 2( ) ( ) ( ) ( )T T

c K c c D ck t k t k t k t+  +     

( ) ( )ˆ ˆ( ) ( ) ( ) ( ) }T

x x s x xe t N k e t N k P e t N k e t N k t+ + + + + + + + + + +  

where ( ) ( ) ( 1)c c ck t k t k t = − − .  Let the known signal: 

ˆ( ) ( ) ( 1) ( | )N

dd x dd t kr t k r t N k d t N k x t k t++ = + + − + + − − +   (27)         

From (15), the end-state error can be expanded as follows:   

( ) ( ) ( 1)x x dde t N k r t N k d t N k+ + = + + − + + −

0
, , ,,

ˆ( | ) ( | )N N

t k t k N t k N t k N t kt N
x t k t x t k tU+ + + + +− + − −  − +  

( ) ( )0
, , ,,

( ) + ( | )N

dd t k N t k N t k N t kt N
r t k x t k tU+ + + += + − −  +  

Exploiting orthogonality properties: 

{ ( ) ( ) }T

x s xE e t N k P e t N k t+ + + +       

( ) ( )0 0
, ,, ,

( ) ( ) ( )
T

dd t k N s dd t k Nt N t N sr t k P r t k J tU U+ += + − + − +  (28) 

The final term, that is not dependent on control action:                

( ) ( ) , , , ,( ) + ( | ) + ( | )
T

N N

t k N t k N t k t k N t k N t ks sJ t E x t k t P x t k t t+ + + + + +=  +  +

 (29) 

Cost-simplification: The terms in the criterion can be 

simplified by using the orthogonality of the estimate ,
ˆ

Pt k NE +  

and estimation error
,Pt k NE +

. The vector form may be obtained, 

from (28), as: 

0 2 0 2

, , , , , ,
ˆ ˆ ( ) ( ) ( ) ( )T T T

Pt k N Pt k N t N t N N t N t N c K c

rT rJ E E U U U U k t k t+ += + −  − + 

2 0 0
, ,, ,

( ) ( ) ( ( ) ) ( ( ) )T T

c D c dd t k N s dd t k Nt N t N
k t k t r t k P r t kU U+ ++   + + − + −

0( ) ( )sJ t J t+ +  (30) 

where 0 , ,( ) { | }T

Pt k N Pt k NJ t E E E t+ += .  From (20) the error 

,Pt k NE +  and 0 ( )J t  are independent of the control and 

ˆ( | )x t k t+  only depends upon past values of control. Let the 

deterministic signal:                                                                                 

, , , ,
ˆ( | )Pt k N Pt k N Pt k N t k N x t k t+ + + += + +  (31) 

The future error estimates, from (19), may now be written as:  
 

0

, , , ,
ˆ

P t k N Pt k N Pt k N t NE U+ + += +  (32) 

Cost-function expansion: The cost (30) may be expanded as:         

( )0 2

, , , , , ( )T T T

t N Pt k N Pt k N N t N t k N s dd

rJ U U P r t k+ + += − − +      

( )2 0 2

, , , , ,( ) ( ) ( )T T T

P t k N P t k N t N N dd s t k N t N c K c

rTU r t k P U k t k t+ + ++ −  − + +       

( )2 0 2 0

, , , , , ,( ) ( )T T T T

c D c t N Pt k N Pt k N N t k N s t k N t Nk t k t U P U+ + + ++   + + +  

2

, , , ,( ) ( )T T

Pt k N Pt k N dd s dd t N N t N

rT rr t k P r t k U U+ += + + + +    

0( ) ( )sJ t J t+ +                                                               (33) 

3.2 Parameterizing an Observer Based RS Controller 

The RS controller utilizes the low order observer to compute 

ˆ ( )ex t t and the results will apply to the following cases: 

• When a low-order observer is used within the feedback 

loop and the gains are computed in the background 

based on a separate full-order Kalman filter. 

• Where a single full-order Kalman filter is used for both 

sets of computations; providing a benchmark solution.  

Parameterized Control Action: The expression for the 

parameterized control involves the m-control inputs and the q 

reduced-order observer state-estimates. The gain vector: 
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1

2

( )

( )
( )

( )

T

T

c

T

c

c

cq

k t

k t
K t

k t

 
 
 =
 
 
  

   and   

1

2

( )

j

c

j

c

jq

c

cj

k

k
k t

k

 
 
 =
 
 
  

                     (34)              

Denote the vector of q low order observer state-estimates as: 

1 2ˆ ˆ ˆ ˆ( ) q q

e e e ex t x x x R =    (35) 

The observer based control action, using (34) and (35): 

11 12 1 1 1 11 2 12 1

21 22 2 2 1 21 2 22 2

1 2 1 1 2 2

ˆ( ) ( ) ( )

ˆ ˆ ˆ ˆ... ...

ˆ ˆ ˆ ˆ... ...

ˆ ˆ ˆ ˆ... ...

c e

q q q

c c c e e c e c e c

q q q

c c c e e c e c e c

m m mq q m m q mq

c c c e e c e c e c

u t K t x t

k k k x x k x k x k

k k k x x k x k x k

k k k x x k x k x k

=

     + + +
    

+ + +    = =
   
   

+ + +       





 
 
 

 (36) 

Gain Computational Form: For the optimal gain calculation, 

all the above gains need to be collected in a single vector. 

There are q gains in each channel in (36) that may be grouped 

as:    

1 2( )
T

T T T m q

c c cmck t k k k R  =    (37) 

Also, introduce a block diagonal matrix ˆ ( )xF t as: 

 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )T T T

x e e eF t diag x t x t x t=  (38) 

The control signal ˆ( ) ( ) ( )cxu t F t k t=  follows as: 

 

1

2ˆ ˆ ˆ( ) ( ) ( ) ( )

c

cT T T

e e e

cm

k

k
u t diag x t x t x t

k

 
 
 =
 
 
 

1

2

ˆ ( )

ˆ ( )

ˆ ( )

T

e c

T

e c

T

e cm

x t k

x t k

x t k

 
 
 =
 
 
  

 (39)

 3.3 Parameterizing the Vector of Future Controls  

An implicit model predictive control like GPC is usually based 

on the receding horizon principle (Kwon and Pearson, 1977), 

where the optimal control is taken as the first element in the 

vector of future controls 0

,t NU .  The equivalent assumption for 

RS-GPC is that ( )ck t is assumed constant over the prediction 

horizon [0, N], and the computed ( )ck t
 
can then be used to 

compute the optimal control for time t.
  
In the spirit of receding 

horizon control at the next sample time the process is repeated 

and a new value of the gain ( )ck t
 
is computed. The gains can 

be substituted in (39) to compute the vector of future controls.  

The difference with other MPC observer based solutions is that 

the predicted control is computed using the chosen RS-

controller. In the spirit of the receding horizon philosophy, the 

structure of the controller is assumed fixed over the prediction 

interval and  only the initial control is implemented using the 

gain at that time. The
 
vector of future controls 

,t NU  is therefore 

given as: 

,

ˆ ( )( )

ˆ( 1) ( 1)
( )

( ) ˆ ( )

t N c

x

x

x

F tu t

u t F t
U k t

u t N F t N

  
  

+ +  = =   
  
 +  + 

 

(40) 

where  ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )T T T

x e e eF t i diag x t i x t i x t i+ = + + +  (41)        

and 
1 2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

T
T q

e e e ex t i x t i x t i x t i + = + + +  .  

The assumption is that the gains are constant throughout the 
prediction horizon and the vector of future controls may then 

be found given the predicted state-estimates.  Let the matrix, 

ˆ ˆ ˆ( ) ( ) ( 1) ( )
T

T T T

fe x x xU t F t F t F t N = + +
 

 (42) 

The i step-ahead control follows as: ˆ( ) ( ) ( )x cu t i F t i k t+ = + or          

 ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )T T T

e e e cu t i diag x t i x t i x t i k t+ = + + +  

The vector of future controls may now be written in terms as: 

, ( ) ( )t N f e cU U t k t=
 

(43) 

4 OPTIMIZATION OF THE PREDICTIVE CONTROLLER 

The solution for the optimal RS controller gains may now be 

obtained. Using the parameterization (43) for the controller 
0

, ( ) ( )t N f e cU U t k t=  and the criterion (33) may be written as:    

( )2

, , , , ( )T T T T

c fe Pt k N Pt k N N t N t k N s dd

rJ k U U P r t k+ + += − − +

( )2

, , , ,( )T T

Pt k N Pt k N t N N dd s t k N f e c

rTU r t k P U k+ + ++ −  − +  

2 2 2

, , ,

T T T T

c fe t k N f e c c K c c D c t N N t N

rT rk U U k k k k k U U++ +  +   + 

, , 0+ ( ) ( ) ( ) ( )T T

Pt k N Pt k N dd s dd sr t k P r t k J t J t+ + + + + + +        (44)  

The time-varying matrix 
,t k N+

 in this expression satisfies:  

2

, , , , ,( )T T

t k N Pt k N Pt k N N t k N s t k NP+ + + + += + +                    (45)  

Define
0

,Pt k N+ and substitute from (31) to obtain: 

( )0 2

, , , , , ( )T T T

Pt k N fe Pt k N Pt k N N t N t k N s dd

rU U Pr t k+ + + += − − +  

To simplify let: 
, ,( )

C t k N

T T

fe Pt k NU t
+ += , 

, ,( )
C t k N

T T

fe t k N sU t P
+ +=  

,, , , , , ,( )
C t k N

T T

t k N Pt k N t k N fe Pt k N Pt k N t k NU t ++ + + + + += =   (46) 

Thence obtain: 

0

, ,

2

, , , ,
ˆ( | ) ( ) ( ) ( )

C Ct k N t k N

T

Pt k N Pt k N t k N fe N t N dd

rx t k t U t U t r t k+ ++ + += + + −  − +           

                                                                                           (47) 

The cost-function (44) may now be written as: 

0 0

, , ,( ) ( ) ( ) ( ) ( ) ( )TT T T

c Pt k N Pt k N c c fe t k N f e cJ k t k t k t U t U t k t+ + += + +  

2 2

, ,( ) ( ) ( ) ( )T T T

c K c c D c Pt k N Pt k Nk t k t k t k t + ++  +    +  

2

, , 0( ) ( ) ( ) ( )T

dd s dd t N N t N s

rT rr t k P r t k U U J t J t+ + + +  + +  (48) 
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This can be simplified by noting ( ) ( ) ( 1)c c ck t k t k t = − −

where                 

2 2 2

2 2

( ) ( ) ( ) ( ) ( 1) ( )

( ) ( 1) ( 1) ( 1)

T T T

c D c c D c c D c

T T

c D c c D c

k t k t k t k t k t k t

k t k t k t k t

   =  − − 

−  − + −  −   

The cost expression (48) may therefore be written as: 
    

0 0 2 2

, ,( ) ( ) ( 1) ( ) ( ) ( 1)TT T T

c Pt k N Pt k N c c D c c D cJ k t k t k t k t k t k t+ += + − −  −  −

( )2 2

, , ,( ) ( ) ( ) ( )T T T

c fe t k N f e K D c Pt k N Pt k Nk t U t U t k t+ + ++ +  +  +                                                        

2( 1) ( 1) ( ) ( )T T

c D c dd s ddk t k t r t k P r t k+ −  − + + +

2

, , 0( ) ( )t N N t N s

rT rU U J t J t+  + +  (49) 

To simplify (49), define the following time-varying matrix: 

2 2

, ,( ) ( )
k

T

t k N fe t k N f e K DU t U t+ += +  +   (50) 

Cost-function: Substituting these results into (49):    

( ) ( )0 02 2

, ,( ) ( 1) ( 1) ( )TT T

c Pt k N D c Pt k N c D cJ k t k t k t k t+ += − − + − − 

2

, , ,( ) ( ) ( 1) ( 1)
k

T T T

c t k N c Pt k N Pt k N c D ck t k t k t k t+ + ++ + + −  −  

2

, , 0( ) ( ) ( ) ( )T

dd s dd t N N t N s

rT rr t k P r t k U U J t J t+ + + +  + +  (51) 

The terms within the square brackets are independent of the 

control action. The necessary condition for optimality requires 

the gradient of the cost-function to be set to zero, to obtain the 

vector of future optimal controls. The optimal gain: 

( )1 0 2

, ,( ) ( 1)
kc t k N Pt k N D ck t k t−

+ += − − −  (52) 

The sufficient condition requires that the second-derivative or 

Hessian matrix be positive definite
, 0

kt k N+  , which is 

ensured because the control gain costing is positive definite.  

Asymptotic Behaviour: From (52) if the rate of change cost 

term 2

D →  the limiting gain ( ) ( 1)c ck t k t= −  becomes 

constant.  

Minimum cost: Substituting in (51) for the gain ( )ck t in (52) 

and simplifying, the minimum-cost becomes: 

( ) ( )0 02 1 2

, , , , ,( 1) ( 1)T

k

T T

min Pt k N Pt k N Pt k N c D t k N Pt k N D cJ k t k t−

+ + + + += − − −  − −

2 2

, , 0( 1) ( 1) ( ) ( ) ( ) ( )T T

c D c dd s dd t N N t N s

rT rk t k t r t k P r t k U U J t J t+ −  − + + + +  + +

 (53) 

where
0

,Pt k N+ was defined in (47) and gain ( 1)ck t − is known.       

Sub-optimality: The minimum-cost (53) may be compared 

with the minimum for conventional GPC to minimize (24), 

when the weightings 2

K , 2

D  and sP  tends to zero, so from 

(29) ( ) 0sJ t → ,
2

, , ,( )( ) ( )
k

T T

t k N fe Pt k N Pt k N N f eU t U t+ + +→ + and 

0

,, ,C t k NPt k N Pt k N++ +→ . Assuming 
, 0t N

rU =  and that ,t k N+  
has an inverse the minimal cost, from (53) becomes: 

0 01

, , , , , 0 ( )T

k

T

min Pt k N Pt k N Pt k N t k N Pt k NJ J t−

+ + + + +→ − +                    (54) 

This minimum cost will be larger relative to the minimal-cost 

in the equivalent unrestricted GPC control problem, given as: 

( )2 1

, , , , , , 0( ) ( )GPC T T T

min Pt k N Pt k N Pt k N Pt k N N Pt k N Pt k NJ I J t−

+ + + + + += − + +

 
(55) 

The two costs (54) and (55) approach the same value in the 

special case when 
f eU is square and full rank.  

4.1 RS-GPC Main Theorem 

Theorem 1: Observer Based RS-GPC Control     

Consider the system and assumptions given at the start of §2. 

The observer based restricted-structure generalized predictive 

controller is required to minimize the cost-function: 

0 2 0 2

, , , , , ,( ) ( ) ( ) ( ){ T T T

Pt k N Pt k N t N t N N t N t N c K c

rT rJ E E E U U U U k t k t+ += + −  − + 

2( ) ( ) ( ) ( ) }T T

c D c x s xk t k t e t N k P e t N k t+   + + + + +  (56) 

The RS-GPC
 
control is

 
parameterised as ˆ( ) ( ) ( )cxu t F t k t=

where ˆ ( )xF t is given by (41). The optimal gains found to 

minimize (56) using a receding horizon philosophy: 

( )01 2

, ,( ) ( 1)
kc t k N Pt k N D ck t k t−

+ += − − −                        (57)    

,

1

, , ,
ˆ( | )(

C t k Nkt k N Pt k N t k N x t k t+

−

+ + += − + +  

,

2 2

,( ) ( ) ( ) ( 1))
C t k N

T

fe N t N dd D c

rU t U t r t k k t
+

−  − + − −      (58)
 
      

 The matrix , kt k N+  is given by (50) and
,C t k N+

, 
,t k N +

 and 

,C t k N+
 by (46).  The gain-vector ( )ck t has the form: 

1 211 12 21 22 1 2( ) ][ qT qT m qT
T

T T T T m T m T

c c c c c c c c c c

channel 1gains channel 2 gains channel m gains

k t k k k k k k k k k=  

 The optimal control is given by (57) and parameterized vector 

of future controls for the prediction error computations:  

, ( ) ( )t N f e cU U t k t=  (59)
 

where ˆ ˆ ˆ( ) ( ) ( 1) ( )
T

T T T

fe x x xU t F t F t F t N = + +
 

           ● 

Solution: These results were derived in the solution 

presented before the theorem.                                                ●      

Comments on the control solution: The “denominator matrix” 

in the RS-GPC controller gain expression (58) is full rank 

because of the cost and system descriptions.  It is interesting 

that the expression for the gain-vector is of a similar form to 

the usual GPC solution but the denominator matrix in (58) can 

be of much lower dimension than arises in GPC control. The 

size of this matrix depends upon the number of gains in the 

parameterised controller, which in turn depends upon the order 

of the observer used in the feedback loop. The weightings 2

K  

and 2

D  ensures that the denominator matrix does not become 

singular. 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4335



4.2 Hard and Soft Constraints in RS-GPC  

Soft constraints can be applied to the controller gains, or to the 

rate of change of gains, by changing the weighting terms 2

K  

and 2

D  in (56). Hard-constraints may be applied in almost the 

same way as for GPC algorithms using Quadratic 

Programming (QP). Constraints may be applied to the 

magnitude of the controller gains, or to their rate of change. 

They may also be applied to the control signal inputs and 

outputs.  The ability to bound the gain or gain variations is 

essential in some applications.  Limiting controller gains has a 

direct effect on power demands and an indirect effect on 

nonlinear system behaviour and stability.   

4.3 Low Order Observer Design  

The low-order observer within the loop is not the same as the 
Kalman-filter in the background processing. It is chosen to be 

low-order to improve robustness and so that it can be 

approximated by a scheduled solution for real-time 

implementation. The design of the observer is important but 

not critical to the performance obtained. This is because the 

optimization process computes gains that optimize the solution 

whatever the choice of observer. Clearly if there is a perverse 

choice of observer, the optimal control will find it harder to 

provide a “best” solution. The observer should therefore be 

designed using a rational philosophy but the solution may not 

be very sensitive. The observer can be found by basing the 

plant model on just the low frequency plant modes or it can be 
model reduced and a low order Kalman-filter can be 

computed. If the state-space model is linear time-invariant, a 

Luenberger-observer can be designed. There is an interesting 

extension suggested by Morari and Maeder (2012) for 

nonlinear predictive controls where the plant model is 

augmented by a disturbance model, which accounts for model 

mismatch and disturbances. They noted, “In principle it would 

be possible to use an elaborate nonlinear model in the observer 

and a simple (locally linearized) model in the controller as long 

as the steady-state characteristics match.” The opportunity to 

improve robustness and achieve offset free tracking in the RS-

GPC controller is clear. 

4.4   Cost-Function Tuning Variables 

Tuning the controller should be as simple as traditional MPC 

(Grimble and Majecki, 2010).  The weighting on the control 

signal provides a simple way to vary the speed of response.  

The initial choice of weighting on the error signal can be taken 

as the identity or if integral action is included then the 

weighting gain can be scaled to the identity. The remaining 

weightings 1 2

CN KF =   and 2 2

CN DF =   are on the magnitude of 

the gains and the rate of change of gains, and it is useful to 

limit these gains.                                                                                  

5 ROLLING MILL LOOPER CONTROL DESIGN   

The interstand looper involves a roll on a torque-controlled 

arm located between the adjacent stands of a multi-stand hot 

rolling mill. It maintains a constant tension between the stands 

to correct any disturbances in the strip mass flow, during 

acceleration and deceleration.  The plant I/O structure is shown 

in Fig. 3 and the problem is described in more detail in Hearns 

et al., (1996).  

 

Fig. 3: Looper Control Plant Model 

 

 

Fig. 4: Comparison Reduced-Order Observer Based RS-GPC with                      
MPC Setpoint Following (Observer reduced by a single state) 

The results in Fig. 4 compare model predictive control (MPC) 

and the RS-GPC algorithm, aimed at good looper-angle 

reference tracking. The observer is one state lower than full-

order and is a suboptimal Kalman Filter within the loop.  The 

Fig. 5 shows the observer based RS-GPC solution when the 

observer uses a plant model, which is five or six states lower 
than the full-order case and using the same cost-function.  It is 

surprising that tracking performance is so good for this case 

but recall the background processing which involves the 

predictive control algorithm computes the “optimal” solution 

and attempts to compensate for the use of the low-order 

observer. The variances of tracking errors can be considered 

but they are not very meaningful, since the individual 

variances are not being minimized and MPC and RS cost-

functions are very different. 

                       Looper Angle       Strip Tension 

MPC              5776.2              15.91 
RS-GPC              7110.7               0.25 
RS -5s              6343.5               0.17 
RS -6s              6620.1               0.24 
 

The RS results are for the observer model reduced by one, five 

and six states, respectively. However, the RS criterion has the 

term 
2( ) ( )T

c K ck t k t that depends on the number of states. The 

higher-order observer RS control includes five more weighting 

terms than the RS -6 states case so again it is difficult to 

compare results in this way. 
  

 
Drive speed reference 

r
 

Strip velocity disturbance 

Looper torque reference M 

Strip tension  

Looper angle  
Looper and 

strip tension 

model for 

looper zone 

between stands 
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Fig. 5: Comparison When Observer States Reduced by 5 or 6 States  

 Note that if the low-order observer is made very fast by 

reducing the assumed measurement noise variance the RS 

results are all rather similar. As noted above the background 

processing can therefore ensure high performance is achieved 

providing the assumed low-order observer does not slow down 

the system too markedly. 

6 CONCLUDING REMARKS 

When a low order observer is to be used in a feedback control, 

there is not normally an exact analytic solution to the resulting 
optimal control problem. The main contribution is that the 

proposed predictive control solution here does not involve any 

approximation. The RS-GPC approach has potential in 

automotive applications such as Majecki et al. (2015, 2017) 

where the RS structure can be simplified for implementation. 

A low-order controller also seems to have a mother nature 

intended natural robustness. Moreover, predictive controls 

often exhibit an improvement in robustness over long 

prediction-horizons and this property has been observed in 

application examples.  

The controller has natural feed-forward terms and provides 
some measure of time delay compensation. The use of an 

optimisation method to compute the parameterised controller 

gains provides the benefits of model-based control and reduces 

the tuning process to the selection of simple cost-function 

weightings. The advances on nonlinear predictive control 

(Findeisen et al. 2003, Mayne et al., 2005, 2014) suggests a 

number of extensions. 
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