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Abstract: The speed with which an ego-vehicle follows a lead vehicle through traffic can
significantly affect the former’s fuel consumption, safety, average speed, and ride comfort.
This paper merges these objectives and constraints into a unified trajectory optimization
problem. One of the paper’s goals is to provide a unified formulation of problems traditionally
tackled independently, e.g., platooning, fuel-minimizing vehicle speed trajectory optimization,
etc. Another key goal is to demonstrate the degree to which Differential Dynamic Programming
(DDP) provides a conceptually attractive and computationally inexpensive decomposition of
the resulting multi-objective problem. In this decomposition, perturbations from an optimal
steady-state vehicle trajectory are controlled using a linear quadratic regulation (LQR) law
obtained analytically through DDP. We examine the performance of this controller simulating
a representative urban drive cycle with a lead vehicle. We also perform a sensitivity study on
the parameters in the objective and explore their effect in both fuel economy and deviations
from nominal headway distance. Finally, we explore the effect of different levels of collaboration
between vehicles by assuming the lead vehicle shares its predicted future average acceleration.

Keywords: Automatic control, optimization, real-time operations in transportation; Trajectory
and Path Planning; Trajectory Tracking and Path Following

1. INTRODUCTION

This paper examines the problem of optimizing the speed
with which a heavy-duty ego-vehicle follows a lead vehicle
through urban/suburban traffic. The paper exploits inter-
vehicle connectivity and automation, specifically by as-
suming that the lead vehicle’s velocity and acceleration are
known to the ego-vehicle either instantaneously or ahead of
time, with some look-ahead horizon. The objective of the
paper’s speed trajectory optimization problem is threefold,
namely, to: (i) minimize fuel consumption, (ii) maximize
speed, and (iii) minimize the rate of change of vehicle
power demand. The last of these three competing Pareto
objectives prioritizes vehicle operator comfort. Constraints
on this optimization problem reflect a mix of physical, le-
gal, and safety limitations, namely: engine/braking power
constraints, speed limits, and minimum inter-vehicle spac-
ing.

Motivation for the above optimization problem is twofold.
First, there is a growing need for fuel economy improve-
ment in the heavy-duty transportation sector. Emissions
from the overall transportation sector accounted for 28.5%
of greenhouse gases emitted in the United States in 2016,
with medium- and heavy-duty trucks and buses accounting
for 24% of carbon emissions in that sector (EPA, 2018).
To address this issue, Environmental Protection Agency
(EPA) mandates will require heavy-duty vehicles to reduce
their fuel consumption by 25% by 2027 (EPA, 2016).

Second, emerging vehicle connectivity and automation
technologies provide new possibilities for fuel consumption
minimization in the transportation sector, as explained
below.

One way to significantly improve the fuel economy of
heavy-duty-vehicles is by shaping their speed profile so
that energy waste is minimized. This opportunity is well-
supported by the existing literature. Hellström et al. (2006;
2007), for example, implement a controller that minimizes
fuel and trip time given the topography of the route
using dynamic programming. They observe fuel savings
of up to 8% in on-road experiments. Similarly, Groelke
et al. (2018), compare three different model predictive
control strategies for fuel economy optimization of a heavy-
duty-vehicle. The first strategy directly penalizes fuel
consumption, the second one penalizes braking effort,
and the third one minimizes a convex objective with a
tradeoff between energy expenditure and tracking of a
coarse dynamic programming solution. They observe fuel
savings in simulation of 4%-7%.

Another way to improve the fuel economy of heavy-duty-
vehicles is for them to travel close to each other forming
a platoon. This problem is closely related to the problem
of adaptive cruise control (ACC). In fact, Li et al. (2011),
implemented a model predictive control-based ACC that
penalized fuel consumption, and achieved fuel savings of
5.9%. In a platoon of multiple heavy-duty-vehicles, the
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following vehicles have the advantage of reducing their
aerodynamic drag by traveling in the wake of a leading ve-
hicle. Alam et al. (2010) observe fuel savings of up to 7.7%
in experiments with trucks of different masses, platoon-
ing at 70 km h−1. Typically, platooning is implemented
by algorithms that maintain either a constant headway
distance or a constant gap time. It is possible to exploit
future predictions/information to further reduce braking
and thus fuel consumption: a fact demonstrated by Turri
et al.’s work on cooperative look-ahead control (2015).
This work’s simulation studies suggest fuel savings of up to
12% when compared to conventional platoon controllers.
A model predictive controller can also be implement with
non-cooperative lead that communicates its future speed
trajectory, (see Turri et al., 2017).

Compared to the above literature, our goal in this pa-
per is twofold. First, the paper integrates the vehicle
speed trajectory optimization and platooning problems
into a single multi-objective trajectory optimization prob-
lem statement. This provides a unified framework within
which these two problems, traditionally treated in the
literature as separate, can be examined. Second, the paper
applies differential dynamic programming (DDP) to the
resulting unified problem formulation. The use of DDP
provides insight into the structure of the solution to this
unified problem. Moreover, it leads to a very simple, albeit
somewhat approximate, solution structure that naturally
lends itself to online real-time implementation.

The remainder of this paper is organized as follows. Sec-
tions II and III present the vehicle model and optimization
problem statement used in this work, respectively. Sections
IV-VI then present the solution framework, focusing, re-
spectively, on: the use of differential dynamic programming
to construct a problem solution structure; the underlying
development of a simple kinematic representation of the
lead vehicle’s behavior; and the selection of Pareto op-
timization weights using Bryson’s rule (see Bryson and
Ho, 1975). Finally, Section VII presents simulation case
studies demonstrating the solution to the DDP problem,
and Section VIII summarizes the outcomes of this work.

2. VEHICLE MODEL

We consider a platoon of two heavy-duty vehicles. We can
model the dynamics of the following vehicle with a simple
longitudinal point mass model. In this model the truck’s
propulsive force Fprop is opposed by the rolling resistance
Froll, and the aerodynamic drag Fair :

v̇ =
1

m
(Fprop − Fair − Froll) (1)

where:

Fair =
1

2
ρCdAfv

2
air (2)

Froll = µmg cos(θ) +mg sin(θ) (3)

Fprop =
P

v
(4)

In this model, ρ is the air density, Cd is the aerodynamic
drag coefficient, Af is the frontal area of the truck, vair is

the wind speed relative to the truck, µ is the rolling friction
coefficient, m is the vehicle mass, g the gravitational
acceleration, θ the road inclination, v is the truck speed,
and P is the propulsion power if positive, or the braking
power if negative.

In a platoon, the effective air speed that the trailing vehicle
experiences is reduced by the aerodynamic wake of the lead
vehicle. It is common to model the effect of the wake of
the lead vehicle in terms of an aerodynamic drag coefficient
dependent on headway h:

Fair =
1

2
ρCd(h)Afv

2 (5)

Using the results of wind tunnel experiments in Vohra
et al. (2019) we fit a sigmoidal function to the drag
coefficient reduction with respect to headway distance and
obtain:

Cd(h) = Cd0
a

(1 + e−bh)
(6)

where a and b are constant parameters.

If we assume the vehicles travel on a flat road, the
dynamics of our two vehicles platoon can be written in
state-space form as follows:

ḣ = vlead − v (7)

v̇ =
1

m

(P
v
− 1

2
ρCd(h)Afv

2 − µmg
)

(8)

Ṗ = u (9)

In this model we assume that the control input to the
system is the derivative of the propulsion power.

3. PROBLEM STATEMENT

Our primary objective is to minimize the fuel consumption
of the follower truck. The trivial solution to this problem,
is for the truck not to move. This makes it necessary
to formulate an optimization objective that performs a
Pareto trade-of between fuel consumption and trip time.
It is also important to consider both passenger comfort
and engine health. Additionally, a truck should not exceed
the speed limit of the road, and should maintain a safe
following distance vis-a-vis the vehicle ahead. Finally, the
engine has a maximum power that it can output, and
the brakes have a maximum braking power that they can
dissipate. We propose the following optimization problem
to capture these goals:

Minimize J =

∫ T

0

(L(x, u))dt (10)

Subject to:

ẋ = f(x, u) (11)

g(x) ≤ 0 (12)

where:
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x =

[
h
v
P

]
f(x, u) =

 vlead − v
1
m

(
P
v −

1
2ρCd(h)Afv

2 − µmg
)

u


(13)

L(x, u) = ṁidle + βP − cv +
1

2
Ru2 (14)

g(x) =


hmin − h
v − vmax

vmin − v
P − Pmax

Pmin − P

 (15)

Notice that the in first term of (14) we approximate
the fuel consumption of the vehicle as having an affine
relationship with propulsion power. This is a standard
Willans line representation of engine fuel consumption.
The second term ensures we maximize speed, and the last
term imposes a quadratic penalty on the time derivative
of power demand.

We can approximate the inequality constraints by using
logarithmic barrier functions in the objective:

−αi(ln (−gi(x))) (16)

The resulting optimization problem has the following
structure:

Minimize J ′ =

∫ T

0

(L′(x, u))dt (17)

Subject to:

ẋ = f(x) (18)

where:

L′(x, u) = L(x, t) +

3∑
i=1

Ci (19)

C1 = −α1(ln (h− hmin)) (20)

C2 = −α2(ln (v − vmin) + ln (vmax − v)) (21)

C3 = −α3(ln (P − Pmin) + ln (Pmax − P )) (22)

Assuming the lead vehicle eventually reaches a constant
speed, this problem has a steady-state optimal solution.
At steady-state:

f(x) = 0 (23)

h = hss (24)

v = vss = lim
t→∞

vlead (25)

P = Pss =
1

2
ρCd(hss)Afv

3
ss + µmgvss (26)

We can substitute these values into J ′ and optimization
problem becomes static.

4. DIFFERENTIAL DYNAMIC PROBLEM

Differential dynamic programming (Mayne, 1973) relies on
approximating an optimization problem around a nominal

trajectory. We are going to consider a steady-state opti-
mum, and approximate our problem around it.

At steady state, the optimization problem written in (17)
becomes:

Minimize L′(x0, u0) (27)

Subject to:

f(x0, u0) (28)

To solve this problem, we augment our objective with
Lagrange multipliers:

Minimize L′(x0, u0) + λT
0 f(x0, u0) (29)

The first optimality condition is:

∇(L′(x∗
0, u
∗
0) + λ∗T0 f(x∗

0, u
∗
0)) = 0 (30)

where, x∗
0, u
∗
0,λ

∗
0 constitute a solution to this problem.

Now let us define deviations around this steady-state
optimum as: δx, δu, δλ, where:

x = x∗
0 + δx (31)

u = u∗0 + δu (32)

λ = λ∗
0 + δλ (33)

We can write our original problem as:

Minimize J ′ =

∫ T

0

(L′(x∗
0 + δx, u∗0 + δu))dt (34)

Subject to:

δẋ = f(x∗
0 + δx, u∗0 + δu) (35)

We can approximate the objective as quadratic and the
dynamics as linear, around the optimal steady state. The
problem becomes:

Minimize J ′approx =

∫ T

0

[L′approx]dt (36)

Subject to:

δẋ = fx|x∗
0,u

∗
0
δx+ fu|x∗

0,u
∗
0
δu (37)

where:

L′approx = L′(x∗
0, u
∗
0) + L′xδx+ L′uδu

+
1

2
[δxT δu]H(L′)[δxT δu]T

(38)

and H(L′) is the Hessian of L′.

We can remove the constant L′(x∗
0, u
∗
0) in the integrand,

since it does not affect the solution of the optimization
problem:

L′approx := L′xδx+L′uδu+
1

2
[δxT δu]H(L′)[δxT δu]T (39)

We can calculate the Hamiltonian of the resulting problem,
and get:
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H = L′approx + (λ∗
0 + δλ)T (fxδx+ fuδu)) (40)

Notice that from (30) we know that terms:

L′xδx+ λ∗T
0 fx|x∗

0,u
∗
0
δx = 0 (41)

L′uδu+ λ∗T
0 fu|x∗

0,u
∗
0
δu = 0 (42)

Our Hamiltonian becomes:

H =
1

2
[δxT δu]H(L′)[δxT δu]T + δλT (fxδx+ fuδu))

(43)

Equation (43) provides the Hamiltonian of a linear
quadratic regulation problem that arises from our use of
differential dynamic programming. This LQR problem is
stated below:

Minimize J ′approx =

∫ T

0

[
1

2
[δxT δu]H(L′)[δxT δu]T ]dt

(44)

Subject to:

δẋ = fx|x∗
0,u

∗
0
δx+ fu|x∗

0,u
∗
0
δu (45)

Notice that the linear fuel consumption and speed terms
in the original objective disappears. This suggests that our
approximate objective J ′approx only captures the penalty in
our input and our logarithmic constrains around a static
optimum.

5. LEAD VEHICLE MODEL

One of the state variables of the above LQR problem is the
perturbation in lead vehicle velocity around a steady-state
value. To solve this LQR problem, one needs a dynamic
model of this perturbation. To obtain this model, we use an
urban/suburban duty cycle for a commercial heavy-duty
truck

We fit a second order model to the speed deviations around
the average speed of this duty cycle:

δv(k) = a1δv(k − 1) + a2δv(k − 2) (46)

Using least squares estimation, we obtain:[
a1
a2

]
=

[
1.85
−0.8543

]
(47)

The discrete transfer function of the system from distur-
bance to speed deviation is thus:

G(z) =
z

z2 − 1.85z + 0.8543
, (48)

and has poles (0.9572, 0.8925) inside of the unit circle,
which means this system is stable.

We can find a state space realization of this system:[
x1(k + 1)
x2(k + 1)

]
=

[
1.85 −0.8543

1 0

] [
x1(k)
x2(k)

]
(49)

y(k) = x1(k) (50)

where x1 corresponds to the deviation from the steady-
state optimal speed, and x2 corresponds to a linear com-
bination of both the speed and acceleration deviations. We
can write this in continuous time as follows:[

ẋ1
ẋ2

]
= Alead

[
x1
x2

]
+Bw (51)

y = x1 (52)
where:

Alead =

[
0.9217 −0.9241
1.082 −1.079

]
(53)

We can augment our linear model in (45) and include the
dynamics of the lead vehicle.


δḣ
δv̇

δṖ
ẋ1
ẋ2

 =

[
Aego 03×1
01×3 Alead

]
δh
δv
δP
x1
x2

+


0
0
1
0
0

 δu (54)

where:

Aego = fx|x∗
0,u

∗
0

(55)

Notice that the resulting system is stabilizable, meaning
that the LQR problem is solvable.

6. SELECTION OF PARETO OBJECTIVE WEIGHTS

Using ideas from differential dynamic programming, we
have constructed a LQR problem around an optimal
steady state. This LQR emerges from the approximation
(17) of our original optimization problem in (10). To
capture the relative importance of different terms in this
objective, we introduce the weights: (c,R, α1, α2, α3). In
this section, we focus on how we choose values for these
weights.

In section 4 we defined our nominal trajectory as a steady
state optimum of the optimization problem in (17), and
assumed we could find a solution to that problem. In
reality, the optimum steady-state trajectory depends on
the objective weights.

To select these weights, we can impose a steady state op-
timum speed and headway, and use first order optimality
conditions, in combintation with Bryson’s rule, to obtain
a system of equations that we can solve for the objective
weights.

∂L′

∂vss
= 0 (56)

∂L′

∂hss
= 0 (57)

δh2badQ11 = δP 2
badQ33 (58)

δP 2
badQ33 = δv2badQ22 (59)

δu2badQ66 = δP 2
badQ33 (60)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15963



where Q = H(L′), and the variable with subscript bad rep-
resent equivalent unacceptable deviations from the steady
state. With this approach the problem of selecting the opti-
mization weights is replaced to the much intuitive problem
of selecting the relative importance of the parameters in
the Bryson’s equations (58),(59),(60). We will explore the
effect varying these parameters has on the optimization
result in the following section.

7. SIMULATION & RESULTS

7.1 Sensitivity Analysis of Bryson’s Weights

While it is possible to use engineering intuition to pick the
values of equivalent unacceptable deviations in Bryson’s
rule, in this section we explore the effect of varying these
in simulation.

We consider a platoon of two identical trucks, where the
lead vehicle is following a representative urban cycle with
an average speed of 9.1m s−1. The ego vehicle follows the
lead using the feedback law obtained from solving the LQR
in previous sections.

We perform a sensitivity study on the equivalent unaccept-
able deviations of speed, headway, power, and input. We
determined that changing the deviations in power had an
effect in fuel consumption more significant than changing
the other parameters. In Figure 1 we show the fuel saving
of our vehicle compared to the lead vehicle, for different
values of the deviations in power.

Power Deviation [W]

F
u
el

 S
av

in
g 

[%
]

Fig. 1. Fuel savings for different values of the unacceptable
deviation in Power used in Bryson’s rule.

These fuel savings mostly come from a reduction in energy
dissipated by braking. In Figure 2 we show this reduction
for for different values of the deviations in power.

We can take a closer look to one of these cases. In Figure
3 we show a snippet of the speed trajectories of both
the lead and ego vehicles. For this case we can also look
at the changes in energy losses in Figure 4. While there
is a reduction in aerodynamic losses from the reduction
in aerodynamic drag in the platoon. Its effect is not as
significant as a the reduction in energy dissipated while
braking.

Power Deviation [W]

B
ra

k
e 

E
n
er

gy
 R

ed
u
ct

io
n
 [
%

]

Fig. 2. Brake energy reduction for different values of the
unacceptable deviation in Power used in Bryson’s
rule.

Time [s]

S
p
ee

d
 [
m

/s
]

Lead Vehicle
Ego Vehicle

Fig. 3. Snippet of speed trajectory of both lead and ego
vehicles

7.2 Effect of prediction in fuel savings

So far we have assumed that we have knowledge of the
lead vehicle speed and acceleration in real time. However,
as connectivity and automation becomes more prevalent,
we could assume that the lead vehicle communicates its
future plans. We can explore the effect this have in our
controller.

We assume that instead of using the current speed and
acceleration we take the average future speed and acceler-
ation for a given preview horizon. We then feed this signals
back to our controller. We can then explore the effect of
changing the preview horizon. In Figure 5 we show the
effect of varying the both the preview horizon and the
power deviation in fuel savings and headway root mean
square error.

We can identify a fundamental trade-of between saving
fuel and maintaining a constant headway.
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Fig. 4. Energy losses by lead and ego vehicles
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Fig. 5. Effect of changing the unacceptable deviation
of power and preview horizon on fuel savings and
headway root mean square error.

We can also look at one of these cases and dig a bit deeper
into what is causing the savings. In Figure 6 we show
a snippet of the speed trajectories of both lead and ego
vehicle, and in Figure 7 we break down the energy losses.

8. CONCLUSION

In this paper we used differential dynamic programming
approximate the speed trajectory optimization a platoon-
ing vehicle as a linear quadratic regulator problem that
tracks an optimal steady-state trajectory. We used exper-
imental data to fit a linear model for the speed of an
uncontrollable lead vehicle. We used Bryson’s rule and
first optimality conditions to obtain the objective weights

Time [s]

S
p
ee

d
 [
m

/s
]

Lead Vehicle
Ego Vehicle

Fig. 6. Snippet of speed trajectory of both lead and ego
vehicles for a preview horizon of 3s.

E
n
er

gy
 [
J
]

Fig. 7. Energy losses by lead and ego vehicles for a preview
horizon of 3s.

that produce a desired steady-state optimum trajectory.
We explore the effect of changing the Bryson’s rule un-
acceptable deviations from the optimal steady state. An
unacceptable deviation of 25× 103W resulted in the high-
est fuel savings of 5.7% compared to the lead vehicle. We
also identified a fundamental trade-off between fuel savings
and mantaining a constant headway. Finally we explored
the effect of leveraging knowledge of the future speed and
acceleration of the lead vehicle. For a prediction horizon
of 3s we obtained fuel savings of 9.7%.
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