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Abstract: Individual chance constraints can be used to systematically seek trade-offs between
control performance and constraint violation for a given disturbance description. This paper
presents a Stochastic Model Predictive Control (SMPC) approach with adaptive individual
chance constraints that relies on online adaptation of the disturbance description using the
empirical cumulative distribution (ECDF). Individual chance constraints are ensured by using
a suitable worst-case confidence interval derived from the ECDF. The confidence interval may,
however, be excessively conservative due to the empirical nature of the ECDF. To reduce
this conservatism, the proposed approach accounts for the updated disturbance information,
which is sampled online from the one-step ahead prediction error. Hence, the initial ECDF
can be obtained from a reduced number of samples since the conservative handling of the
chance constraint is continuously mitigated. This will also allow for using simpler models of the
stochastic system disturbances. Convergence and recursive feasibility of the proposed adaptive
approach are established. A DC-DC converter benchmark problem is used to illustrate the
usefulness of the proposed approach.

Keywords: Stochastic MPC; Tube-based MPC; Offset-free tracking; Chance Constraints;
Empirical Distributions

1. INTRODUCTION

Model predictive control (MPC) is a popular control strat-
egy due to its ability to deal simultaneously with control
and state constraints, multiple performance objectives and
multivariable systems (Rawlings and Mayne, 2009). Dis-
turbance handling is a crucial aspect in MPC, which affects
the control performance, feasibility, robust stability and
constraint satisfaction (Kouvaritakis and Cannon, 2015;
Mesbah, 2016). In this context, Stochastic MPC (SMPC)
with chance constraints has been proposed to systemati-
cally tolerate constraint violation in a probabilistic sense
in order to improve control performance and to increase
the domain of attraction (Cannon et al., 2011; Mesbah,
2016; Lorenzen et al., 2017; Heirung et al., 2018; Paulson
et al., 2019; D’ Jorge et al., 2020).

Chance constraints are converted into deterministic con-
straints (Kouvaritakis et al., 2010; Kouvaritakis and Can-
non, 2015) by using some knowledge of the disturbance
distribution in tube-based SMPC. However, in most of
the SMPC approaches, the disturbance distribution is
assumed to be perfectly known. This assumption does
not hold in practice since the estimation of the statistical
moments of the disturbance distribution is subject to un-
? T. Santos greatfully acknowledges CNPq-Brazil for the financial
support (grant numbers: 425606/2018-0 and 309675/2018-9).

certainty (Van Parys et al., 2015). Under standard assump-
tion, useful results from non-parametric statistical theory
can be applied to bound uncertainty of an empirical cu-
mulative distribution function (ECDF) with a desired pre-
scribed confidence level such as Wilson, Clopper–Pearson,
Agresti–Coull, Wald and Jeffreys intervals (Wilson, 1927;
Brown et al., 2001; Wasserman, 2006). In these confidence
interval approaches, the upper and lower bounds of the
ECDF depend on the number of samples. Hence, zn ex-
ceedingly large number of samples is often required to re-
duce the conservatism of the confidence interval. Moreover,
the uncertainty in the disturbance distribution may partly
mitigate or even fully eliminate the benefits of using chance
constraints when the constraint violation levels are tight
relative to the confidence interval uncertainty.

For linear constrained systems with hard input bounds,
this paper presents an offset-free tracking SMPC approach
with online improvement of individual chance constraints.
The individual chance constraints are adapted at each
time step based on an updated ECDF. This strategy is
an extension of Santos et al. (2018) and Paulson et al.
(2019) to enable the use of online additive disturbance
information to reduce the uncertainty of the ECDF. In
contrast to previous works, individual chance constraints
are continuously adapted during closed-loop operation
based on the updated ECDF. Hence, a new offset-free
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tracking SMPC is proposed to ensure recursive feasibility
despite the individual chance constraints adaptation.

Notation. [A]j denotes the j-th row of matrix A. For
a matrix M or scalar λ and a given set X, MX =
{Mx : x ∈ X} and λX = {λx : x ∈ X}. N represents
the set of non-negative integers and N∗ denotes the set
of positive integers. A positive definite (semi-definite)
matrix T is denoted by T > 0 (T ≥ 0). The matrix I
denotes the identity matrix with appropriate dimension.
The Minkowski sum of the set S with the set T is denoted
by S⊕T = {v = s+t : s ∈ S, t ∈ T}, and the Pontryagin set
difference is denoted by S	T = {s ∈ S : s+t ∈ S, ∀t ∈ T}.
The vector xk describes the measured state at k, while
xl|k represents the l step ahead prediction of the state
based on the information available at k. E [X] and V[X]
denote, respectively, the expected value and the variance
of a random variable X. P[s ∈ S] is the probability of the
event s ∈ S. The notation Pk[s ∈ S], also described by
P[s ∈ S|xk], represents the conditional probability of the
event s ∈ S given the realization xk. For a sequence of
random variables Xk, Xk → X denotes L1-convergence,
i.e., limk→∞ E [‖Xk −X‖1] = 0, to random variable X.

2. PROBLEM STATEMENT AND PRELIMINARIES

Relevant previous results are briefly revisited in this sec-
tion to formulate the proposed SMPC problem based on
ECDF estimation for chance constraint adaptation.

2.1 System Description

The following linear time-invariant (LTI) system subject
to additive stochastic disturbances is considered

xk+1 = Axk +Buk +Bwwk, (1a)

yk = Cxk +Duk, (1b)

where xk ∈ Rn, uk ∈ Rm, and yk ∈ Rp represent the
system states, control inputs, and outputs, respectively.
Without loss of generality, it is assumed that wk is an
independent and identically distributed (i.i.d.) random
variable with zero mean. 1 Moreover, wk has finite support
such that wk ∈ W, where W is assumed to be a known
closed set.

Hard input constraints and state chance constraints are
defined using the following polyhedral sets

U = {u | Gu ≤ g, u ∈ Rm},
X = {x | Hx ≤ h, x ∈ Rn},

where G ∈ Rnu,m, g ∈ Rnu,1, H ∈ Rnc,n, and h ∈ Rnc,1.
Hence, chance constraints are defined as

P[[H]jxk ≤ [f ]j ] ≥ 1− εj , j = 1, ..., nc, k ∈ N∗, (2)

where εj ∈ [0, 1) defines an acceptable level of probabilistic
constraint violation.

2.2 Probabilistic tubes

The notion of probabilistic tubes can be directly used
to achieve recursive feasibility in the presence of individ-
ual chance constraints (Kouvaritakis and Cannon, 2015,

1 The i.i.d. assumption is useful for bounding the ECDF uncertainty,
but ECDF can be a consistent estimator for non-i.i.d. random
variables under mild assumption (Azriel and Schwartzman, 2015).
Random variables with non-zero mean can be handled as discussed
in (Paulson et al., 2019).

Chapter 3). Let uk = Kxk be an unconstrained stabilizing
control law, where Φ = A + BK is a Schur matrix. For
prediction, consider xk = x0|k, e0|k = 0, and the nominal
constrained control law is given by vi|k = Kzi|k + ci|k
where, zi|k is the nominal prediction for xk+i at k. Then,
nominal predictions can be described by

xi|k = zi|k + ei|k, (3)

vi|k = Kzi|k + ci|k, (4)

zi+1|k = Φzi|k +Bci|k, (5)

ei+1|k = Φei|k +Bwwi|k, (6)

where ci|k is a free decision variable used for constraint
satisfaction (Mayne et al., 2000).

The notion of probabilistic tubes can be directly applied by
rewriting the chance constraints in terms of a polyhedral
constraint based on the cumulative distribution function.
The constraint for xk|1 can be defined as

Z1 = {z | Hz ≤ h− Γ, z ∈ Rn} (7)

with Γ = [γ∗1 γ∗2 ... γ∗nc]
>, where every γ∗j is obtained

offline by solving the auxiliary problem (Kouvaritakis and
Cannon, 2015)

γ∗j = min γj

s.t. P[ [H]jBwwk ≤ γj ] ≥ 1− εj . (8)

Due to the hard input constraints U, the initial input
constraint is defined by V0 = U. Then, based on Z1 and
V0, the tighter constraints for recursive feasibility purposes
can be recursively defined by

Zj+1 = Zj 	 ΦjBwW, j ∈ N∗, (9)

Vj+1 = Vj 	KΦjBwW, j ∈ N. (10)

The main advantage of this recursive definition arises
from the fact that no Minkowski sum is required. When
polytopes are considered, the Pontryagin difference can be
easily computed by solving a simple linear programming
problem (Borrelli et al., 2017, Chapter 4).

2.3 Stochastic MPC for offset free tracking

Offset-free tracking with individual chance constraints and
enlarged domain of attraction can be achieved by using
an artificial reference with an augmented terminal set
as proposed in (Santos et al., 2018). In this offset-free
tracking approach, the unconstrained control law is defined
by uk = K(xk − xt) + ut, where (A− I)xt +But = 0 and
[x>t u

>
t ]> represents the steady-state target. Alternatively,

the tracking control law can be parametrized by

uk = Kxk + Lθk, (11)

where L = [−K I]Mθ, [x>t u>t ]> = Mθθk, Mθ =
[M>x M>u ]> is obtained from linear independent vectors
that define a base for the nullspace of [(A− I) B], and θk
is the free parameter which determines the steady-state
vector (Limon et al., 2008). Note that yt = Myθk, where
My = [C D]Mθ.

Problem 1. (SMPC for offset-free tracking) Con-
sider the measured state xk and a desired output target
yt, the SMPC for tracking is obtained from the solution of
the following optimal control problem

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11409



min
ck,θk

JN (ck, θk;xk, yt) (12a)

s.t. z0|k = xk, (12b)

[x>t u>t ]> = Mθθk, (12c)

zi+1|k = Φzi|k +BLθk +Bci|k, i ∈ N[0,N−1], (12d)

vi|k = Kzi|k + ci|k + Lθk, i ∈ N[0,N−1], (12e)

zi|k ∈ Zi, i ∈ N[1,N−1], (12f)

vi|k ∈ Vi, i ∈ N[0,N−1], (12g)

[z>N |k θ
>
k ]> ∈ Zaf , (12h)

where

JN (ck;xk) =

N−1∑
i=0

(
||zi|k − xt||2Q + ||vi|k − ut||2R

)
+ ||zN |k − xt||2P + Vo(yt − yt).

Vo(·) is a convex offset cost that penalizes deviations
between the desired target yt and the artificial target yt, θk
is a decision variable, and Zaf is an augmented admissible
robust invariant set for tracking.

The robust admissible invariant set Zaf should be com-
puted for the following constrained autonomous system
with disturbances[

zN |k+1

θk+1

]
=

[
Φ BL
0 I

] [
zN |k
θk

]
+

[
ΦNBw

0

]
wk,

where the augmented state is subject to

ZaN =


[
z
θ

]
∈ Rn+m |

z ∈ ZN
Kz + Lθ ∈ VN
Mxθ ∈ λZN
Muθ ∈ λVN

 (13)

and λ ∈ (0, 1) ensures that the invariant set is finitely
determined (Limon et al., 2008). The robust polyhedral
invariant sets can be computed as discussed in (Kol-
manovsky and Gilbert, 1998).

The actual control action is derived in a receding-horizon
fashion at every sampling instant k given by

uk = Kxk + c∗0|k(xk, yt) + Lθ∗k(xk, yt), (14)

where ∗ denotes the optimal value of the decision variables
obtained from (12).

2.4 Empirical Cumulative Distribution Function

In most of the related works (Kouvaritakis et al., 2010;
Santos et al., 2018; Paulson et al., 2019; D’ Jorge et al.,
2020), it is assumed that the disturbance distribution is
exactly known. However, this assumption is an important
challenge since the disturbance distribution is also subject
to uncertainties.

The ECDF is a simple tool that can be directly used
to obtain the required information for chance constraint
handling (Lorenzen et al., 2017; Kouvaritakis and Cannon,
2015; Santos et al., 2019). Let R = {ξ1, ξ2, ..., ξNs} be
an ascending sequence of samples of a stochastic process
χ. The ECDF of χ is given by

F̂χ(q) =
1

Ns

Ns∑
i=1

1(ξ(i) ≤ q),

where 1(ξ(i) ≤ q) = 1 if ξi ≤ q and 1(ξ(i) ≤ q) = 0 if ξi >
q. When χ is identically independent distributed (IID),

the random variable NsF̂χ(q) has a binomial distribution
(Owen, 2001). In this case, the expected value and variance

of F̂χ(q) are given by

E [F̂χ(q)] = Fχ(q),

V[F̂χ(q)] =
(1− Fχ(q))Fχ(q)

Ns
,

where Fχ(q) denotes the true cumulative distribution
function. As expected, the variance of the ECDF is reduced
by increasing the number of samples. Moreover, the backoff
parameter γ̂∗j can be estimated from a sequence Hj =

{h>j Bww1, h
>
j Bww2, ... h

>
j BwwNs}, where Bwk−1 = xk−

Axk−1 −Buk−1. This leads to

γ̂∗j = F̂−1
h>
j
BwW

(1− εj).

Two classes of ECDF bounding approaches can be con-
sidered in practical applications. Confidence intervals are
used when a point-wise value of the cumulative distribu-
tion functions (CDF) should respect the confidence limits
for a given probability level. Confidence bands are used
when the entire CDF should lie inside the bands for a
prescribed probability level. A confidence interval is used
in this work because the desired information is specified
at a given value of the ECDF inverse. In the context of
confidence intervals, several approaches can be considered
(Brown et al., 2001). Here, we use the Wilson method (Wil-
son, 1927) since it is widely accepted for applications with
either small (≈ 40) or large number of samples (Brown
et al., 2001). The Wilson interval can be defined by

F (χ) ∈ [Fl(χ), Fu(χ)] , (15)

Fl(χ) =
F̂ (χ) + Ψ2

α/2/(2Ns)− ρ
1 + Ψ2

α/2/Ns
, (16)

Fu(χ) =
F̂ (χ) + Ψ2

α/2/(2Ns) + ρ

1 + Ψ2
α/2/Ns

, (17)

where ρ = Ψα/2

√
F̂ (χ)(1−F̂ (χ))+Ψ2

α/2
/(4Ns)

Ns
and Ψα/2 de-

notes the upper α/2-quantile of the normal distribution.

The value α/2-quantile is a free specification parameter
which defines the desired confidence level. Moreover, an
increased confidence level enlarges the confidence intervals
(Fl(χ) and Fu(χ)). In summary, for a fixed number of
sample, confidence intervals are enlarged if α/2-quantile
is increased. Since γ̂∗j is obtained from the inverse of the

ECDF, F−1
u (1−εj) should be used for a given 1−εj because

F−1
u (1− εj) > F−1(1− εj) > F−1

l (1− εj). The worst-case
backoff, provided by F−1

u (1 − εj), ensures that constraint
violation probability is smaller than the acceptable bound
since a tighter deterministic constraint is provided.

Also note that a low-pass filter can be used to attenuate
undesired spikes. For example, the filter Γ̂k = βΓ̂k−1 +

(1 − β)Γ̂lk can be used, where Γ̂lk represents an unfiltered
backoff obtained from the lower Wilson-based ECDF.

3. ADAPTIVE SMPC BASED ON ECDF UPDATE

The main contribution of this work arises from the fact
that Γ̂k is adapted online. To ensure recursive feasibil-
ity, the augmented nominal vector is defined as ξi|k =
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[z>i|k Γ̂>k ]>, where Γ̂k is assumed to be constant at a given

prediction horizon and ξk+i|k ∈ Rn+nc . 2

Accordingly, the new probabilistic tubes are defined using
the initial set

Xξ1 = {ξ ∈ Rn+nc | [H I]ξ ≤ h}. (18)

Based on Xξ1, the probabilistic tubes for recursive feasibil-
ity are

Xξj+1 = Xξj 	 (ΦjBwW× {0}), j ∈ N∗. (19)

Note that [z> Γ>]> ∈ Xξ1 is equivalent to z ∈ Z1. Then, a
new invariant set should be defined due to the time-varying
nature of Γ̂k, which depends on Γmax = [γ1 ... γnc]

> and

δΓ̂k = Γ̂k − Γmax/2, where

γj = max [H]jBww

s.t. w ∈W. (20)

Now, δΓ̂k = Γ̂k−Γmax/2 is defined as a translated version

of Γ̂k to ensure that the origin is inside the interior of the
augmented invariant set. To ensure recursive feasibility,
the augmented dynamics are defined byzN |k+1

θk+1

δΓ̂k+1

 =

[
Φ BL 0
0 I 0
0 0 I

]zN |kθk
δΓ̂k

+

ΦNBw
0
0

wk.
The constraints that define the maximal admissible robust
invariant sets (Kolmanovsky and Gilbert, 1998) are

Xξ,aN =


 zθ
δΓ̂

 ∈ Rna |

[z> δΓ̂>] ∈ XξN ,
Kz + Lθ ∈ VN ,

[(Mxθ)
> (Γmax

2 )>] ∈ λXξN ,
Muθ ∈ λVN ,

−Γmax

2 < δΓ̂ < Γmax

2 ,

 ,

(21)

where na = n+m+ nc.

Assumption 1.Recursive feasibility and convergence to
a minimal robust positively invariant set (mRPI) around
a desired admissible target are based on the following
assumptions:

(1) The pair (A,B) is controllable;
(2) The pair (A,Q1/2) is observable;
(3) Q ≥ 0 and R > 0;
(4) K is defined such that Φ = A + BK has all its

eigenvalues strictly inside the unitary circle;
(5) P > 0 is given by Φ>PΦ− P = −(Q+K>RK);
(6) Vo : Rp → R is a convex, positive-definite and

subdifferentiable function with Vo(0) = 0;
(6) Vγ : Rnc → R is a convex, positive-definite and

subdifferentiable function with Vγ(0) = 0;

(7) Xξ,af is a non-empty admissible robust invariant set

such that Xξ,af ⊆ Xξ,aN and [x> θ> Γ>]> ∈ Xξ,af ⇒
[(Φx+ ΦNBww +BLθ)> θ> Γ>]> ∈ Xξ,af , ∀w ∈W.

The main modification of Assumption 1 with respect to
Santos et al. (2018) comes from the robust invariant set (7)
that is defined in order to consider the backoff adaptation.

Problem 2. (SMPC for offset-free tracking with
adaptive backoff) Consider the measured state xk and

2 In the case of symmetric constraints, Γ̂k consists of the backoff of
non-symmetric half-spaces and ξk+i|k ∈ Rn+nc/2.

a desired output target yt, the SMPC for tracking is
obtained from the solution of the following optimal control
problem

min
ck,θk,Γk

JN (ck, θk,Γk;xk, Γ̂k, yt) (22a)

s.t. z0|k = xk, (22b)

Γk ≥ min(Γ
∗
k−1, Γ̂k), (22c)

zi+1|k = Φzi|k +BLθk +Bci|k, i ∈ N[0,N−1], (22d)

vi|k = Kzi|k + ci|k + Lθk, i ∈ N[0,N−1], (22e)

ξi|k = [z>i|k Γ
>
k ]>, i ∈ N[0,N−1], (22f)

ξi|k ∈ Xξi , i ∈ N[1,N−1], (22g)

vi|k ∈ Vi, i ∈ N[0,N−1], (22h)

[x>t u>t ]> = Mθθk, (22i)

ξaN = [z>N |k θ
>
k (Γk −

Γmax

2
)>]>, (22j)

ξaN ∈ Xξ,af , (22k)

where the objective function takes the form of
JN (ck, θk,Γk;xk, Γ̂k, yt) = JN,k(ck, θk,Γk) for notation
simplicity such that

JN,k(ck, θk,Γk) =

N−1∑
i=0

(
||zi|k − xt||2Q + ||vi|k − ut||2R

)
+ ||zN |k − xt||2P + Vo(yt − yt)
+ Vγ(Γk − Γ̂k).

Vo(·) is a convex cost that penalizes deviations between
the desired yt and the artificial yt targets, Vγ(·) is a convex

costs that penalizes deviations between the estimated Γ̂k
and the artificial Γk backoffs, θk is a decision variable, and

Xξ,af is an augmented admissible robust invariant set for
tracking with adaptive backoff. For initialization purposes,

Γ
∗
−1 = Γ̂0. The proposed SMPC control law is given by

uk = Kxk + c∗0|k(xk, Γ̂k, yt) + Lθ∗k(xk, Γ̂k, yt). (23)

Problem 2 is a standard quadratic programming prob-

lem because Γ
∗
k−1, Γ̂k, and min(Γ

∗
k−1, Γ̂k) are known vec-

tors at instant k. In the proposed SMPC strategy, if

min(Γ
∗
k−1, Γ̂k) = Γ̂k, then Γ

∗
k = Γ̂k once a less con-

servative backoff vector provides relaxed constraints that
enable reducing the cost function. On the other hand,

if min(Γ
∗
k−1, Γ̂k) 6= Γ̂k, feasibility is ensured while the

distance between Γ
∗
k and Γ̂k can be progressively reduced

in an optimal sense.

Proposition 1. Consider that Assumption 1 holds; Γ̂k ≥
Γ (Wilson method); yt asymptotically converges to a given
steady-state value; and wk ∈ W . Then, the closed-loop
system xk+1 = Axk + Buk + Bwwk with uk defined by
(23) satisfies the following conditions:

(i) For all feasible initial conditions x0 and every target
yt, the evolution of the system is robustly feasible,
i.e., uk ∈ U and P[[H]jxk ≤ [f ]j ] ≥ 1 − εj , j =
1, ..., nc for all k ∈ N∗

(ii) The output converges to a mRPI around a desired
admissible target, i.e., yk ∈ E [yk] ⊕ (C + DK)R∞,
where R∞ =

⊕∞
j=0 ΦjBwW is the mRPI.

(iii) The expected value of the output converges to the
target limk→∞ E [yk] = yt whenever yt is reachable.
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If yt is not reachable, then the mean converges to
a value limk→∞ E [yk] = ỹt that minimizes the offset
cost, i.e.,

ỹt = min
ȳt∈Ys

Vo(ȳt − yt),

where the set of reachable targets is

Ys = {y = Myθ ∈ Rp | [Mxθ
> θ> Γ̂max

2

>
]> ∈ Zξ,af }.

(iv) The artificial backoff converges to the estimated one
in steady-state, i.e.,

lim
k→∞

Γ̂k − Γ
∗
k = 0.

Proof. Proofs mostly follow the same arguments of Santos
et al. (2018). The difference arises from the fact that

limk→∞ Γ̂k = Γ due to the binomial nature of the ECDF
and the Wilson method property since limNs→∞ Fl(χ) =

limNs→∞ Fu(χ) = F (χ). Hence, Γ̂k converges to the true
backoff in steady-state. 3

The proof of Property (i) proof is given in Appendix
A.1 while Property (ii) is demonstrated in Appendix A.2.
Dominated Convergence Theorem is used to show Prop-

erty (iii) as follows. From Appendix A.2, limk→∞ θ∗k = θ
∗
.

Then, the nominal target is defined by x∗t = (A+BK)x∗t +

BLθ
∗

or, alternatively, x∗t = [I − (A+BK)]−1BLθ
∗
. The

one step ahead expected value is given by

lim
k→∞

E [xk+1] = lim
k→∞

{E [(A+BK)xk] + E [BLθ∗k]}. (24)

Now, from the finite convergence of E [xk] and E [θ∗k], (24)
can be expressed by

lim
k→∞

E [xk+1] = (A+BK) lim
k→∞

E [xk] +BL lim
k→∞

E [θ∗k]

with limk→∞ E [xk+1] = limk→∞ E [xk]. Since θ∗k has finite
support due to the terminal set constraints, an integrable
dominating random variable can then be defined such that

limk→∞ E [Bθ∗k] → Bθ
∗

by virtue of the Dominated Con-
vergence Theorem (Whittle, 2000). Thus, limk→∞ E [xk] =

[I− (A+BK)]−1BLE [θ∗k]→ [I− (A+BK)]−1BLθ
∗

= x∗t .
Likewise, limk→∞ E [uk] = limk→∞ E [Kxk+Lθ∗k]→ Kx∗t +

Lθ
∗

= u∗t . Hence, limk→∞ E [yk]→ Cx∗t +Du∗t = y∗t .

Moreover, θ∗∞ minimizes Vo(Myθ
∗
∞ − yt) subject to

[(Mxθ
∗
∞)> θ∗>∞ Γ>]> ∈ Xξ,af , otherwise limk→∞ c∗0|k = 0

would be contradicted due to optimality principle and con-
vexity of Vo(.). Since the cost is composed of a sum of con-
vex functions, the optimality achieved by limk→∞ c∗0|k = 0

cannot sacrifice the optimality of Vo(Myθ
∗
∞ − yt). Details

can be found in Ferramosca et al. (2012).

Property (iv) is established from the definition of the
terminal constraint for θk given by [(Mxθk)> (Γmax

2 )>] ∈
λXξN . From this set definition, admissible steady-state
parameter defined by θk (yt, xt, and ut as a consequence)

is limited by the worst-case backoff δΓ̂ = Γmax/2. Hence,
Property (iv) is directly established because: limk→∞ xk
is inside the robust admissible invariant set, control and
state constraints are respected by using a linear feedback
law, and Γ̂k has no effect in terms of cost function, except
from Vγ(Γk − Γ̂k) once θk is not sensitive to Γ̂k. Then,

3 The notation limNs→∞ Fl(χ) = limNs→∞ Fu(χ) = F (χ) means
that the ECDF upper and lower bounds converge to the true CDF
as the number of samples of the random variable tend to inifity.

limk→∞ Γk = limk→∞ Γ̂k is the best solution with respect
to the cost function. �

Proposition 1 indicates that the SMPC strategy for offset-
free tracking can be interpreted as a generalized version
of the results presented in Santos et al. (2018) with online
constraint adaptation.

4. NUMERICAL EXAMPLE

The SMPC approach with adaptive backoff is illustrated
on the DC-DC converter benchmark problem (Lorenzen
et al., 2017; Santos et al., 2018; Paulson et al., 2019;
D’ Jorge et al., 2020). The linearized converter model given
by

A =

[
1 0.0075

−0.143 0.996

]
, B =

[
4.798
0.115

]
, C = [0 1], Bw = I.

Stochastic disturbances are assumed to be bounded by
||wk||∞ ≤ 0.2, where wk is defined from a truncated nor-
mal distribution N (0, 0.062I). The hard input constraints
are given by ||u||∞ ≤ 0.4, while the state constraint sets
are defined as

P[[xk+1]1 ≤ 2] ≥ 0.9, P[[xk+1]1 ≥ −2] ≥ 0.9,

P[[xk+1]2 ≤ 3] ≥ 0.9, P[[xk+1]2 ≥ −3] ≥ 0.9.

The SMPC parameters are chosen to be Q = diag(1, 10),
R = 1, N = 5, Vo(yt − yt) = ||yt − yt||21000, and

Vγ(Γ̂k − Γk) = ||Γ̂k − Γk||21000I , K is the LQR solution.
A constant value of λ = 0.99 is used for computing the
robust invariant set.

The initial backoff vector is obtained from 150 samples

(Γ
∗
−1 = Γ̂0). Symmetric constraint property is used to

reduce the number of decision variables. The confidence
interval of the ECDF is derived from the Wilson method
with α = 10−6 → Ψα/2 = 3.554. The Low-pass filter
parameter was defined as β = 0.9. The setpoint is defined
as yt = 2 up until the sampling instant 1400, after which
it changed to yt = −2.

Fig. 1 shows the evolution of the closed-loop state for
the cases of standard SMPC and proposed SMPC app-
proaches. As expected, a similar closed-loop response is
observed when adaptive SMPC has a small number of
samples for computing the ECDF since less than 20 steps
are necessary to achieve the mRPI around yt = 2. Indeed,
almost no constraint violation occurs when the system is
evolved from the initial condition to this mRPI in both
cases. However, once the target is changed to yt = −2 at
the sampling instant 1400, the adaptive SMPC approach
shows a significant increase in constraint violation. The
ECDF of [xk]1 with k ∈ [1405, 1410] is shown in Fig. 2, in-
dicating that the proposed SMPC approach with adaptive
backoff results in 9% constraint violation (almost equal
to the chosen value of 10%) while the standard SMPC
approach leads to less than 3% constraint violation. In
the latter case, the conservatism of the confidence interval
approach largely eliminates the benefits of the chance
constraint.

The main benefit of the proposed adaptive approach to
chance constraint handling arises from the fact that the
initial ECDFs can be derived using fewer samples since the
ECDF is continuously improved online. As can be observed
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Fig. 1. State evolution from x(0) = [−2.7 − 3]> under
100 Monte Carlo disturbance realizations for standard
SMPC (blue) and adaptive SMPC (red). Shadowed
region represents the original state constraints X. The
target is yt = 2, which is changed to yt = −2 at the
sampling instant 1400.

Fig. 2. Empirical cumulative distribution functions for S =
{[x1405]1, [x1406]1...[x14010]1} under 100 disturbance
realizations for standard SMPC (blue) and Adaptive
SMPC (red). Arrows indicate the desired theoretical
pair ([x]1 = 2, F ([x]1) = 0.9).

from Fig. 1, similar performance is achieved once the state
converges to the mRPI around the admissible targets as
the control law is implicitly derived from the solution
of the unconstrained problem. However, desired chance
constraint violation is almost achieved during the second
set-point change due to online chance constraint update.
We note that plant-model mismatch effect can be handled
as an additional source of ECDF uncertainty. On the other
hand, the ECDF uncertainty can be significantly reduced
by using high fidelity modeling of system uncertainties
(Paulson et al., 2019).

5. CONCLUSIONS

This paper presented a tracking SMPC approach with
online adaptation of chance constraints using the notion of
ECDFs. The Wilson confidence interval method is applied
to ensure satisfaction of the individual chance constraints
despite uncertainty in disturbance distributions. The pro-
posed SMPC approach with backoff improvement ensures
recursive feasibility and convergence of the expected value
of the output to an admissible desired target. The ex-
tension of the proposed approach to the output feedback
problem is an interesting topic for future work.
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Appendix A. RECURSIVE FEASIBILITY AND
CONVERGENCE

Initially consider that a feasible solution obtained at k

is given by c∗(k) = [c∗T0|k c∗T1|k ... c∗TN−1|k]>, θ∗k and Γ
∗
k.

The candidate solution for the next step is defined by

c̃(k + 1) = [c∗T1|k ... c
∗T
N−1|k 0>]>, θ̃k+1 = θ∗k and Γ̃k+1 =

Γ
∗
k. Recursive feasibility and convergence are shown by

following the standard steps from these solutions.

A.1 Recursive Feasibility

The nominal prediction at k are defined by z0|k = xk,
z0|k+1 = xk+1, uk = v0|k = Kxk + c∗0|k + Lθ∗k, and z1|k =

Φz0|k + B(c∗0|k + Lθ∗k). Based on the feasible candidate,

z0|k+1 and z1|k can be related by:

z0|k+1 =Axk +Buk +Bwwk (A.1)

=(A+BK)xk +B(c∗0|k + Lθ∗k) +Bwwk (A.2)

=z1|k +Bwwk. (A.3)

Then, Eq. (A.3) can be rewritten by multiplying both sides
by Φ with the following addition B(c∗1|k + Lθ∗k):

Φz0|k+1 +B(c∗1|k + Lθ∗k) =Φ[z1|k +Bwwk]

+B(c∗1|k + Lθ∗k) (A.4)

or alternatively

z1|k+1 = z2|k + ΦBwwk. (A.5)

By induction, optimal predicted solution and feasible
candidate are related by:

zj−1|k+1 = zj|k + Φj−1Bwwk, j ∈ [1, N ]. (A.6)

Once the control candidate is defined by:

ṽj−1|k+1 = Kzj−1|k+1 + c∗j|k + Lθ∗k, (A.7)

v∗j|k = Kzj|k + c∗j|k + Lθ∗k, (A.8)

then

ṽj−1|k+1 = v∗j|k +KΦj−1Bwwk, j ∈ [1, N − 1]. (A.9)

The recursive feasibility is verified from Eqs. (A.6), (A.9)
combined with the definition of (9),(10):

[z>i|k Γ̂>k ]> ∈ Xξi ⇒ [z>i−1|k+1 Γ̂>k ]> ∈ Xξi−1, i ∈ [2, N ],

(A.10)

v∗j|k ∈ Vj ⇒ ṽj−1|k+1 ∈ Vj−1, j ∈ [1, N − 1]. (A.11)

Moreover, the feasibility of zN |k+1 is shown from
ṽN−1|k+1 = KzN−1|k+1 + Lθ∗k or simply ṽN−1|k+1 =

K(zN |k+ΦN−1Bwwk)+Lθ∗k. Once [z>N |k θ
∗>
k Γ̂∗>k ]> ∈ Xξf ,

define vN |k = KzN |k + Lθ∗k ∈ VN . As ṽN−1|k+1 = vN |k +

KΦN−1Bwwk, then vN |k ∈ VN ⇒ ṽN−1|k+1 ∈ VN−1

because VN = VN−1 	KΦN−1BwW by definition.

Also observe from zN−1|k+1 = zN |k + Φk−1wk and

ṽN−1|k+1 = K(zN |k+ΦN−1Bwwk)+Lθ∗k that the terminal
prediction candidate is given by:

zN |k+1 =AzN−1|k+1 +BṽN−1|k+1 (A.12)

=A(zN |k + Φk−1Bwwk)

+BK(zN |k + ΦN−1Bwwk) +BLθ∗k

=ΦzN |k +BLθ∗k + ΦNBwwk. (A.13)

Finally, [z>N |k θ∗>k Γ̂∗>k ]> ∈ Xξf implies in

[z>N |k+1 θ
∗>
k Γ̂∗>k ]> ∈ Xξf by definition presented in (21),

which completes the proof.

A.2 Convergence

Once the feasible candidate is defined with Γk+1 = Γ
∗
k,

the decreasing property of the cost function is exactly
the same of Ferramosca et al. (2012). A detailed input-to-
state stability (ISS) proof is provided in Ferramosca et al.
(2012). However, if K is given by the Linear Quadratic
Regulator (LQR) solution, a simplified sketch of proof can
be compactly presented.

In this case, the cost function can be rewritten by

JN,k(c̃(k), θk, Γ̂k)) =

N−1∑
j=0

||cj|k||2Υ+Vo(yt−yt)+Vγ(Γk−Γ̂k)

where Υ = R + B′PB. The cost function variation based
on the feasible candidate is

JN,k+1(c̃(k+ 1), θ∗k, Γ̂
∗
k))− JN,k(c∗(k), θ∗k, Γ̂

∗
k) = −||c∗0|k||

2
Υ

(A.14)
where Υ ≥ 0. Hence, the optimal solution is such that

JN,k+1(c∗(k+ 1), θ∗k+1, Γ̂
∗
k+1)) ≤ JN,k+1(c̃(k+ 1), θ∗k, Γ̂

∗
k)).

(A.15)
Then, limk→∞ c∗0|k = 0, limk→∞ u∗(k) = Kxk + Lθ∗k,

and limk→∞ JN,k(c∗(k), θ∗k, Γ̂
∗
k) = J∞ for a given yt

with limk→∞ Γ̂k = Γ. Moreover, these facts ensure that
limk→∞ xk is inside the maximal robust admissible invari-
ant set for tracking. Thus, limk→∞ cc(k) = [0> 0> ... 0>]>

is a feasible candidate.

The terminal constraint definition is such that y∗t does

not depend on Γ̂k. Due to the continuity with respect to

the decision variables, then limk→∞ JN,k(c∗(k), θ∗k,Γ
∗
k) =

J∞ ≤ JN,k(cc(k), θ∗k,Γ) = Vo(Myθ
∗
k − yt). However,

JN,k(c∗(k), θ∗k,Γ
∗
k) ≥ Vo(Myθ

∗
k − yt), ∀k which shows the

convergence of θ∗k, i.e., limk→∞ θ∗k = θ∗∞.

Finally, limk→∞ uk = Kx(k) + θ∗∞ so that

lim
k→∞

xk ∈ x∗t ⊕R∞, (A.16)

lim
k→∞

uk ∈ u∗t ⊕KR∞, (A.17)

where R∞ =
⊕∞

j=0 ΦjBwW which completes the proof.

Details can be found in Ferramosca et al. (2012).
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