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1. INTRODUCTION

The positive real lemma is recognised as one of the most
fundamental results in systems and control. In continuous-
time, there have been many contributions that have sought
to relax the controllability and observability assumptions
from the classical version of this lemma (e.g., Pandolfi,
2001; Kunimatsu et al., 2008), and related problems on
dissipativity and optimal control (e.g., Çamlibel et al.
(2003)). This is also so in the closely related bounded
real lemma, with the two often being presented hand in
hand. Recently, Hughes (2017, 2018) provided versions of
the positive real and bounded real lemmas which do not
assume controllability or observability nor any alterna-
tive superfluous assumptions. Analogous results, however,
are yet to appear for the discrete-time positive real and
bounded real lemmas and associated problems, yet we
cannot say that discrete-time systems are any less impor-
tant than their continuous time counterparts. Indeed, in
discfrete-time, the analogous positive real and bounded
real lemmas have found application in areas such as sta-
bility analysis, low-sensitivity filter design, solution to the
2-dimensional Lyapunov equation, and signal processing
(see Xiao and Hill (1999) and the references therein).
The classical presentation of the discrete-time positive real
lemma typically makes assumptions of controllability and
observability (Hitz and Anderson, 1969). These two issues
cannot be trivially neglected in any complete treatment.

Ferrante and Ntogramatzidis (2017) detail some of these
positive real results in continuous time and offer the
discrete-time counterpart of Pandolfi (2001). Via the
discrete-time version (Baggio and Ferrante, 2016, Theorem
2) of the famous spectral factorisation theorem of Youla
(1961), they remove the controllability requirement in the
proof of the discrete-time positive real lemma. However,
they only consider systems with strictly stable eigenvalues.

So there is yet work to be done in finding the discrete-time
equivalent of the continuous time results of Hughes (2018).
All this serves to motivate the contribution of this paper:

the removal of both the controllability and observability
assumptions from the discrete-time positive real lemma.

The paper is structured as follows, after listing the re-
quired notation, Section 2 details existing and well known
results and the important definitions. In Section 3 we lay
out the main contributions of this paper: an assumption
free stating of the discrete-time positive real lemma. The
proofs of the observable and unobservable case follow in
Sections 4 and 5 respectively. Finally, Section 6 concludes.

1.1 Notation and definitions

Some notation is in order before proceeding. Firstly, R
(C) denotes the real (complex) numbers; Z+ are the non-
negative integers. C+ (C+) denotes the space of complex
numbers with |z| > 1 (|z| ≥ 1) and C− (C−) denotes the
complex numbers with |z| < 1 (|z| ≤ 1). If λ ∈ C then
λ̄ denotes its complex conjugate. We let R[z] (resp., R(z),
R[z, 1

z ]) denote the polynomials (resp., rational functions,
Laurent polynomials) in the indeterminate z with real
coefficients. As for matrices, let Rm×n (resp., Cm×n,
Rm×n[z], Rm×n(z)) denote the m×n matrices with entries
from R (resp., C, R[z], R(z)), and let Rm×ms indicate the
space of symmetric matrices. Vectors are denoted in bold
font: v ∈ Rn, Cn, Rn[z], or Rn(z). The set of eigenvalues of
M is denoted by spec(M) := {λ ∈ C | det(λI−M) = 0}.
If M ∈ Rm×n, Cm×n, Rm×n[z], or Rm×n(z), then MT de-
notes its transpose, and if M is nonsingular (i.e., det(M) 6=
0) then M−1 denotes its inverse. If M ∈ Cm×n then
M∗ denotes the Hermitian transpose. If M ∈ Rm×n[z]
or Rm×n(z) then M∼ satisfies M∼(z) = (M( 1

z ))T . The
non-negative (positive definite) matrices are denoted by
M ≥ 0 (M > 0). I denotes the identity matrix. The
notation col(M1,M2) represents the matrix formed by
stacking (the appropriately dimensioned) M1 on top of
M2, while diag(M1,M2) denotes the block diagonal matrix
formed by placing M1 and M2 along the diagonal. We also
define the normal rank of a matrix as normalrank(H) :=
maxλ∈C(rank(H(λ))). A matrix is said to be semisimple if
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its Jordan normal form has no blocks of size greater than
1 (i.e., there are no Jordan chains of length greater than
1). A matrix M(λ) is said to be unimodular if det(M(λ))
is a nonzero constant for all λ.

2. BACKGROUND

We place the paper in context by stating the classical DPR
lemma and other relevant existing results. We shall be
considering the discrete-time linear state space system

x(k+1) = Ax(k) +Bu(k) and

y(k) = Cx(k) +Du(k), k = 0, 1, 2, . . . ;

A ∈ Rd×d, B ∈ Rd×n, C ∈ Rn×d, D ∈ Rn×n. (1)

We begin with the definition of a discrete-time positive
real (DPR) function

Definition 1. (DPR). Let G ∈ Rn×n(z). G is DPR if (i) G
is analytic in C+ and (ii) G(z) +G(z)∗ ≥ 0 for all z ∈ C+.

We also recall the definitions of controllability, observabil-
ity and stabilizability. For more system theoretic defini-
tions of these concepts we refer to (Franklin and Powell,
1980, Section 6.7) and (Sarachik and Kreindler, 1965).
Of more relevance here are the associated algebraic tests
for observability and stabilizability. The system in (1) is
observable (and we say the pair (C,A) is observable) if
and only if

O = col(C,CA, . . . , CAd−1) (2)

has full column rank. Also, the system in (1) is stabilizable
(and we say the pair (A,B) is stabilizable) if and only if
[λI −A B] has full row rank for all λ ∈ C̄+ (Zhou et al.,
1996).

We recall the classical discrete-time positive real lemma
from Hitz and Anderson (1969).

Lemma 2. Let (A,B,C,D) be as in (1) with (A,B) con-
trollable and (C,A) observable, and let G(z) = D+C(zI−
A)−1B. Then G is DPR if and only if there exists a
P > 0, L ∈ Rr×d and W ∈ Rr×n (for some integer r)
such that P − ATPA = LTL, CT − ATPB = LTW , and
D +DT −BTPB = WTW .

Remark 3. We note that the equivalence of the conditions
in Lemma 2 no longer hold if (A,B) is not controllable.
For example, let A = 1, B = 0, C = 1 and D = 1.
Then G(z)D + C(zI − A)−1B = 1, which is DPR. But
P −ATPA = 0, so P −ATPA = LTL implies that L = 0.
We then require that 1 = CT − ATPB = LTW = 0, a
contradiction. Note that this example falls within the class
of systems not considered by Ferrante and Ntogramatzidis
(2017).

One final relevant result is in order before stating the
theorem that is the purpose of this paper. The spectral
factorisation theorem of Youla is a longstanding result first
shown by Youla (1961), but its discrete-time equivalent is
a relatively recent result (Baggio and Ferrante, 2016) that
we recall here.

Lemma 4. Let H ∈ Rn×n(z) satisfy H(z) ≥ 0 for all z on
the unit circle, with the exception of poles of H, and let
normalrank(H) = r. Then there exists Z ∈ Rr×n(z) such
that (i) H = Z∼Z; (ii) Z is analytic in C+ ∪∞; and (iii)
Z(λ) has full row rank for all λ ∈ C+ ∪ ∞. If Z satisfies

conditions (i)—(iii), then we call Z a discrete-time spectral
factor of H, and if H has no poles on the unit circle then
Z has no poles on the unit circle.

3. MAIN RESULTS

We state the main contribution of this paper: a theorem
on discrete-time positive real systems that requires neither
controllability or observability.

Theorem 5. Let Ã ∈ Rd̃×d̃, B̃ ∈ Rd̃×ñ, C̃ ∈ Cñ×d̃, and

D̃ ∈ Rñ×ñ, and let Õ = col(C̃, C̃Ã, . . . , C̃Ãd̃−1). The
following are equivalent:

(1) Let G̃(z) = D̃ + C̃(zI − Ã)−1B̃ and let Ũ ∈ Rñ×ñ[z]

and Ṽ ∈ Rñ×d̃[z] be left coprime polynomial matrices

that satisfy Ũ(z)B̃T ÕT = Ṽ (z)( 1
z I − Ã

T )ÕT . 1 The
following hold:
(a) G̃ is DPR.

(b) If z̃ ∈ Cñd̃ and λ ∈ C̄+ are such that

z̃T Õ[λI–Ã B̃] = 0, then z̃T Õ = 0.

(c) If b̃ ∈ Rñ[z] satisfies b̃T (Ũ(Ṽ C̃T + ŨD̃T )∼ +

(Ṽ C̃T + ŨD̃T )Ũ∼) = 0, then there exists w̃ ∈
Rd̃[z] such that (b̃T Ũ)(z)C̃ = w̃(z)T (zI − Ã);

(2) There exists P̃ ∈ Rd̃×d̃s such that P̃ ≥ 0 and[
P̃ − ÃT P̃ Ã C̃T − ÃT P̃ B̃
C̃ − B̃T P̃ Ã D̃ + D̃T − B̃T P̃ B̃

]
≥ 0; (3)

(3) There exists P̃− ∈ Rd̃×d̃s , L̃ ∈ Rr̃×d̃ and W̃ ∈ Rr̃×ñ
such that (i) P̃− ≥ 0; (ii) P̃− − ÃT P̃−Ã = L̃T L̃; (iii)

C̃T − ÃT P̃−B̃ = L̃T W̃ ; (iv) D̃ + D̃T − B̃T P̃−B̃ =

W̃T W̃ ; and (v) W̃ + L̃(zI − Ã)−1B̃ is a discrete-time

spectral factor of G̃+ G̃∼.

Remark 6. Referring back to the example in remark 3, it
can be verified that condition 1b of the above theorem
is violated for that example. Specifically, in order that
z̃ ∈ Cñd̃ and λ ∈ C̄+ satisfy z̃T Õ

[
λI − Ã B̃

]
= 0, then

λ = 1, so it is not necessarily the case that z̃T Õ = 0.

Secondly, let

Ã =

[
1 0
0 0.5

]
, B̃ =

[
1
0

]
, C̃ = [2 1] and D̃ = 1.

This is an example of a system for which A possesses an
eigenvalue at 0.5 that is strictly stable and an eigenvalue
at 1 that is controllable. In this case, it can be verified
that G(z) = D̃ + C̃(zI − Ã)−1B̃ = z+1

z−1 , whence G(z) +

G(z)∗ = 2 |z|
2−1

|z−1|2 , so G is DPR. Moreover,

P̃ − ÃT P̃ Ã =

[
0 0.5P̃21

0.5P̃12 0.75P̃22

]
,

and

C̃T − ÃT P̃ B̃ =

[
2− P̃11

1− 0.5P̃21

]
,

and we again find that there does not exist a matrix P̃ ≥ 0
satisfying the properties of conditions 2 or 3 in Theorem
5. In this case, it can be verified that Ũ(z) = −z + 1

1 Note that such matrices Ũ and Ṽ will always exist and can be

obtained by computing a basis for the left syzygy of

[
B̃T

(
1
z
I−ÃT )

]
ÕT
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and Ṽ (z) = [z 0] are left coprime polynomial matrices

that satisfy Ũ(z)B̃T ÕT = Ṽ (z)( 1
z I − Ã

T )ÕT , whereupon

it can be verified that (Ũ(Ṽ C̃T + ŨD̃T )∼ + (Ṽ C̃T +

ŨD̃T )Ũ∼) = 0, and it follows that any polynomial vector

b̃ satisfies b̃T (Ũ(Ṽ C̃T + ŨD̃T )∼+(Ṽ C̃T + ŨD̃T )Ũ∼) = 0.

It then follows that (b̃T Ũ)(z)C̃ = b̃T [2− 2z 1− z], which

cannot be written in the form w̃(z)T (zI − Ã) for some
polynomial vector w̃. Thus, condition 1c of Theorem 5 is
violated for this example.

Our proof of Theorem 5 proceeds by first showing the
following theorem that removes the controllability assump-
tion from the DPR lemma, but assumes observability.

Theorem 7. Let A, B, C, and D define a linear state space
system as in (1) with the pair (C,A) observable. The
following are equivalent:

(1) Let G(z) = D + C(zI − A)−1B and let U ∈ Rn×n[z]
and V ∈ Rn×d[z] be left coprime polynomial matrices
that satisfy U(z)BT = V (z)( 1

z I −A
T ). The following

hold:
(a) G is DPR.
(b) (A,B) is stabilizable.
(c) If b ∈ Rn[z] satisfies bT (U(V CT + DUT )∼ +

(V CT + DUT )U∼) = 0, then there exists w ∈
Rd[z] such that (bTU)(z)C = w(z)T (zI −A);

(2) There exists P ∈ Rd×ds such that P ≥ 0 and[
P −ATPA CT −ATPB
C −BTPA D +DT −BTPB

]
≥ 0; (4)

(3) There exists P− ∈ Rd×ds , L ∈ Rr×d and W ∈ Rr×n
such that (i) P− ≥ 0; (ii) P− − ATP−A = LTL; (iii)
CT − ATP−B = LTW ; (iv) D + DT − BTP−B =
WTW ; and (v) W +L(zI −A)−1B is a discrete-time
spectral factor of G+G∼.

In particular, if P is as in condition 2 (P− as in condition
3) then P > 0 (P− > 0).

Owing to space constraints, the majority of this paper
is concerned with the proof of Theorem 7. The proof of
Theorem 5 can then be obtained by relating the system
considered in that theorem to the observable subsystem
obtained from the staircase observability form. The proof
is sketched in Section 5 but will be provided in full in a
subsequent paper.

4. PROOF OF THEOREM 7

Before proving Theorem 7 it is necessary to provide an
alternative characterization of a DPR function, which
leads to a convenient decomposition.

Lemma 8. G is DPR if and only if

(1) If z is not a pole of G and |z| = 1, then G(z) +
G∼(z) ≥ 0.

(2) If z0 is a pole of G with |z0| = 1, then it is simple and

Xz0 := lim
z→z0

(
G(z)(z − z0)

z0

)
is non-negative definite Hermitian.

Moreover, if G is DPR, and zk denote the poles of G that
satisfy |zk| = 1 and zk 6= −1, then

G1(z) :=
X−1

2

z−1

z+1
+

N∑
k=1

Xzk

zk(1+z)

(1 + zk)(z−zk)
(5)

is DPR and satisfies G1 + G∼1 = 0, and G2 := G − G1 is
also DPR.

Proof. That G is DPR if and only if 1 and 2 hold is
shown in (Hitz and Anderson, 1969, Lemma 2). Next,
note that if G1(z) is as defined in (5) then it can
be verified that limz→zk(G1(z)(z − zk)/zk) = Xzk and
limz→−1(−G1(z)(z+ 1)) = X−1. We next show that G1 ∈
Rn×n(z) and G1 + G∼1 = 0. To see this, we note initially
that, since G ∈ Rn×n(z), then the poles of G appear in
complex conjugate pairs, and if zk is a pole of G then
Xz̄k = X̄zk . It is then easy to show that G1 ∈ Rn×n(z).
Also, since X−1 is real, then X−1 is also symmetric, which
implies that

XT
−1

2

1
z − 1
1
z + 1

= −X−1

2

z − 1

z + 1
.

Moreover, since Xzk is Hermitian, then XT
zk

= X̄zk = Xz̄k .
Since, in addition, z̄k = 1/zk, it follows that

XT
zk

zk(1+ 1
z )

(1 + zk)( 1
z−zk)

= −Xz̄k

z̄k(1 + z)

(1 + z̄k)(z − z̄k)
.

From which we can see that the term in G1 corresponding
to z̄k cancels with the term in G∼1 corresponding to zk in
the sum over all poles in G1+G∼1 , including the X−1 term.
So G1 +G∼1 = 0 on the unit circle. Also on the unit circle,
G∼1 (z) = G1(z)∗, so we have that G1(z) + G1(z)∗ = 0
when z is not a pole, and when z0 is a pole of G1 we have
limz→zk(G1(z)(z − zk)/zk) = Xzk ≥ 0 so G1 is DPR.

From the limits of G and G1 above it follows that
limz→zk((G − G1)(z)(z − zk)/zk) = 0 and limz→−1((G −
G1)(z)(z + 1)) = 0. It is also the case that for |z| = 1 and
z not a pole of G, G2(z) +G2(z)∗ = G(z) +G(z)∗ ≥ 0 on
the unit circle, and by appealing to analytic continuation
we see this holds everywhere, and G2 is therefore DPR by
the two conditions at the start of this lemma.

We next prove another intermediate lemma that yields a
useful decomposition for the case in which spec(A) /∈ C−.

Lemma 9. Let A,B,C and D be as in (1) where G(z) =
D + C(zI − A)−1B is DPR, (A,B) is stabilizable, and
(C,A) is observable. Then there exists a nonsingular T ∈
Rd×d such that

TAT−1=

[
A1 0
0 A2

]
, TB=

[
B1

B2

]
, CT−1= [C1 C2] , (6)

where A1 is semisimple and spec(A1) is on the unit
circle, spec(A2) ∈ C−, and both (C1, A1) and (C2, A2) are
observable. Also, if A1, B1, C1 and A2, B2, C2 satisfy the
aforementioned conditions, then

(1) Let X−1, zk and Xzk be as in Lemma 8, and let

D2 := D − 1
2X−1 −

∑N
k=1

zk
1+zk

Xzk . If there exists
P2 > 0 such that[

P2 −AT2 P2A2 CT2 −AT2 P2B2

C2 −BT2 P2A2 D2 +DT
2 −BT2 P2B2

]
≥ 0 (7)

then there exists P > 0 such that (4) holds.
(2) If there exists P > 0 such that (4) holds, then

P̂ := (TT )−1PT−1 takes the form P̂ = diag (P1 P2)
where (i) P1 is uniquely determined by the equations
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P1 − AT1 P1A1 = 0 and CT1 − AT1 P1B1 = 0; and (ii)
with the notation D2 := D − 1

2B
T
1 P1B1, then P2 > 0

satisfies (7).

Proof. That there is a nonsingular T ∈ Rd×d such that
TAT−1 takes the form of (6) with spec(A1) ∈ C̄+ and
spec(A2) ∈ C− is clear from the real Jordan form of A (see
(Gantmacher, 1980, Chapter VII)). Let B1, B2, C1 and
C2 be defined as in (6). Since (A,B) is stabilizable and
(C,A) is observable, then it is straightforward to show that
(A1, B1) is controllable, and both (C1, A1) and (C2, A2)
are observable.

We let G1, G2, Xzk , and zk be defined as in Lemma 8. We

define D1 := 1
2X−1 +

∑N
k=1

zk
1+zk

Xzk . It then follows that

limz→∞(G1(z)) = D1 so D1 is real. The transfer function
may be written as G = D + C1(zI − A1)−1B1 + C2(zI −
A2)−1B2 = G1 + G2, with the second equality coming
from the definition of G2. Recall that spec(A1) ∈ C̄+, and
spec(A2) ∈ C− from the transformation defined above, and
from Lemma 8 we have that the poles of G2 are all in C−.
It then follows that G1(z) = D1 + C1(zI − A1)−1B1 and
G2(z) = D2 + C2(zI −A2)−1B2.

G1(z) was shown to be DPR in Lemma 8, and (A1, B1)
is controllable, and (C1, A1) is observable. Hence, from
the classical discrete-time positive real lemma (Lemma 2),

there exists P1 > 0, L1 ∈ Rr̂×d̂ and W1 ∈ Rr̂×n such that[
P1 −AT1 P1A1 CT1 −AT1 P1B1

C1 −BT1 P1A1 D1 +DT
1 −BT1 P1B1

]
=

[
LT1
WT

1

]
[L1 W1] ≥ 0. (8)

Since spec(A1) ∈ C̄+, P1 > 0 and P1 − AT1 P1A1 ≥ 0, it
can be shown that spec(A1) is on the unit circle and A1 is
semisimple. 2

To show condition 1 we note that D2 = D −D1 from the
definition of D1 above, and we have shown that there is a
P1 > 0 such that (8) holds. Now, if there is also a P2 such
that equation (7) in condition 1 holds thenP1 −AT1 P1A1 0 CT1 −AT1 P1B1

0 0 0
C1 −BT1 P1A1 0 D1 +DT

1 −BT1 P1B1


+

0 0 0
0 P2 −AT2 P2A2 CT2 −AT2 P2B2

0 C2 −BT2 P2A2 D2 +DT
2 −BT2 P2B2

 ≥ 0, (9)

and it can be verified that P = TTdiag (P1 P2)T > 0
satisfies (4). This is most easily seen by pre- and post-
multiplying (9) by

(
TT I

)
and its transpose respectively,

and using the transformations defined in (6).

2 Consider the system x(k + 1) = A1x(k) and the non-increasing
Lyapunov function

V (x(k + 1)) = x(k + 1)TP1x(k + 1)

= x(k)TAT
1 P1A1x(k) ≤ V (x(k)),

where V (x(0)) ≥ V (x(N)) ≥ 0 for N ∈ Z+. But if A1 has an
eigenvalue in C+ then there will exist an x(0) such that V (x(N))→
∞ as N → ∞, hence the eigenvalues of A1 are on the unit circle.
It can similarly be shown that A1 is semisimple (i.e., every Jordan
block is of size 1).

To see condition 2, we first partition P̂ = (T−1)TPT−1

compatibly with diag (A1 A2), and by pre-multiplying the
top left hand block in (4) by (T−1)T and post-multiplying
by T−1 we conclude that[

P̂11 −AT1 P̂11A1 P̂12 −AT1 P̂12A2

P̂T12 −AT2 P̂T12A1 P̂22 −AT2 P̂22A2

]
≥ 0. (10)

Here, P̂11 > 0 and P̂11 − AT1 P̂11A1 ≥ 0. In the same
way as before, we may conclude that A1 is semisimple
and spec(A1) is on the unit circle. We next show that

P̂11 −AT1 P̂11A1 = 0. Denote the number of columns of A1

by d̂. Since the matrix A1 is semisimple, then there exists

a basis v1, . . . ,vd̂ of Cd̂ and z1, . . . , zd̂ ∈ C with |zk| = 1

such that A1vk = zkvk (k = 1, . . . , d̂). Accordingly,

v∗k(P̂11−AT1 P̂11A1)vk = (1−|zk|2)v∗kP̂11vk = 0, and since

P̂11−AT1 P̂11A1 ≥ 0 we have that (P̂11−AT1 P̂11A1)vk = 0.
This must hold for each of the vectors v1, . . . ,vd̂, from

which we conclude that P̂11−AT1 P̂11A1 = 0. It immediately
follows from the non-negative definiteness of (10) that

P̂12 − AT1 P̂12A2 = 0. This is a special case of a Stein

equation, which has the unique solution P̂12 = 0 in this
case (Jiang and Wei, 2003). We may therefore tidy up

the notation and abbreviate P̂11 and P̂22 to P1 and P2

respectively, such that P̂ = diag (P1 P2).

We return to (4) and pre-multiply by diag
(
(T−1)T I

)
and

post-multiply by diag
(
T−1 I

)
to find that[

P1−AT
1 P1A1 0 CT

1 −A
T
1 P1B1

0 P2−AT
2 P2A2 CT

2 −A
T
2 P2B2

C1−BT
1 P1A1 C2−BT

2 P2A2 D+DT−BT
1 P1B1−BT

2 P2B2

]
≥ 0,

where the non-negative definiteness and P1−AT1 P1A1 = 0
imply that CT1 − AT1 P1B1 = 0 and P2 satisfies (7) if
D2 = D − 1

2B
T
1 P1B1.

Finally, it can be shown that P1 is uniquely determined
by these two equations. To see this, note that if P̃1 also
satisfies P̃1 − AT1 P̃1A1 = 0 and CT1 − AT1 P̃1B1 = 0, then

X := P1 − P̃1 satisfies X −AT1 XA1 = 0 and AT1 XB1 = 0.
Since spec(A1) is on the unit circle, then A1 is invertible,
whereupon XB1 = 0. But this implies that XB1 =
AT1 XA1B1 = 0, whereupon XA1B1 = 0. Proceeding by
induction, we find that XAk1B1 = 0 (k = 0, 1, 2, . . .). Since
(A1, B1) is controllable, we conclude that X = 0 and so
P1 is uniquely determined.

Proof. Proof of Theorem 7. We prove the chain of impli-
cations 3 ⇒ 2 ⇒ 1 ⇒ 3.
3⇒ 2 This follows immediately from 3 (i–iv) and noting
that[

P− −ATP−A CT −ATP−B
C −BTP−A D +DT −BTP−B

]
=

[
LT

WT

]
[L W ] ,

as required by 2.
2 ⇒ 1 That G is DPR is well known. This fol-
lows from the observation that, if |z| > 1, then by
pre-multiplying (4) by

[
BT (z∗I −AT )−1 I

]
and post-

multiplying by col
(
(zI −A)−1B I

)
, then we find by fac-

torisation of the matrix equation that

G(z)+G∼(z)+BT (z∗I−AT )−1P (zI−A)−1B(1−|z|2) ≥ 0,

which implies that G(z)+G∼(z) ≥ BT (z∗I−AT )−1P (zI−
A)−1B(|z|2 − 1) ≥ 0.
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Now to show that 1 part b holds we must demonstrate
stabilizability of (A,B). This proceeds in a manner anal-
ogous to the proof of Lemma 9. By pre-multiplying the
top left hand block in (4) by (T−1)T and post-multiplying
by T−1, and recalling (6), it follows that there exists

P̂11 > 0, P̂22 > 0 and a real matrix P̂12 such that (10)
holds, and it is easily shown that (C1, A1) is observable

from the observability of (C,A). We also find that P̂11 −
AT1 P̂11A1 = 0, P̂12 = 0, and CT1 −AT1 P̂11B1 = 0.

Now, let λ ∈ C and z ∈ Cd satisfy zTB1 = 0 and
zTA1 = λzT (so |λ| = 1 since, following the proof of
Lemma 9, we have that spec(A1) is on the unit cir-
cle). We will show that z = 0, which implies that
(A1, B1) is controllable, and it is then easily verified
that (A,B) is stabilizable since spec(A2) ∈ C−. Accord-

ingly, note that, since P̂11 > 0 and spec(A1) is on the

unit circle, then P̂11 and A1 are nonsingular, and so
(AT1 P̂11)−1 = A1P̂

−1
11 . Thus, zT (AT1 P̂11)−1 = zTA1P̂

−1
11 =

λzT P̂−1
11 = λzT (AT1 P̂11)−1AT1 , and so 1

λz
T (AT1 P̂11)−1 =

zT (AT1 P̂11)−1AT1 . Since, in addition, zT (AT1 P̂11)−1(C1 −
AT1 P̂11B1) = zT (AT1 P̂11)−1C1 = 0, and (C1, A1) is observ-

able, we conclude that zT (AT1 P̂11)−1 = 0, whence z = 0,
therefore (A1, B1) is controllable and (A,B) is stabilizable
since spec(A2) ∈ C−.

We must now show that condition 1c holds given condition
2. We note that

[V U ]

[
P −ATPA CT −ATPB
C −BTPA D +DT −BTPB

] [
V ∼

U∼

]
= U(V CT + UDT )∼ + (V CT + UDT )U∼.

Then, note that if b ∈ Rn[z] satisfies bT (U(V CT +
UDT )∼+(V CT +UDT )U∼) = 0, then for any given ω ∈ R
we have that

b(ejω)T [V (ejω) U(ejω)]
[
P−ATPA CT−ATPB

C−BTPA D+DT−BTPB

][
V (ejω)∗

U(ejω)∗

]
=0,

which, by (4), implies that b(ejω)T (V (ejω)(P −ATPA) +
U(ejω)(C−BTPA)) = 0. Since this holds for all ω ∈ R, it
follows that bT (V (P −ATPA) +U(C−BTPA)) = 0. Re-
calling that U(z)BT = V (z)( 1

z I−A
T ), and noting that P−

ATPA = ( 1
z I−A

T )P (zI−A)+( 1
z I−A

T )PA+ATP (zI−
A), we find that bT (U(z)C + (V (z)AT +U(z)BT )P (zI −
A)) = 0.

1 ⇒ 3 First, let T,A1, A2, B1, B2, C1, C2, D1 and D2 be
as in Lemma 9, and recall from the proofs of Lemmas 8
and 9 that there exists P1 > 0 uniquely determined by the
equations P1 − AT1 P1A1 = 0 and CT1 − AT1 P1B1 = 0 such
that (8) holds, and that G2(z) := D2 + C2(zI − A2)−1B2

satisfies G2 +G∼2 = G+G∼. From Lemma 9 it suffices to
show that there exists P2 > 0 satisfying (7) for there to
exist the required P > 0.

From Lemma 4, because G2 + G∼2 = G + G∼ ≥ 0 for all
z such that |z| = 1 and z is not a pole of G, we have
that there is a discrete-time spectral factor Z ∈ Rr×n of
G+G∼. Moreover, since G2 +G∼2 has no poles on the unit
circle (Lemma 8), we have that Z has no poles on the unit
circle. Define K := UZ∼, so U(G + G∼)U∼ = U(UDT +
V CT )∼ + (UDT + V CT )U∼ = KK∼ = UZ∼ZU∼.

From the choice of Jordan normal form and the arguments
made in previous lemmas, spec(A) ∈ C−. By definition, U ,
V are left coprime and U(z)BT = V (z)( 1

z I−A
T ), so U(z)

is nonsingular for all z ∈ C−. But Z∼(z) has full column
rank for all z ∈ C−, and neither U nor Z∼ have any poles
in C̄−, and we conclude that K(z) has full column rank
for all z ∈ C− and K doesn’t have any poles in C̄−. This
implies that K∼(z) has full row rank for all z ∈ C+. Since,
in addition,KK∼ = U(V CT+DUT )∼+(V CT+DUT )U∼,
which can only have poles at the origin and at infinity, then
it is straightforward to verify that K must be polynomial.

Now, let H = col (H1 H2) ∈ Rn×n[z] be a unimodular
matrix where the rows of H1 are a basis for the left syzygy
of U(V CT +DUT )∼ + (V CT +DUT )U∼. It follows from
condition 1c that there exists a polynomial matrix X
such that (H1U)(z)C = X(z)(zI − A), and it is then

easily shown that there exists a polynomial matrix Ĵ1

such that (H1U)(z)C2 = Ĵ1(z)(zI − A2). Next, let E
be a polynomial matrix and F be a real matrix such
that (H2U)(z)C2 = E(z)(zI − A2) + F . The existence of
such matrices follows from (Gantmacher, 1980, pp. 77–79).
We then note that H2K is polynomial and nonsingular
for all z ∈ C−, and it follows from (Feinstein and Bar-
Ness, 1980, Theorem II) that there exists a polynomial

matrix X̂ and a real matrix L2 such that (H2K)(z)L2 +

X̂(z)(zI − A2) = F . We then let Ĵ2 = E + X̂, and

we find that (H2K)(z)L2 = (H2U)(z)C2 − Ĵ2(zI − A2).
Finally, as H1KK

∼ = H1(U(V CT + DUT )∼ + (V CT +
DUT )U∼) = 0, then H1K = 0. 3 Since, in addition,

(H1U)(z)C2− Ĵ1(z)(zI−A2) = 0, then, with the notation
J := H−1col

(
Ĵ1 Ĵ2

)
, we conclude that J is polynomial

and K(z)L2 = U(z)C2 − J(z)(zI −A2).

We now let P2 :=
∑∞
k=0(AT2 )kLT2 L2A

k
2 , which, since

spec(A2) ∈ C−, is the unique solution to the Lyapunov
equation P2 − AT2 P2A2 = LT2 L2, and satisfies P2 ≥ 0
(Zhou et al., 1996, Lemma 21.6). Moreover, we let W2 :=
limz→∞(Z(z)). We will show that Z(z)−L2(zI−A2)−1B2

has no poles in C−. Since spec(A2) ∈ C−, and the poles of Z
are all in C−, then we conclude that Z(z) = W2 +L2(zI −
A2)−1B2.

To see that Z(z) − L2(zI − A2)−1B2 has no poles in
C−, we recall that there exists a polynomial matrix J
such that K(z)L2 = U(z)C2 − J(z)(zI − A2), and that
K(z) = UZ∼ where Z(z) is a spectral factor for G(z) +
G∼(z) = G2(z) + G∼2 (z). It follows that K(z)(Z(z) −
L2(zI − A2)−1B2) = J(z)B2 − U(z)C2(zI − A2)−1B2 +
U(z)(G2(z)+G∼2 (z)) = J(z)B2+U(z)(D2+DT

2 +BT2 z(I−
zAT2 )−1CT2 ), which has no poles in C−. Since, in addition,
K(z) has full column rank for all z ∈ C−, then it is easily
shown that Z(z)− L2(zI −A2)−1B2 has no poles in C−.

Next, we note that LT2 L2 = ( 1
z−A2)TP2A2+ 1

zP2(zI−A2),
and that there exists a polynomial matrix J such that
Z∼(z)L2(zI −A2)−1 = C2(zI −A2)−1 − U(z)−1J(z). We
then find that (WT

2 L2 − C2 + BT2 P2A2)(zI − A2)−1 =
(Z∼(z)L2 − C2 + BT2 P2A2)(zI − A2)−1 − BT2 ( 1

z I −
AT2 )−1LT2 L2(zI − A2)−1 = −U(z)−1J(z) − BT2 (I −

3 To see this, note that H1KK∼ = 0 implies that
H1(ejω)K(ejω)(H1(ejω)K(ejω))∗ = 0 for all ω ∈ R, which
implies that H1(ejω)K(ejω) = 0 for all ω ∈ R, whence H1K = 0.
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AT2 z)
−1P2, which has no poles in C−. Since spec(A2) ∈ C−,

then it is easily shown that WT
2 L2 − C2 +BT2 P2A2 = 0.

Now, note that (WT
2 +BT2 ( 1

z I −A
T
2 )−1LT2 )(W2 +L2(zI −

A2)−1B2) = G2(z) +G∼2 (z), which implies that WT
2 W2 −

(D2 +DT
2 −BT2 P2B2) = BT2 (P2− ( 1

z I −A
T
2 )−1LT2 L2(zI −

A2)−1)B2 + (C2 − W 2
2L2)(zI − A2)−1B2 + BT2 ( 1

z I −
AT2 )−1(CT2 −LT2 W2). Noting that ( 1

z I −A
T
2 )−1LT2 L2(zI −

A2)−1 = P2A2(zI−A2)−1+ 1
z ( 1
z I−A

T
2 )−1P2, and recalling

that C2−WT
2 L2 = BT2 P2A2, we find that WT

2 W2− (D2 +
DT

2 −BT2 P2B2) = 0.

We have constructed a P2 ≥ 0 such that P2 − AT2 P2A2 =
LT2 L2, C2−BT2 P2A2 = WT

2 L2, and D2 +DT
2 −BT2 P2B2 =

WT
2 W2, in addition to a P1 > 0 satisfying P1−AT1 P1A1 =

0, C1−BT1 P1A1 = 0, and D1 +DT
1 −BT1 P1B1 = 0. Direct

calculation then verifies that P := TTdiag (P1 P2)T ≥ 0,
L := [0 L2]T and W := W2 satisfy conditions 3(ii)–(v) of
the present theorem statement.

Finally, we must show that if P is as in condition 2, then
P > 0 as opposed to being only non-negative definite
(and it can similarly be shown that P− > 0 whenever
P− is as in condition 3). Accordingly, we must show
that Pz = 0 implies z = 0. Consider that Pz = 0, so
zT (P − ATPA)z = −(Az)TP (Az) ≥ 0, hence P (Az) = 0.
Proceeding by induction we find that PAkz = 0 for
k = 0, 1, 2, . . ., which by the non-negative definiteness
of (4) implies that (C − BTPA))(Akz) = 0, and hence
CAkz = 0 for k = 0, 1, 2, . . . . But (C,A) is observable so
it must be that z = 0, demonstrating that P > 0.

5. PROOF OF THEOREM 5, AN
ASSUMPTION-FREE THEOREM ON DPR SYSTEMS

We have now proved Theorem 7, the proof of which shall
be drawn upon in the proof of Theorem 5, the main result
of this paper. Owing to space constraints, only a sketch of
the proof is provided here, with the full details to follow
in a subsequent paper.

Theorem 7 can be proved from Theorem 5 by relating
the system considered in Theorem 5 to the observable
subsystem obtained from the staircase observability form:

Lemma 10. Let Ã ∈ Rd̃×d̃, B̃ ∈ Rd̃×ñ, C̃ ∈ Cñ×d̃, and

D̃ ∈ Rñ×ñ. There exists a nonsingular T ∈ Rd̃×d̃ such that

TÃT−1=

[
A 0
A21 A22

]
︸ ︷︷ ︸

Â

, T B̃=

[
B
B2

]
︸ ︷︷ ︸
B̂

, C̃T−1= [C 0]︸ ︷︷ ︸
Ĉ

, D̃ = D,

where (C,A) is observable (Polderman and Willems,
1998). This is often called the staircase observability form.

We shall refer to Ã, B̃, C̃, and D̃ as the whole, unobserv-
able, system, while A, B, C, and D shall be referred to
as the observable part of the system. Next, we state the
following lemma that shall be used to connect results in
the observable case to the unobservable case: if condition
2 of Theorem 7 holds for the observable part of the system
then condition 2 holds for the entire system, and vice versa.

Lemma 11. Let Ã, B̃, C̃, D̃, A,B,C,D be as in Lemma 10.
The following conditions hold

(1) If there exists a P̃ ≥ 0 such that

[
P̃ − ÃT P̃ Ã C̃T − ÃT P̃ B̃
C̃ − B̃T P̃ Ã D̃ + D̃T − B̃T P̃ B̃

]
≥ 0, (11)

then there exists P ≥ 0 such that (4) holds.
(2) If there exists P ≥ 0 such that (4) holds then there

exists P̃ ≥ 0 such that (11) holds.

Proof. Let T, Â, B̂ and Ĉ be as in Lemma 10, let D̂ = D,
and let P̂ = (T−1)T P̃ T−1, then[

(T−1)T 0
0 I

] [
P̃ − ÃT P̃ Ã C̃T − ÃT P̃ B̃
C̃ − B̃T P̃ Ã D̃ + D̃T − B̃T P̃ B̃

] [
T−1 0

0 I

]
=

[
P̂ − ÂT P̂ Â ĈT − ÂT P̂ B̂
Ĉ − B̂P̂ Â D̂ + D̂T − B̂T P̂ B̂

]
≥ 0. (12)

Now partition P̂ compatibly with Â as
[
P̂11 P̂12

P̂T
12 P̂22

]
, and let

P̂ †22 denote the pseudo-inverse of P̂22 (so P̂ †22P̂22P̂
†
22 =

P̂ †22, P̂22P̂
†
22P̂22 = P̂22, and (P̂ †22)T = P̂ †22 since P̂22 is

symmetric). Then let T̂ =
[

I 0
P̂ †22P̂

T
12 I

]
such that

T̂ ÂT̂−1 =

[
A 0
Ǎ21 Ǎ22

]
︸ ︷︷ ︸

Ǎ

, T̂ B̂ =

[
B
B̌2

]
︸ ︷︷ ︸
B̌

, ĈT̂−1 = [C 0]︸ ︷︷ ︸
Č

, D̂ = Ď.

It can be shown that (I − P̂22P̂
†
22)P̂T12 = 0. This is because

P̂ ≥ 0, so zT P̂22 = 0 implies zT P̂12 = 0, meaning the left
null space of P̂12 is a subset of the left null space of P̂22.
In turn, this means that the range space of P̂T12 is a subset

of the range space of P̂22, so there exists a matrix X such

that P̂T12 = P̂22X. This implies that (I−P̂22P̂
†
22)P̂T12 = (I−

P̂22P̂
†
22)P̂22X = 0. It then follows that

(T̂−1)T P̂ T̂−1 =

[
P̂11 − P̂12P̂

†
22P̂

T
12 0

0 P̂22

]
. (13)

After introducing the notation P = P̂11 − P̂12P̂
†
22P̂

T
12, we

may write[
(T̂−1)T 0

0 I

][
P̂ − ÂT P̂ Â ĈT − ÂT P̂ B̂
Ĉ − B̂P̂ Â D̂ + D̂T − B̂T P̂ B̂

][
T̂−1 0

0 I

]
≥ 0,

from which we have[
P −ATPA CT −ATPB
C −BTPA D +DT −BTPB

]
≥
[
ǍT21

B̌T2

]
P̂22

[
Ǎ21 B̌2

]
≥ 0,

since P̂22 ≥ 0, and from (13) we have that P = P̂11 −
P̂12P̂

†
22P̂

T
12 ≥ 0.

As for condition 2, if P ≥ 0 satisfies (4) then it can be

verified that P̃ = TTdiag(P, 0)T satisfies (11).

Armed with Lemma 11 and the proof of Theorem 7 we
can finally sketch the proof of Theorem 5, the full details
of which will be provided in a subsequent paper.

Proof. Proof of Theorem 5. The proof proceeds by prov-
ing the chain of implications 3 ⇒ 2 ⇒ 1 ⇒ 3.

3 ⇒ 2 This follows immediately, as it did in the proof
of Theorem 7.

Proving the remaining implications proceeds by relating
each of the conditions of Theorem 5 concerning the whole
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unobservable system to the corresponding conditions of
Theorem 7 concerning the observable part. The full details
will follow in a subsequent paper.

6. CONCLUSION

We have proved a theorem on the discrete-time positive
real lemma that does not require controllability and ob-
servability. This result will prove useful in further work. In
particular, the discrete-time positive real lemma is closely
linked to system passivity and the related optimal con-
trol problem, and similar uncontrollable and unobservable
results are obtainable here, though this was beyond the
scope of this paper. Also alluded to earlier, achieving sim-
ilar results that remove assumptions of controllability and
observability is also possible in the discrete-time bounded
real lemma, as will be presented in a sequel paper.
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