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Abstract:
Production programming in a manufacturing industry is usually performed based on off-line
optimisations of the processing times or plant productivity. However, most of these approaches
do not consider the energy market and its fluctuations. Therefore, it is not possible to take
advantage of these fluctuations to also minimise the energy costs and to increase the plant
profit. In this regard, a control strategy based on the Economic Model Predictive Control
approach is proposed to reduce energy costs during the operation of a manufacturing plant.
The proposed controller determines the instants in which the production programs should be
executed to satisfy the daily demand while minimising the energy costs through regular updates
of the energy prices according to the current energy market. Besides, by implementing a control
strategy in real time, changes in the demand of parts according to the customer requirements
could also be considered, adding more flexibility to the plant operation. The proposed control
strategy has been tested in simulation, and the obtained results show that energy costs can be
reduced without affecting the plant productivity.

Keywords: Economic model predictive control, Energy costs, Economic production
programming, Mixed-integer linear programming

1. INTRODUCTION

Currently, the manufacturing industry is suffering a
paradigm shift towards smart factories to achieve higher
flexibility and sustainability to manufacturing systems.
The leading promoter of this transformation has been
the Industry 4.0, from which several proposals have been
developed. Most of these works have focused on improv-
ing the modelling of manufacturing processes, the process
planning and scheduling, and the process design and con-
trol to improve both the plant productivity and the quality
of produced pieces (Li et al., 2017).

A manufacturing plant can be understood as an inte-
grated system that comprises three partial systems: the
production system itself, the technical Building Services
(TBS) and the building (Herrmann and Thiede, 2009).
The former refers to the interlinked machines and the
personnel controlled through production management. On
the other hand, TBS ensure the necessary production
conditions of temperature, moisture, and purity through
cooling/heating and conditioning of the air, besides of
supplying energy, compressed air, steam or cooling water
required for production systems (Fahad et al., 2017). Thus,
at the plant level, all devices involved in both value and
non-value tasks in a factory are included.

At the plant level, most of the researches have focussed on
the design of production programs and process scheduling

to minimise the processing time or, in other words, to
maximise the production of the parts. The latter, since
the incomes for a manufacturing plant, are mainly a result
of the sale of parts. However, strategies that confer more
flexibility to manufacturing systems and allow improving
their energy efficiency are required. A suitable way to add
more flexibility to manufacturing systems is through the
design of modular process and proper control strategies
to respond to changes in the product demand or design.
The last fact to achieve a higher level of customisation ac-
cording to customer requirements. Although many works
reported in the literature focus on strategies for flexible
manufacturing at the plant level, the energy consumption
has been usually considered as an initial optimisation to
minimise operational costs for a fixed demand (Lu et al.,
2017). Based on these strategies, an optimal production
program is determined at the beginning for specific oper-
ational conditions and, therefore, they cannot respond to
the temporal variation of processes, demand, and working
environment during the plant operation.

On the other hand, into the transformation towards Smart
Manufacturing (SM), improvements in sensing technology,
connectivity, and computer science have also promoted,
addressing manufacturing systems as Cyber-Physical Sys-
tems (CPS). These latter refer to systems that incor-
porate physical processes and embedded computing ele-
ments (e.g., smart sensors and actuators) allowing a real-
time interaction. Those interactions ease the exchange of
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information for tasks such as monitoring, control, and
management of such systems (Jakovljevic et al., 2017).
Nonetheless, in spite of all the recent advances and the
new generation of Cyber-Physical Manufacturing Systems
(CPMS), only a few strategies have taken to the energy
market and its fluctuations for minimising energy costs
and improving the energy efficiency of a manufacturing
plant (Diaz and Ocampo-Martinez, 2019).

In this regard, the main contribution of this work is the de-
sign of an optimisation-based control strategy to minimise,
in real-time, the energy costs related to the operation of
a manufacturing plant taking advantage of energy-price
fluctuations and without decrease the plant productivity.
Due to the nature of the objective to be minimised, the
proposed controller is designed according to the Economic
Model Predictive Control (EMPC) approach that directly
optimises an economical cost function. The main idea is
to predict the instants of time in which the production
program should be executed considering the product de-
mand, the energy prices, and the operational constraints
of the plant. Thus, the control strategy is based on the
assumption that production programs have already been
designed and optimised to minimise processing time and
their energy consumption. Thereby, the proposed con-
troller can be implemented as a complementary strategy to
the optimal production programming to improve the plant
productivity and its profitability. It is worth noting that
although this work is proposed based on a manufacturing
plant for producing automotive parts, both the problem
statement and the proposed approach can be extended to
other manufacturing industries without losing generality.

The remainder of the paper is organised as follows. In Sec-
tion 2, the problem statement is presented in a general way.
Next, the design of the proposed controller is introduced
in Section 3. Afterwards, in Section 4, the case study to
test the proposed control strategy is explained. Finally,
the simulation results are presented in Section 5, while
the conclusions based on the obtained results are drawn in
Section 6.

2. PROBLEM STATEMENT

A manufacturing plant consists of arrangements of process
lines and auxiliary devices that guarantee the operating
conditions of each process line and its working environ-
ment. The energy costs in a manufacturing plant are
related to the energy consumption of the productive and
non-productive processes in addition to the surcharges pro-
duced by surpassing the nominal power purchased. Hence,
the energy consumption profile of both the productive and
non-productive systems in a manufacturing plant should
be considered to determine the production programming
of a plant. A scheme of a manufacturing plant considering
the TBS and process lines is shown in Figure 1.

In addition to energy spent by the TBS and the process
lines in a manufacturing plant, the energy consumed in the
offices by the company workers should also be considered.
Thus, according to the workday of each company, the
energy consumption profile from offices could change along
the day, and even, it could have small differences from one
day to other. In the same way, the energy consumption
profile of the TBS will depend on the production pro-

Fig. 1. Representation of a manufacturing plant and its
constitutive elements. Based on Duflou et al. (2012).

grams currently executed in the process lines since the
requirements of resources can change from one production
program to others. In this regard, the energy consumption
from the offices could be considered as fixed while the en-
ergy expenditure related to both the production processes
and TBS are regarded as a variable one since it will depend
on time-varying product demand.

Consider a manufacturing plant (e.g., an automotive parts
manufacturing plant) with a fixed number of process
lines, i.e., m, as shown in Figure 1. Assuming that each
process line i (with i = 1, 2, . . . ,m) involves a fixed
number of machines ni that perform different processes
according to a pre-defined configuration, different parts
could be processed in the same process line. The sequence
of processes required to process a piece corresponds to the
production program PP of the piece l. Thus, assuming
that each machine in the process line performs only one
machining operation (e.g., cutting, milling, turning, etc.),
the production program for the piece l in the process
line i, PPi,l, involves the operation of ni machines in the
process line according to the machining processes required.
Besides, since each machine j ( with j = 1, 2, . . . ni) in
the i-th process line has its own processing time Ti,j , the
time spent to produce a finished part by PPi,l is computed
based on the machine with the longest processing time,
i.e., TPPi,l

= max (Ti,j). That means, in the continuous
operation of PPi,l, the number of pieces produced in a
fixed period is calculated according to TPPi,l

, which is
usually referred as the productivity of the process line.

Although the processing times of the machines are min-
imised offline, a real-time production programming that
maximises the plant profit is required to face the new
challenges imposed by SM. In this regard, the production
program of a manufacturing plant should consider the
energy consumption and its associated costs, the changes
in the product demand, and customisation requirements
from customers. This latter fact rises to improve both the
energy efficiency of the plant and its flexibility by mean
of constant updates of product demand and the temporal
variations of energy prices. Thus, the plant profit should
be optimised, taking into account the energy consumption
of both value and non-value tasks in the plant, the chang-
ing energy market and marketplace demand, besides, the
processing times. The last fact takes into account that a
reduction in processing times and, therefore, the energy
consumption of a manufacturing plant does not guarantee
that energy costs are also be reduced. Thus, reductions in
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energy costs can be achieved if the energy price profile is
considered. Thereby, to determine the economic-optimal
operation of a manufacturing plant along an operation
period of T , the following control objectives are proposed:

Revenues for sale of parts: According to the type of
piece processed, the number of finished parts and their
commercial value, the incomes for the sale of parts are
defined as follows:

Ni,l(k) =
T

TPPi,l

ui,l(k), (1)

being k ∈ Z≥0 the discrete-time index, Ni,l ∈ Z≥0 the
total number of pieces of type l processed in the i-th
process line along a period T , and ui,l ∈ {0, 1} the
activation/deactivation signal of the production program
PPl. Then, the total revenues are computed according to

φ1(k) =

m∑
i=1

[
pi∑
l=1

[
γp,l Ni,l(k)

]]
, (2)

being pi the number of production programs that can be
executed in the i-th process line, and γp,l ∈ R≥0 the selling
price for the piece l. It is worth noting that each process
line can only run one production program at a time, but
a production program can be executed at the same time
in different process lines.

Energy costs of manufacturing processes: The energy costs
related to the value-added tasks are defined as follows:

φ2(k) =

m∑
i=1

[
γe(k)SLi

(k)
]
, (3)

being γe the energy price in the current market, and SLi

the instantaneous power consumption in the i-th process
line given by

SLi
(k) = ui,1 SPPi,1

(k) + · · ·+ ui,pi SPPi,pi
(k), (4)

with SPPi,l
as the power consumption of the l-th produc-

tion program , and
∑pi

l=1 ui,l(k) ≤ 1. Thus, SLi
will depend

on the production program that it is being executed.

Energy costs for non-value added task: In this item are
included the costs related to the energy consumption of
the TBS and the offices in the manufacturing plant, which
are given by

φ3(k) = γe(k)
(
STBS(k) + Soff (k)

)
, (5)

with STBS ∈ R and Soff ∈ R the instantaneous power
consumption from the TBS and offices.

According to (2), (3) and (5), to determine the optimal
production program that maximizes the plant profit, the
following economic cost function is proposed:

J(k) = (φ1(k)− φ2(k)− φ3(k)) , (6)

being J ∈ R the total profit of the plant. Therefore,
to maximise (6), the control problem consists of deter-
mining the optimal activation/deactivation sequences ui,l
of production programs at each process line, taking into
account the demand of pieces, the energy market and its
fluctuations, as well as the operational constraints in the
manufacturing plant. Among the latter constraints can be

included the work shifts, the maximum execution time
for the production programs, and the incompatibility to
run some production programs at the same time (even in
different process lines). Besides, regarding the scenarios
of flexible manufacturing, the time instants in which the
changes in the production programs will be allowed can
also be included as constraints.

3. PROPOSED APPROACH

To determine in real time the optimal production pro-
gramming of a manufacturing plant from an economic
point of view, a controller based on the EMPC approach
is designed. Thus, the proposed controller is focussed on
maximising the revenue for the sale of produced parts
while minimising the operational costs along a prediction
horizon Hp. In this regard, both the energy market and the
changes in the marketplace demand should be considered
in the controller design to minimise energy costs and to
satisfy the requirements of flexible manufacturing.

The main idea underlying the use of optimisation-based
control techniques is that the control problem can be trans-
formed into an optimisation problem. Thereby, control
objectives can be regarded as the cost function, while the
process dynamics and operational limitations are defined
as the set of constraint into the optimisation problem.
Thus, due to the economic nature of the control objectives
to be treated, the use of EMPC has been preferred con-
cerning other approaches, such as the conventional MPC,
since it directly optimises the economic performance of the
process (Ellis et al., 2014) and it is also implemented in
a receding horizon strategy (Maciejowski, 2002). Several
works related to the design of EMPC controllers, the the-
oretical background and stability analysis of EMPC have
been proposed in the literature. A detailed explanation of
the EMPC strategy can be found in (Rawlings et al., 2012;
Angeli et al., 2016).

The general idea is to predict which production program
PPl should be executed at each process line along Hp,
such that the plant profit can be maximised taking into
account the product demand, the operating constraints
and the time-varying price profiles. Thus, the decision to
activate/deactivate the l-th production program in the i-
th process line, i.e., ui,l, depends on the current value of
the demand of pieces of type l and the energy price in the
market. Then, if in each process line only a fix number
pi of production programs can be executed, the activation
signals for each process line can be expressed as

υi(k) , {ui,1(k), ui,2(k), . . . , ui,pi (k)}, i = 1, 2, . . . ,m, (7)

with ui,1 ∈ {0, 1} indicating that PPl is being executed in
the i-th process line if ui,1 = 1, or that it is deactivated
when ui,1 = 0. Then, according to the defined control
objectives in (6), the sequences 1 for J and υi along Hp

are defined as

J(k) , {J(k|k), . . . J(k +Hp − 1|k)}, (8a)

Ui(k) , {υi(k|k), . . . ,υi(k +Hp − 1|k)}, (8b)

1 Here, z(k + i|k) denotes the prediction over Hp of the variable z
at time instant k + i performed at k.
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with J ∈ RHp and Ui ∈ {0, 1}Hp . Thereby, the economic
predictive-like controller is based on the following open-
loop optimization problem:

max
Ui(k) ∀ i=1,2,...,m

J(k) (9a)

subject to

SPPi,l
(k + r + 1|k) = fl

(
SPPi,l

(k + r|k), ui,l(k + r|k)
)
, (9b)

gi(Ui(k + r|k)) ≤ 0, (9c)

Ni,l(k + r|k) ≥ αl, (9d)

ui,l(k + r|k) ∈ {0, 1}, l = 1, 2, . . . , pi, (9e)

for ∀r ∈ [1, Hp − 1], and being fl : R × {0, 1}pi → R
the linear map for the energy consumption of PPl, gi(·) :
{0, 1}pi → R the linear maps that express the logical and
operational constraints among the production programs
allowed in any process line, and αl ∈ Z the demand for the
piece l. Besides, safety times for the minimum execution
time of a production program in a certain process line
can be considered imposing constraints on ∆ui,l. In this
regard, every time that ∆ui,l = |ui,l(k) − ui,l(k − 1)| will
be different to zero, the current state of PPj should be
kept along for a period equal to the safety time tsw.

Assuming that the optimization problem in (9) is feasi-
ble, i.e., Ui(k) 6= ∅, the optimal sequence Ui

∗(k) exists
and, according to receding horizon approach (Maciejowski,
2002), the first component υi

∗(k|k),∀ i = 1, 2, . . . ,m is
sent to the process lines. Then, this procedure is repeated
for the next instant once measurements of input signals
and estimation of the required information about the plant
are updated. Then, taking into account the nature of
variables to be optimised, the optimisation problem in (9)
is a mixed-integer linear programming (MILP) problem,
for which suitable solvers should be chosen to solve the
problem with a low computational burden.

It should be noted that since the proposed approach fo-
cusses on programming the plant productivity to minimise
the operating costs according to the current demand, it
is assumed that the production programs are previously
designed and optimised offline regarding the processing
time. Thus, the controller should decide the programs
to execute in each process line to minimise energy costs,
maximise revenues, and satisfy the daily product demand.
Besides, according to (9), suitable energy consumption
models for each production program are required.

4. CASE STUDY

According to Figure 1, a manufacturing plant with three
process lines will be analysed. The manufacturing process
lines are detailed in Figure 2, in which every line is drawn
with its respective machines. The first and the second
process lines have the same configuration for the machines
and are able to process the same parts. That means,
the production programs are the same in these process
lines. Besides, machines in these process lines have the
same processing time, i.e, T1,j = 28s, j = 1, 2, . . . , n1

and T2,j = 28s, j = 1, 2, . . . , n2. The latter fact implies
that in both process lines the same number of pieces
can be processed during a fixed period. On the other
hand, the third process line is formed by five machines,
most of them with a different processing time. Thereby,

Fig. 2. Process lines in a manufacturing plant.

T3,1 = 28s,T3,2,T3,5 = 44s,T3,4 = 22s and T3,6 = 36s. In
this case, the productivity of the line is computed based on
the machines with the longer processing time, i.e., T3,2 or
T3,5. In addition to energy consumption from value-added
tasks and TBS, in this case, it is assumed that the offices
has a known energy consumption profile along the day,
which is repeated over the time with small variations.

Since the production programs have already been de-
signed, using the real data from the energy consumption
of each machine involved, energy consumption models can
be obtained based on Subspace Identification (SI) meth-
ods (Qin, 2006). A detailed explanation of this procedure
is presented in (Verhaegen and Hansson, 2016), and an
application to identify energy consumption models of ma-
chine tools is introduced in (Diaz et al., 2019). Thus, by
summing the instantaneous energy consumption of the
machines involved in each PPi,l, its energy consumption
profile (SPPi,l

(k)) can be obtained. Then, based on such
profile, correlations to compute the cumulated energy con-
sumption while PPi,l is on, can be defined as follows:

S̃PPi,l
(ui,l, ki,l) = θi,l koni,l (k) + δi,l ui,l(k), (10)

with S̃PPi,l
∈ R the accumulation of power consumed

for PPi,l, koni,l
the accumulate operation time for PPi,l,

and θi,l and δi,l the increment coefficients for each PPi,l.
Thus, assuming a sampling time τs equal 10 minutes, along
30 minutes of operation of PPi,l, it should be satisfied

S̃PPi,l
(ui,l, 10) ≤ S̃PPi,l

(ui,l, 20) ≤ S̃PPi,l
(ui,l, 30). Then,

since koni,l
is a cumulation of processing time for PPi,l

while PPi,l is kept on, it should be updated as

koni,l (k) =
(
koni,l (k − τs) + τs

)
ui,l(k). (11)

It is worth noting that (11) is multiplied by ui,l(k) since
if PPi,l is switched off, koni,l

should be reinitialised to
zero when it will be activated again. Besides, according
to (10) and (11), the energy consumed at every τs can
be computed as the different between the current value of
S̃PPi,l

(·) and the previous one. As an example, the energy
consumption profile for PP1,1, its cumulated energy con-
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Fig. 3. Energy consumption profile and correlation for
PP1,1.

sumption, and the corresponding curve fitting parameters
are presented in Figure 3.

Regarding the consumption from the offices, it is assumed
that the energy consumption follows a daily pattern with
small variations between days, which are added as white
noise. Moreover, since the TBS provide the required re-
sources to the machines in the process lines, the energy
consumption from TBS is defined as a function of the pro-
duction programs that are being executed and a constant
portion related to the environment conditions of the plant.
Thus, the energy consumption of TBS is given by

STBS(k) = Soff (k) +

m∑
i=1

(
pi∑
l=1

βi,l ui,l(k)

)
, (12)

being Soff the constant consumption related to the en-
vironment conditions of the plant and βi,l the correlation
coefficients for the l-th program in the i-th process line.
In addition to the energy consumption models, some
logical constraints for the operation of the process lines
should be considered as follows:

• Every time that a program is activated, it should be
kept on for at least four hours.
• The program PPi,2 cannot be executed at the same

time in both process lines 1 and 2. It is given since this
program has the highest energy consumption among
the allowed programs in lines 1 and 2.
• Changes in the production program for the next day

are allowed until four hours prior the next day. The
last fact since the TBS should also be prepared to
provide the required resources to the process lines.
• The daily energy-price profile will be updated every

30 minutes to include the price fluctuations.
• The program PP3,2 in the third line cannot be ex-

ecuted at the same time that the program PP1,1

in the first line. This scenario considers the case in
which some programs cannot operate at the same
time because it is not possible to provide all the
resources required by both programs.
• The production of pieces per day can be only 10%

higher than the daily demand.

Based on the previous system description, and taking
into account the operational constraints of the process
lines, the instants in which each production program
would be executed to minimise energy costs and maximise
productivity should be determined. Besides, it is necessary

Table 1. Simulation parameters.

Parameter Value Parameter Value

tsw 4 h γp1,1 2.5 e.u.

γp1,2 3.0 e.u. γp1,3 2.8 e.u.

γp2,1 2.5 e.u. γp2,2 3.0 e.u.

γp2,3 2.8 e.u. γp3,1 2.0 e.u.

γp3,2 2.8 e.u. θ1,1 6.485× 104

δ1,1 −315.6 θ1,2 8.005× 104

δ1,2 −1063 θ1,3 6.463× 104

δ1,3 −898.3 θ3,1 6.238× 104

δ3,1 −171.2 θ3,2 7.903× 104

δ3,2 −115.6 τs 30 minutes

to guarantee that the pieces demand is satisfied every day
considering its corresponding fluctuations. The simulation
parameters are presented in Table 1, in which the economic
costs are presented in economic units (e.u.).

5. SIMULATION RESULTS

According to the case study presented in Section 4 and
the proposed control strategy (denoted as EMPC), some
simulations were performed to test the effectiveness of
the proposed controller. The results presented below were
obtained considering a total simulation time Ts = 7 days
with a execution time for the controller equal to τs =
30 minutes. Besides, a prediction horizon of Hp = 24 hours
was considered, which means the controller makes decision
48 times along Hp. Thereby, the total number of decision
variables corresponds to |Ui(k)| = 48 per each process
line i. The obtained results using EMPC were compared
with another EMPC (denoted as EMPC2), in which the
fluctuations of the energy-price profile are not considered.
Thus, for the last case, a constant energy price of γe = 0.04
e.u./kW was considered, while the energy-price profile for
the first case is shown in the bottom plot of Figure 5a.

To determine the optimal production programming of
the plant, at each sampling time, the predictions for the
energy consumption from offices, the demand of pieces,
and the current energy-price profile are updated when the
proposed EMPC is implemented. Since the controller is
executed every 30 minutes using a prediction horizon of
one day ahead, the marketplace demand for the next day
will begin to be considered into the optimisation problem
in (9) just four hours before the current day finishes.
Therefore, according to the receding horizon implementa-
tion strategy, the constraints to satisfy the daily demand of
parts should be suitably adjusted to constrain the demand
for the current day and the next one, when the latter
starts to appear in the prediction horizon. Then, taking
into account the constraints discussed in Section 4, the
following expressions should be added to the optimisation
problem in (9):

pi∑
l=1

ui,l(k) ≤ 1, ∀ i = 1, 2, 3 (13a)

u1,2(k) + u2,2(k) ≤ 1, (13b)

u3,2(k) + u1,1(k) ≤ 1, (13c)

ML1 ≤ N1,l(k) ≤ 1.1 ML1, (13d)

ML2 ≤ N2,l(k) ≤ 1.1 ML2, (13e)

ML3 ≤ N3,l(k) ≤ 1.1 ML3, (13f)

with ML1,ML2 and ML3 the demand matrices of pieces
for each process line, given by
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Fig. 4. Optimal activation sequences for ui,l by using
EMPC.

ML1 =

[
1024 850 250 1000 800 960 1000
1024 1000 500 850 950 800 650
1024 550 800 600 1024 900 780

]
, (14)

ML2 =

[
1024 850 250 1000 800 580 700
1024 1000 500 850 950 600 860
1024 550 800 600 1024 780 900

]
, (15)

ML3 =

[
880 850 250 900 800 650 760
880 1000 580 850 950 600 820

]
, (16)

with rows corresponding to the program and the columns
referring to the day. The values in bold correspond to
the changes that will be introduced in the product de-
mand during the simulations. Thus, these values will be
modified at suitable time instants to 600, 1000, and 550
pieces, respectively. Besides, expressions in (10), (11) and
(12) for energy consumption of both productive and non-
productive areas should also be added as constraints into
the optimisation problem in (9). Afterwards, given the
MILP nature of the optimization problem in (13), simula-
tions were developed in Matlab R© using the solver IBM
ILOG CPLEX Optimization Studio (ILOG, 2013) and
YALMIP toolbox (Löfberg, 2004) for stating the optimiza-
tion problem in the specific format of the solver. Besides,
simulations were performed using an Intel R© CoreTM i7-
5500U CPU 2.40GHz and RAM of 8.0 GB.

In Figure 4, the optimal activation sequences obtained
when the proposed controller (EMPC) is implemented
are shown. Based on these sequences and the logical
constraints included into the optimization problem, it is
possible to see that the second program in both process
lines 1 and 2 was never turned on at the same time. In
the same way, the programs PP1,1 and PP3,2 were always
turned on at different moment along the day with the
aim to guarantee that the TBS were able to provide the
required resources to both process lines 1 and 3. Then,
according to these activation sequences, a comparison
of the resulting energy consumption profile using both
strategies, as well as the energy price profile along the
whole simulation are shown in Figure 5a. Besides, in
Figure 5b, the total energy consumption of the plant
is discriminated in offices, TBS, and process lines based
on the optimal production programming for the plant.
Thus, according to these results, it can be observed that
the proposed EMPC tries to switch off the productions
programs at the moments of higher energy prices or

to switch to programs of lower energy consumption. In
contrast, the EMPC2 without including the energy prices
only decides to switch on/off the productions programs
once the demand of pieces has been completed. This
behaviour is also appreciated when an increment in the
energy prices happen during six hours (highlighted with a
red square), which was added to test the effectiveness of
the proposed control strategy under uncertain scenarios.
In concordance, during this event, the proposed controller
tries to switch to the production programs with lower
energy consumption, and only after the energy prices
returned to their typical values, the second program in
each process line was again executed.

Then, according to the production of pieces and the
energy consumed, the difference between the two tested
approaches (EMPC and EMPC2) concerning the total
revenues, energy costs, and profit per day are presented
in Figure 6. Based on these results, it is possible to
see that, by including the energy-price fluctuations into
the optimisation problem, energy costs can be reduced,
achieving reductions up to 3% per day. Besides, based on
the production programming, the revenues for the sale
of parts and the total energy costs, plant profit can be
increased in 2% per day, approximately. However, since
both controllers try to maximise the part production,
the incomes were quite similar using both strategies and
the main differences concern to the reduction in the
energy costs. Besides, although both controllers decide to
maximise the revenues for the sale of parts to mitigate the
energy costs, according to the constraints for the maximum
production of pieces, the excess in the production never
surpasses 10% of the real demand. Finally, a comparison
of the computational time spent by iteration using both
EMPC and EMPC2 approaches is presented in Figure 7.
Based on the sampling time and the maximum value of tc,
it is possible to conclude that the proposed control strategy
is suitable to be implemented in real time.

6. CONCLUSION

In this work, an optimisation-based control strategy has
been proposed to determine the optimal economic produc-
tion programming of a manufacturing plant. Based on the
marketplace demand and the energy-price fluctuations, the
proposed controller finds the suitable instants in which
the production programs must be executed to maximise
the plant profit without affecting the system productivity
since the production programs are not modified. Based on
the obtained results, energy costs can be minimised and
help maximising the plant profit taking advantage of time-
varying energy prices. Thus, using the proposed approach,
the decision makers should only determine the demand to
be satisfied per day, and the controller will decide how
to manage production processes. Then, to improve the
proposed approach, costs with fixed prices like such related
to the activation/deactivation of production programs and
the resources used by machines could be added into the
cost function.
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