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Abstract: Spectroscopic sensors provide on-line information about process variables and they
have been widely used for monitoring and control. These sensors measure the spectral responses
at a large number of wavelengths correlated with the process variables of interest. However the
spectral measurement can also be affected by external factors such as changes in temperature.
In order to estimate the process variables from the acquired spectrum it is necessary the use
multivariate calibration methods. Additive effects of external factors can be easily compensated
by standard calibration methods, but multiplicative effects require complex off-line calibration
procedures. This work, shows that this problem can be modeled by a non-linear state space
equation. In addition, it also proposes an on-line calibration method based on a state observer
for compensating multiplicative effects and at the same time estimating the desired process
variable from the spectrum. The convergence of the observer requires a uniform observability
condition to be satisfied. Simulation results obtained by using a spectral sensor for monitoring
a mixing process under time-varying temperature show the main features and potential of the
proposed approach. More complex spectral models for modeling the effect of temperature and

other variables can be considered and included in the proposed framework.
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1. INTRODUCTION

The advances in optoelectronics have increase the avail-
ability of low cost spectral sensors with high resolution
for a wide range of applications. Hyperspectral cameras
and spectrometers are just a few examples of these type
of sensors that have been applied at industrial level to
monitor thermal and chemical processes. Spectral based
sensors provide information about the radiation emitted,
reflected or transmitted by a sample at a given wavelength.
Typical spectral sensors are the Ultraviolet-Visible (UV-
VIS) and Near-infrared (NIR) spectrometers. These sen-
sors are routinely used in the industry for chemical anal-
ysis and process monitoring, (Bakeev., 2005); Chen et al.
(2011). In order to estimate process variables from the
spectral information, it is necessary to calibrate the sensor.
There are many linear and non-linear calibration methods.
See for instance the survey papers (Geladi, 2003), (Geladi
et al., 2004), (Sekulic et al., 1993) and the book written
my Marks and Workman (Mark and Workman Jr., 2007).
All these calibration methods are off-line and require a
set of data for calibration. The information provided by
these sensors can be used for process control Chen et al.
(2011). The use of model predictive control and Principal
Component Analysis for extracting the information from
the spectrum has been proposed in (Lin et al., 2009). In
(Sbarbaro, 2014) two approaches for integrating spectral
sensors into control structures are described. In order to
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deal with nonlinearities, neural networks models has been
also proposed in (Puebla, 1994).

Spectroscopic sensor signals can be affected by external
factor such as temperature, viscosity and optical effects.
These effects are in general nonlinear. In (Wiilfert et al.,
1998) different local and global Partial Least-Squares cali-
bration strategies are analyzed with respect to changes in
temperature. The results show that global models are con-
siderably better but at expanse of sensitivity. In addition,
this work also points out that high sensitivity calibration
models can be built if the temperature effect are explicitly
modeled. Pre-processing methods, such as Extended Mul-
tiplicative Signal Correction, can be used prior to the use
of linear calibration methods to eliminate the influence of
these effect on the analyzed spectrum,(Martens and Stark,
1991). Recently additional process analytical approaches
have been designed to cope with changes in temperature.
Extended loading space standardization and systematic
error prediction errors are two representative examples
(Chen et al., 2004) (Chen et al., 2011). Most of these
approaches are off-line and require informative calibration
data sets.

This work proposes the use of observers for estimating
the concentrations of components based on spectrum mea-
surements, and at the same time taking into account the
temperature variations of the sample. A mixing problem,
similar to the one described in (Johansen and Sbarbaro,
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2005), is considered to illustrate the application of the
proposed approach. It is demonstrated that the calibration
model of this problem can be described by a state-space
representation with a nonlinear output map. Observer
design for this structure has been widely studied. For
instance, in (Glaria et al., 2012) the design of observers
with nonlinear output maps satisfying some Liptchitz con-
ditions have been analyzed and a design procedure based
on LMIs is provided. In (Martino et al., 2004) the nonlinear
output map is modeled as polynomial function, and by a
simple transformation the system is represented as a time
varying linear system. Thus, the observer gain is given
in terms of a Riccati differential equation; which can be
solved on-line.

To the best of our knowledge, the proposed approach is one
of the few works addressing chemical analytical problems
from a control engineering perspective.

This work is organized as follows: Section 2 presents the
model describing the process dynamic and the spectro-
scopic sensors. Section 3 introduces an on-line calibration
strategy based on the information provided by the spectral
sensor. In section 4 the convergence of the observer is
analyzed. Section 5 illustrates, by means of simulation ex-
amples, the main characteristics of the proposed approach.
Finally, in section 6 some conclusions and future works are
given.

2. PROCESS AND SENSOR MODELING

Let us consider a process represented by a linear model

dx;
i Z%%
n
wi(t) =Y eia;(t),
j=1

where x; are state variables and w; are concentrations. The

coefficients c;;, a;; and b;; define the dynamical behavior

of the system. The manipulated variables wuy(t), ...un (t)

can change the concentrations w; to satisfy some control
objetives.

t) + sz‘ﬂj(t)’ m<n (1)

t=1,...m

According to the Beer’s law, the absorbance spectra of the
mixture can be expressed as linear combinations of the
absorbance contributions of all the constituents. Thus, the
relationship between the sensor output y(¢, A) € R can be
represented in terms of the following model:

y(t,A) = 2(1) Z wi(t)$i(A) +

where the variable A € A represents the spectral coor-
dinate as a wavelength value, A the wavelength interval,
¢i(A) is the absorbance of the i — th element, w;(t) is the
corresponding concentration, z(t) represents a multiplica-
tive effect and d(A) a baseline offset. This offset refers
to the spectral measured values when there is no light.
This value can be slightly different for each wavelength.
However, in practice a single average value is used to
compensate its effect. Since this effect is sensor specific,
the offset compensation is performed previously to any
process measurement.

dN), NeAt=0 (2)

In this work, a second order polynomial in terms of the
temperature of the sample is considered; i.e.

2(t) = aq + T (t) + asT?(t) (3)
where «; are calibrating factors.

Equations (1) and (2) can be written in condensed form
as

dx
i Ax(t) + Bu(t) 4)
w(t) = Cx(t)

() +d(N)

3
\) = ZaiT(t)@()\)w

where u = [ulv 55U ]Ta X = [xla'wl’n}TvW: [wla“>wm]T
and ®(A) = [p1(A)....om(N)] is a vector of absorbance
spectra. Matrices A € R"™™, B € R™, and C € R™*"
define the dynamic characteristic of the system.

Remark 1. More complex sensor models can also be con-
sidered in the same framework. For instance it can be
assumed that each absorbance spectrum depends on the
temperature; i.e. ¢;(A, T(t)). As suggested in Chen et al.
(2011) the following parametrization can be used to model
this dependency

$i(NT(1) = dio(N) + ¢in(NT(1) + dia(NT?(t)  (5)
In this model, each wavelength dependent function ¢;;(\),

7 =0,1,2 can be modeled by a parametric model, in terms
of basis function, as follows:

i (ATt chwjk (6)

where [; is the number of basis function ,;(A) and
cji represents a set of parameters to be identified. The
basis functions can be predefined by taking into account
mathematical considerations and the characteristic of the
absorbance spectrum; see for instance Dubrovkin (2018),
Kérné et al. (2008).

3. ON-LINE CALIBRATION METHOD

Calibration methods provide estimates of the concentra-
tions given the measured absorbance spectra. Thus the
calibration problem addressed in this work can be defined
as follows:

Given measurements of u(t), y(t,\) and T'(¢) estimate
the concentrations w(t) and the calibration factors «;,
i=1,2,3.

In order to estimate the concentrations and the unknown
parameters, the system equations are written in terms of
a new variable q;(t) = a;x(t), as in Martino et al. (2004),

dq;

0 Aq;(t) + a;Bu(t) (7)
y(t,\) = Z T Ht)®(A\)(Cai(t) + d(N)

The full system can then be described by three dynamical
equations and an output map.
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(fz_? — Ax(f) + Bu(t)
doy; .
- 1,2
dt 07 Z b 73 (8)
dd";" =Aq;(t) + osBu(t), i=1,2,3

3
y(t,A) = Z T 1PN Cay(t) + d(N)

By defining p =[x q1 a2 q3 o ay az]’ the system
equations (8) can be written as

dp _

= = Ap(Dp(t) + Byult) (9)
where
A0OO0OO O 0 0 B
0AO0O0But 0 0 0
00AO0 0 Bu®) 0 0
A,)=1000A 0 0 Bu(t)|B,=|0
0000 O 0 0 0
0000 O 0 0 0
0000 O 0 0 0
(10)
Co(t,\) = [0 ®(N\)C T(t)@(N\)C T*(t)®(A\)C 00 0]
(11)

Thus an observer can be built to estimate the extended
state of the time-varying system (9). The proposed time-
varying observer has the following standard structure:

B A1) + Byu(t)+
P()C,(1, V) (31, N) (1, )) (12)
§(6.3) = Cy(1, V(1) +d()
O = (Ay(t) ~ PO, (61 C,y (6, NP0+
P()(A, —~ PG, )Gyt )T +Q(0) (13)

where Q(t) > oI and P(0) are symmetric positive definite
matrices.

This observer will converge if sufficient conditions for per-
sistency of excitation are satisfied. This condition depends
on the structure of the system and the input signals; i.e.
u(t) and T(t).

Assumption 1. The time-varying pair (A,(t) C,(t, A))
and the input variables u(¢) and 7T'(¢) are such that there
exits positive constant v1, 72 and &, with 73 < 72 such
that

t+5
7l < / eArMC, (1, )T C, (1, NeArMdr < 4T (14)
¢

forallt >0

Remark 2. This assumption also implies the uniform ob-
servability of the time-varying system (9) and therefore the
boundness of P(t) is also ensured; i.e. their exist positive
constants v3 and -4 such that v3I < P(t) < v4I, Bucy
(1972).

4. CONVERGENCE ANALYSIS

The convergence analysis is based on standard Lyapunov
arguments and can be summarized in the following theo-
rem.

Theorem 1. The observer defined by (12) and (13) is
an asymptotic observer for system (9), if the pair
(Ap(t),C(t, N)) and u(t) and T'(t) satisfy Assumption 1.
Proof 1. The observation error is defined as e(t) = p(t) —
p(t) and error dynamic:

U (ay1) ~ PIIC, (LN Cyt N)elt)  (15)
Let V(t) be
V(t)=e®)TP(t) e(t) (16)

and taking the time derivative of V() along the error
dynamic trajectory (12)
av(t) _de(t)" T -1 9e(t)
= P(t) "e(t)+e(t) Pit) ——+
O e+ PO T

dt

o) U _ey)

Considering (13) we obtain

W — e 1(Ap(1) — PG, (107 Cyl1, ) P+
P(t) "' (Ap(t) = P(t)Cy(t, M) Cy(t, V) +
dP(t)~1 .
Y et
(18)
Using the derivative of the inverse of a matrix; i.e.
dP(t)"! AP
7 = PO ——P@) (19)
and replacing in (18)
T — otyrpe) |
P(1)(A,(t) = P(t)Cp(t, ) Cp(t, 1)+
(Aplt) ~ PG, (1,1 Cy (1, )P(1) ~ T2
[P(t) " e(t)
(20)
by using (13) it follows:
WO — —ewyPo@P@ o) (2D
Considering the bounds on P(t) and Q(t)
dav (t) Yo
5 < —7—4V(t) (22)
it follows o
V(t) < —e3'V(0). (23)

Using the upper bound of P(¢) we have that estimation
error can be upper bounded by V(t); i.e.
1
—e(t)Te(t) <V (1). (24)

Y4

Thus, equations (23) and (24) imply the observer asymp-
totic convergence.

5. SIMULATION RESULTS

In this section, the mixing of two liquid components
with different absorbance spectra, as shown in figure 1,
illustrates the main ideas presented in this work. The
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Fig. 2. Mixing process

mixing of these two components is carried out by the
aid of a static mixing tube as depicted in figure 2. The
resulting spectra is measured by a spectrophotometer at
the output of the mixing stage, where F'(t) represents the
main stream, w;(t) and uq(t) are the flow rates of each
component, T'(t) is the mixture temperature and y(¢, A) is
the measured spectra.

The sensor output is modeled as a linear combination of
the absorbance spectra of the components plus the effect
of temperature. The dynamics representing the transport
and mixing processes are modeled by an over-damped
linear system having four real poles. The parameters for
the temperature function are oy = 2, ap = 0.4 and
ag = 0.1. We also consider that the offset; i.e. d(\), has
been already compensated.

Step changes in the manipulated variables and a sinusoidal
variation in temperature were considered. The time varia-
tions of these variables are shown in figure 3. The spectral
response is depicted in figure 4, where the effect of changes
in the manipulated variables and temperature are mixed.

The matrix Q(¢) = 107*I was chosen to be a constant
diagonal matrix, P(0) = 10°T and the initial states of the
observer were zero. The time evolution of the estimated
concentrations and the parameters are shown in figure 5.
As seen in the graphs, the time variation of the input
variables and temperature ensures the convergence of
estimated concentrations and parameters converge to the
real. The exponential convergence of the state error is
depicted in figure 6.

6. FINAL REMARKS

Spectroscopic sensors can provide non-contact measure-
ments of key process variables through the spectral re-
sponse of a given sample. However, the spectral measure-
ments may be affected by both process and sensing condi-

t[min]

Fig. 3. Input variables and temperature.

300

Fig. 4. Spectral response

tions. Linear and nonlinear off-line calibration techniques
are used in practice to estimate the process variables.
This work has addressed the problem of on-line spectral
sensor calibration from a control system perspective. We
have shown that the calibration problem can be casted as
a state estimation problem associated to a time-varying
representation. Conditions for ensuring the asymptotic
convergence are based on the notion of uniform observ-
ability. This condition also represents a kind of persistent
excitation condition depending on the input variables.

The on-line characteristic of the proposed approach opens
the possibility of using this spectroscopic sensors where
it is difficult to perform extensive testing for building
calibration sets. In addition, the state space structure of
the observer makes its integration with control structures
straightforward.
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Fig. 6. State error evolution.

Simulation results considering the mixing of two compo-
nents have shown its feasibility. Further work will consider
more complex models for modeling the effect of temper-
ature and other variables. In addition, a discrete-time
version will be also implemented in a real-time mixing ex-
periments, for testing the performance under real process
conditions.
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