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Abstract: Information about the system state is obtained through noisy sensor measurements.
This data is coded and transmitted to a trusted user through an unsecured communication
network. We aim at keeping the system state private; however, because the network is not
secure, opponents might access sensor data, which can be used to estimate the state. To
prevent this, before transmission, we randomize coded sensor data by passing it through a
probabilistic mapping, and send the corrupted data to the trusted user. Making use of the data
processing inequality, we cast the synthesis of the probabilistic mapping as a convex program
where we minimize the mutual information (our privacy metric) between two estimators, one
constructed using the randomized sensor data and the other using the actual undistorted sensor
measurements, for a desired level of distortion–how different coded sensor measurements and
distorted data are allowed to be.
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1. INTRODUCTION

Technological advances have led to an alarming widespread
loss of privacy in society and vulnerabilities within critical
infrastructure. Adversaries might infer critical (private) in-
formation about the operation of systems from public data
available on the internet and unsecured/public servers
and communication networks. A motivating example for
this privacy loss is the data collection, classification, and
sharing by the Internet-of-Things (IoT), (Weber, 2010),
which is often performed without the user’s informed
consent. Another example of privacy loss is the potential
use of data from smart electrical meters by criminals,
advertising agencies, and governments, for monitoring the
presence and activities of occupants, (Rajagopalan et al.,
2011; Tan et al., 2013). These privacy concerns show that
there is an acute need for privacy preserving mechanisms
capable of handling the new privacy challenges induced
by a hyperconnected world, which, in turn, has attracted
the attention of researchers from different fields (e.g., com-
puter science, information theory, and control theory) in
the broad area of privacy and security of Cyber-Physical
Systems (CPSs), see, e.g., (Farokhi and Sandberg, 2017)-
(Sultangazin and Tabuada, 2019).
In many engineering applications, information about the
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state of systems, X, is obtained through sensor mea-
surements. Once this information is collected, it is sent
to a trusted server for signal processing and decision-
making purposes through communication networks. If the
communication network is public/unsecured, opponents
might access and estimate the system state. To avoid
this, before transmission, we randomize sensor data by
passing it through a probabilistic mapping, and send the
corrupted data to the trusted server. This mapping is
designed to hide (as much as possible) information about
the state X. Note, however, that it is not desired to overly
distort the original sensor data. We might change the data
excessively for its legitimate use. Hence, when designing
the probabilistic mappings, we need to take into account
the trade-off between privacy and distortion. As distortion
metric, we use the mean squared error between the original
sensor data, Y , and its randomized version, Z = G(Y ),
for some probabilistic mapping G(·). In this manuscript,
we follow an information-theoretic approach to privacy. As
privacy metric, we propose the mutual information, (Cover

and Thomas, 1991), I[X̂(Y ); X̂(Z)], for given pair of es-

timators of the state, X̂(Y ) and X̂(Z), obtained through
the original sensor data Y and the distorted Z = G(Y ),
respectively. We design the probabilistic mapping G(Y )
(characterized by the conditional probability distribution

pY |Z(y|z)) to minimize I[X̂(Y ); X̂(Z)], for a desired level
of distortion – how different quantized sensor measure-
ments and distorted data are allowed to be. We pose the
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Fig. 1. System Configuration.

problem of synthesising pY |Z(y|z) (the map G(·)) as a
convex program subject to linear constraints.
Randomizing data to increase privacy is common practice.
In privacy of databases, a popular approach is differen-
tial privacy (Ny and Pappas, 2014; Dwork, 2008), where
random vectors are added to the response of queries so
that private information in the database cannot be in-
ferred. Because it provides differential privacy guarantees,
Laplace noise is usually used (Dwork and Roth, 2014).
However, when maximal privacy with minimal distortion
is desired, Laplace noise is generally not the optimal so-
lution. This raises the fundamental question: for a given
allowable distortion level, what is the randomizing mecha-
nism achieving maximal privacy? This question has many
possible answers depending on the particular privacy and
distortion metrics being considered and the system config-
uration (Han et al., 2014)-(Wang et al., 2014). There are
also results addressing this question from an information
theoretic perspective, where information metrics – e.g.,
mutual information, entropy, Kullback-Leibler divergence,
and Fisher information – are used to quantify privacy
(Rajagopalan et al., 2011; Tan et al., 2013; Farokhi and
Sandberg, 2017; Farokhi et al., 2015; Farokhi and Nair,
2016; du Pin Calmon and Fawaz, 2012; Salamatian et al.,
2015; Belmega et al., 2015).
If the data to be kept private follows continuous prob-
ability distributions, finding the optimal additive noise
to maximize privacy (for any privacy metric and even
without considering distortion) is a difficult problem. If
a close-form solution for the distribution is desired, the
problem amounts to solving a set of nonlinear partial
differential equations which, in general, might not have a
solution, and even if they have it, it is hard to find (Farokhi
and Sandberg, 2017). This problem has been addressed
by imposing some particular structure on the considered
distributions or assuming the data to be kept private is
deterministic (Farokhi and Sandberg, 2017; Soria-Comas
and Domingo-Ferrer, 2013; Geng and Viswanath, 2014).
The authors in (Soria-Comas and Domingo-Ferrer, 2013;
Geng and Viswanath, 2014) consider deterministic data
sets and treat optimal distributions as distributions that
concentrate probability around zero as much as possible
while ensuring differential privacy. Under this framework,
they obtain a family of piecewise constant density func-
tions that achieve minimal distortion for a given level of
privacy. Farokhi and Sandberg (2017) consider the prob-
lem of preserving the privacy of deterministic databases
using constrained additive noise. They use the Fisher
information and the Cramer-Rao bound to construct a
privacy metric between noise-free data and the one with
the additive noise and find the probability density function

that minimizes it.
Most of the aforementioned papers propose optimal con-
tinuous distributions assuming deterministic data. How-
ever, in a cyber-physical-systems context, the inherent
system dynamics and unavoidable system and sensor noise
lead to stochasticity and thus existing tools do not fully
fit this setting. As we prove in this manuscript, under
some mild assumptions, we can cast the problem of finding
the optimal probabilistic mapping as a constrained convex
optimization.

2. NOTATION AND PRELIMINARIES

The symbol R stands for the real numbers, R>0(R≥0)
denotes the set of positive (non-negative) real numbers.
The symbol N stands for the set of natural numbers.
The Euclidian norm in Rn is denoted by ||X||, ||X||2 =
X>X. For a discrete random vector X with alphabet
X = {x1, . . . , xN}, xi ∈ Rm, m,N ∈ N, i ∈ {1, . . . , N},
we denote its probability mass function (pmf) as pX(x) =
Pr[X = x], x ∈ X , where Pr[B] denotes probability
of event B. We denote by ”Simplex” the probability
simplex defined by

∑
x∈X pX(x) = 1, pX(x) ≥ 0 for all

x ∈ X . We denote independence between two random
vectors, X and Y , as X |= Y , and the expected value of
X with E[X]. Given two numbers a and b, b > 0, the
notation amod b stands for a modulo b, and for a vector
a = (a1, . . . , an)>, ai ∈ R>0, i = 1, . . . , n, amod b =
(a1 mod b, . . . , an mod b)>.

2.1 Mutual Information

Definition 1. (Cover and Thomas, 1991) Consider discrete
random vectors, X and Y , with joint probability mass
function p(x, y) and marginal probability mass functions,
p(x) and p(y), respectively. Their mutual information
I[X;Y ] is defined as the relative entropy between the joint
distribution and the product distribution p(x)p(y):

I[X;Y ] :=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.

The mutual information I[X;Y ] between two jointly dis-
tributed vectors, X and Y , is a measure of the statistical
dependence between X and Y .

3. METRICS AND PROBLEM FORMULATION

Let X be the state of some stochastic process that must be
kept private. The alphabet and probability mass function
of X are denoted as X = {x1, . . . , xN}, xi ∈ Rnx , nx ∈ N,
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i ∈ {1, . . . , NX} and pX(x) = Pr[X = x], x ∈ X , respec-
tively. Information about the state is obtained through
ny sensors of the form Y = h(X), Y ∈ Rny , for some
(stochastic or deterministic) mapping h : Rnx → Rny

characterized by the transition probabilities pY |X(y|x),
x ∈ X , y ∈ Y, where Y = {y1, . . . , yNY

}, yi ∈ Rny ,
NY , ny ∈ N. Our privacy scheme discloses Z = G(Y ),
for some stochastic mapping G : Y → Y, instead of Y ,
so that, when releasing Z, the individual entries of X are
“hidden”. The mapping G(·) is characterized by the tran-
sition probabilities pZ|Y (z|y) = Pr[Z = z|Y = y], y, z ∈ Y,
i.e., Z = G(Y ) ∈ Y. Realizations of the vector Z are trans-
mitted over a public (unsecured) communication channel
to a remote station, see Figure 1. Note that even by
passing Y through G(·) before transmission, information
about X is directly accessible through the public channel.
Here, we aim at finding the mapping G(·) (the transition
probabilities pZ|Y (z|y)) that minimizes this information
leakage. Note, however, that we do not want to make Y and
Z overly different. By passing Y through G(·), we might
distort it excessively for practical purposes. Hence, when
designing the distribution pZ|Y (z|y), we need to consider
the trade-off between privacy and distortion. As distortion
metric, we use the mean squared error: E[||Z − Y ||2]. Let

X̂(Y ) and X̂(Z) denote estimates of X through Y and Z,
respectively. As privacy metric, we use the mutual infor-
mation I[X̂(Y ); X̂(Z)] for given pair of estimators X̂(Y )

and X̂(Z). Hence, we aim at minimizing I[X̂(Y ); X̂(Z)]

subject to E[||ZK − Ỹ K ||2] ≤ ε, for a desired level of dis-
tortion ε ∈ R>0, using as decision variables the conditional
probability mass function pZ|Y (z|y) = Pr[Z = z|Y = y],
y, z ∈ Y.

Remark 1. The number of optimization variables pZ|Y (z|y)
depends on the number of mass points, NY , in Y. We aim
at computing an optimal transition probability pZ|Y (z|y)
from each element of the alphabet of Y to every element of
the alphabet of Z, and because Y and Z take values from
the alphabet Y, we have (NY )2 optimization variables to

minimize I[X̂(Y ); X̂(Z)]. That is, the number of variables
grows quadratically with the cardinality of Y. Thus, for
alphabets with a large number of elements, the number
of variables could lead to computationally untractable
optimization problems. A solution to this dimensionality
issue is to impose some structure on pZ|Y (z|y) to reduce
the variables. We propose a systematic way to achieve this
using additive random vectors. We impose structure to
the probabilistic mapping G(·) (see Figure 1) so that the
number of variables in pZ|Y (z|y) is reduced to NY .

The proposed G(·) consists of the following three objects:
1) a coding function α : Y → {0, 1, . . . , NY − 1} =: Ȳ that
indexes each element of Y; 2) a discrete random vector V ,
independent of Y , with alphabet V := {0, 1, . . . , NV − 1},
NV ∈ N, and probability mass function pV (v), v ∈ V; and
3) a decoding function β : Ȳ → Y. We characterize each
of these objects before introducing the mapping G(·). The
indexing (coding) function α : Y → Ȳ is defined as

α(ζ) :=


0, if ζ = y1,

...
NY − 1, if ζ = yNY

.

(1)

For given Y ∈ Y and corresponding α(Y ) ∈ Ȳ, we
add a realization of the process V ∈ {0, 1, . . . , NV − 1}
to randomize α(Y ), and project the sum onto the ring
{0, 1, . . . , NY − 1}, i.e., (α(Y ) + V ) modNY ∈ Y, where
modNY denotes modulo NY . We project α(Y ) + V onto
Y to ensure that Z has the same alphabet as Y . Then, we
decode the sum using the function β : Ȳ → Y defined as

β
(
ξ) :=


y1, if ξ = 0,

...
yNY

, if ξ = NY − 1.

(2)

Note that β(α(ζ)) = ζ and α(β(ξ)) = ξ. We construct the
mapping G : Y → Y, Y 7→ G(Y ), combining (1) and (2):

G(Y ) := β
(
(α(Y ) + V ) modNY

)
. (3)

Since α(·) and β(·) are fixed injective functions, we can
only use the probability mass function pV (v), v ∈ V,

to minimize I[X̂(Y ); X̂(Z)]. In what follows, we formally
present the optimization problem we seek to address.

Problem 1. Given the probability distribution pX,Y (x, y),
x ∈ X , y ∈ Y, desired distortion level ε ∈ R≥0, a pair of

estimators X̂(Y ) and X̂(Z), and the probabilistic mapping
(1)-(3), find the probability mass function pV (v) solution
of the optimization problem:

min
pV (v)

I[X̂(Y ); X̂(Z)],

s.t. E[||Z − Y ||2] ≤ ε,
V |= Y, and pV (v) ∈ Simplex .

(4)

Note that in Problem 1, the optimization is performed for a
given pair of estimators. We could select a particular pair
of estimators and pose the problem based on this pair.
However, it is not realistic to assume that we know the
estimator that an opponent would use. We can, however,
look for an upper bound on I[X̂(Y ); X̂(Z)] that holds

for any pair of estimators, X̂(Y ) and X̂(Z), and then
minimize this upper bound over pV (v) subject to the
distortion constraint E[||Z − Y ||2] ≤ ε, at the price of
suboptimality of the solution.

4. SUBOPTIMAL SOLUTION TO PROBLEM 1

In this section, we provide a detailed formulation of a
relaxed version of Problem 1. We relax the problem by
working with an upper bound on the cost I[X̂(Y ); X̂(Z)]
obtained using the data processing inequality.

Proposition 1. Let X̂(Z) = hZ(Z) and X̂(Y ) = hY (Y ) be
estimates of X through Z and Y , respectively, for some
deterministic functions hZ , hY : Rny → Rnx . For any pair
of functions hZ(·) and hY (·), I[X̂(Y ); X̂(Z)] ≤ I[Y ;Z].
Proof : The assertion follows from the data processing
inequality, (Cover and Thomas, 1991).

Remark 2. Proposition 1 has an interesting interpretation:
for any pair of estimators X̂(Z) = hZ(Z) and X̂(Y ) =
hY (Y ) that can be constructed using Y and Z, respec-
tively; the mutual information between them is always
upper bounded by I[Y ;Z] independently of the choice of
estimators. This implies that by minimizing I[Y ;Z], we

are effectively decreasing the information I[X̂(Y ); X̂(Z)].
Indeed, the tightness of this bound depends on the partic-
ular choice of estimators.
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In the following lemma, we write the cost function I[Y ;Z]
in terms of the optimization variables pV (v), and prove
that I[Y ;Z] is convex in pV (v).

Lemma 1. I[Y ;Z] is a convex function of pV (v) for given
pY (y), and can be written compactly as

I[Y ;Z] =
∑
y∈Y

∑
z∈Y

pZ|Y (z|y)pY (y) log
pZ|Y (z|y)

pZ(z)
, (5a)

pZ|Y (z|y) = pV
(
(α(z)− α(y)) modNY

)
, (5b)

pZ(z) =
∑
y∈Y

pZ|Y (z|y)pY (y). (5c)

Proof : The expression on the right-hand side of (5a)
follows by inspection of Definition 1, and the fact that
the joint and marginal distributions can be written as
pZ,Y (z, y) = pZ|Y (z|y)pY (y) (chain rule) and pZ(z) =∑

y∈Y pZ,Y (z, y) =
∑

y∈Y pZ|Y (z|y)pY (y) (marginaliza-

tion), respectively. Convexity of (5a) with respect to
pZ|Y (z|y), for given pY (y), follows from (Cover and
Thomas, 1991, Theorem 2.7.4). However, our optimiza-
tion variables are pV (v) and not pZ|Y (z|y). By definition,
pZ,Y (z, y) = Pr[Z = z, Y = y], z, y ∈ Y. Using (3), we can
expand Pr[Z = z, Y = y] as follows

Pr[Z = z, Y = y]

= Pr[β
(
(α(Ỹ ) + V ) modNY

)
= z, Y = y]

= Pr[V =
(
α(z)− α(y)

)
modNY , Y = y]

(a)
= Pr[V =

(
α(z)− α(y)

)
modNY ] Pr[Y = y]

(b)
= pV

((
α(z)− α(y)

)
modNY

)
pY (y),

where (a) follows from independence between V and Y
and (b) by construction of pV (v) since pV (v) = Pr[V = v],
v ∈ V. It follows that pZ|Y (z|y) = pZ,Y (z, y)/pY (y) =

pV
((
α(z) − α(y)

)
modNY

)
and thus (5b) holds true. It

remains to prove that I[Y ;Z] is convex in pV (v) for
given pY (y). We have concluded convexity of I[Y ;Z] with
respect to pZ|Y (z|y) above. Hence, because pZ|Y (z|y) =

pV
((
α(z)−α(y)

)
modNY

)
and pV

((
α(z)−α(y)

)
modNY

)
is a linear transformation of pV (v) (note that pV

((
α(z)−

α(y)
)

modNY

)
= pV (v) for

(
α(z)−α(y)

)
modNY = v and

zero otherwise), the cost I[Y ;Z] is convex in pV (v) because
convexity is preserved under affine transformations, (Boyd
and Vandenberghe, 2004). �

In light of Proposition 1 and Remark 2, from now on, we
focus on minimizing the upper bound I[Y ;Z]. By Lemma
1, I[Y ;Z] is convex in our decision variables pV (v) for
given pY (y). Then, if the distortion constraint, E[||Z −
Y ||2] ≤ ε, is convex in pV (v), we could minimize I[Y ;Z]
efficiently using off-the-shelf optimization algorithms.

Lemma 2. E[||Z − Y ||2] is a linear function of pV (v) for
given pY (y), and can be written compactly as

E[||Z − Y ||2] =
∑
y∈Y

∑
z∈Y

pZ,Y (z, y) (z − y)2 , (6a)

pZ,Y (z, y) = pV
(
(α(z)− α(y))modNY

)
pY (y). (6b)

Proof : Define d(Z, Y ) := ||Z−Y ||2. The function d(Z, Y )
is a deterministic function of two jointly distributed ran-
dom vectors, Z and Y , with joint distribution pZ,Y (z, y) =
pZ|Y (z|y)pY (y). Therefore, see, e.g., (Ross, 2006) for de-

Coding Decoding

Fig. 2. Schematic diagram of the mapping G(k, ·).

tails, E[d(Z, Y )] =
∑

y∈Y
∑

z∈Y pZ,Y (z, y)d(z, y), and, by

(5b), pZ|Y (z|y) = pV
(
(α(z)−α(y)) modNY

)
(see the proof

of Lemma 1 for details). It follows that E[d(Z, Y )] is given
by (6) and because pZ|Y (z|y) is a linear transformation of
pV (v), E[d(Z, Y )] is linear in pV (v) for given pY (y). �

Hence, by Lemma 1 and Lemma 2, given the probabilities
pY (y) of Y , we can numerically minimize I[Y ;Z] con-
strained to E[||Z − Y ||2] ≤ ε. In the following theorem,
we summarize the discussion of this section.

Theorem 1. Given pY (y), desired distortion level ε ∈ R≥0,
and the mapping (1)-(3), the probability mass function
pV (v) that minimizes I[Y ;Z] subject to the distortion
constraint, E[||Z − Y ||2] ≤ ε, can be found by solving the
following convex program:

min
pV (v)

∑
y∈Y

∑
z∈Y

pZ|Y (z|y)pY (y) log
pZ|Y (z|y)

pZ(z)
,

s.t.
∑
y∈Y

∑
z∈Y

pZ|Y (z|y)pY (y)(z, y) (z − y)
2 ≤ ε,

pZ|Y (z|y) = pV
(
(α(z)− α(y)) modNY

)
,

pZ(z) =
∑
y∈Y

pZ|Y (z|y)pY (y),

and, pV (v) ∈ Simplex .

(7)

Proof: Theorem 1 follows from Lemma 1 and Lemma 2.
�

5. SIMULATIONS

Consider sensors Y ∈ Y ⊂ R4 on the alphabet:

Y =


y1y1y1
y1

 ,
y2y1y1
y1

 ,
y1y2y1
y1

 ,
y2y1y2
y1

 , . . . ,
y1y2y2
y2

 ,
y2y2y2
y2


 , (8)

with y1 = 13.42, y2 = 14.03, and |Y| = 16. For all
the subsequent figures, we index the mass points of the
alphabets Y and V following the ordering logic in (8).
For instance, for Y in (8), (y1, y1, y1, y1)> is indexed as
1, (y2, y1, y1, y1)> as 2, (y2, y2, y2, y2)> as 16, and so forth.
The probability mass function, pY (y), of Y is depicted in
Figure 3. We let the distorting random vector V (see (1)-
(3)) have an alphabet V with |V| = 16 given by

V =


0

0
0
0

 ,
1

0
0
0

 ,
0

1
0
0

 ,
1

0
1
0

 , . . . ,
0

1
1
1

 ,
1

1
1
1


 . (9)

We consider the distortion bounds ε = ∞, 0.5, 0.2. The
bound ε =∞ means that the optimization problem in (7)
is solved without considering the distortion constraint. In
Figure 4, we show the evolution of the optimal probability
distribution p∗V (v) solution to (7) for ε = ∞, 0.5, 0.2.
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Fig. 3. Probability mass function pY (y), y ∈ Y.

Note that the optimal p∗V (v) in Figure 4(a) (for ε = ∞)
is uniform. Uniform p∗V (v) makes the input, Y , and the
output, Z, completely independent at the price of large
distortion. On the other hand, see Figure 4(c), as ε → 0,
the optimal distribution p∗V (v) concentrates most of its
probability at the first mass point (the zero vector, see (9)).
This is intuitive as the zero vector leads to no distortion.
Therefore, p∗V (v) varies from a uniform distribution (no
distortion constraint) and a single mass point at the zero
vector (no distortion allowed). In Figure 4(b), we show the
optimal distribution for finite and larger than zero ε. In
this case, the optimal distribution follows some nontrivial
pattern that depends on pY (y). The resulting optimal
cost I∗[Y ;Z] is given by I∗[Y ;Z] = 0, 0.20, 1.01 bits, for
ε = ∞, 0.5, 0.2, respectively. Compare these costs against
I[Y ;Y ] = H[Y ] = 2.2 bits (self-information), where
H[·] denotes entropy (Cover and Thomas, 1991). The
entropy H[Y ] characterizes the information that would be
disclosed if no privacy preserving mapping was in place.
Note that for ε = ∞ (uniform optimal distribution in
Figure 4(a)) the cost I[Y ;Z] is zero (because Y and Z
are independent in this case). As ε → 0 (no distortion
allowed), I[Y ;Z]→ H[Y ].

6. CONCLUSIONS

We have presented a mathematical framework built
around information theory and convex optimization to
deal with privacy problems raised by the use of pub-
lic/unsecured communication networks to transmit sensor
data. In particular, to prevent adversaries from obtaining
an accurate estimate of the state, we have provided tools
(in terms of convex programs) to optimally randomize (via
some probabilistic mappings) sensor data before trans-
mission for a desired level of distortion. That is, given
a maximum level of distortion tolerated by a particular
application, we give tools to synthesize probabilistic map-
pings that maximize privacy (in the sense of hiding the
state as much as possible) while satisfying the distortion
constraint on the original sensor data. We have presented
simulation experiments to show the performance of our
tools. Note that we have found some nontrivial distort-
ing probability distributions that highly depend on the
probability distribution of the sensor data and the desired
distortion level.
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