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Abstract:
This study analyses the relationship between functional electrical stimulation (FES) and the
induced torque for elbow flexion. The aim is to develop an FES-torque model that is simple
to implement and understand, and is easily invertible so that the required FES for a desired
assistive torque can be determined to enable control by FES. For accurate control, the FES-
torque model must also be adaptable to time-varying behaviour of the muscle such as fatigue.
The proposed FES-torque model is a sigmoid function, and a particle filter is implemented to
estimate the change in parameters of the sigmoid function over time. The results show that the
particle filter is successfully able to adapt to changes in the FES-induced torque and can be used
to improve the estimate of FES-induced torque, with an overall average RMS error of 0.24 N.m
or 7.85%. The improved FES-torque estimate allows for simple and more effective control of
FES assistance and better fatigue management.
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1. INTRODUCTION

Stroke is one of the leading causes of disability worldwide.
Patients are able to regain strength and functionality by
doing frequent exercise, however, it may not be possi-
ble to always have a physiotherapist to guide a patient
through the exercises. Recovery from stroke can be im-
proved using exoskeletons to assist with limb movement,
as exoskeletons can automate the movement and increase
exercise frequency. Further improvements for recovery can
be obtained by augmenting exoskeletons with functional
electrical stimulation (FES). FES is the application of
electrical current to a muscle to elicit a contraction. As
the stimulation directly activates the muscle, FES is an
effective method to develop muscle strength and sensory
awareness. The biggest disadvantage is that FES can cause
fatigue. However, this fatigue can be compensated using a
motor-driven exoskeleton. With accurate control of FES,
an exoskeleton can balance the assistance provided by
electric motors and FES to provide the benefits of both
methods, suit the patient’s needs, and manage fatigue.

However, FES can be difficult to control precisely as the
muscle response is non-linear and time-varying. There have
been simple methods to model and control FES. Rong
et al. (2012) set the FES as a linear function of the
measured electromyography (EMG), and Rouhani et al.
(2017) used a first order transfer function to estimate
torque from the FES amplitude. Other methods include
adaptability to the time-varying behaviour, such as iter-
ative learning control (Xu et al., 2014)(del Ama et al.,
2014)(Ha et al., 2016), a Kalman filter with a forgetting

factor (Zhang et al., 2011)(Qin Zhang et al., 2013), and
a NARX-RNN approximator (Li et al., 2012). In Li et al.
(2016) the Kalman filter and NARX-RNN approximator
are compared. Both methods aim to predict the FES-
induced torque without a sensor. However, there is still
some error, and the error can increase over time, requiring
recalibration with the sensor.

An issue for many of the control methods is fatigue man-
agement. In previous studies it is common to see that as
FES-induced fatigue occurs, and the resulting torque de-
creases, the stimulation intensity is increased to maintain
the desired torque. Increasing the stimulation intensity
can cause more fatigue, which will shorten therapy time
and may cause pain for the subject. It is more useful
to estimate the FES-induced torque while accounting for
changes in muscle behaviour due to fatigue, and to use
this to reduce the stimulation intensity for better fatigue
management and extended therapy time.

The aim of this study is to develop a simple FES-torque
model that it is easy to use, easy to derive, and can be
invertible, while being able to account for variability in the
FES response. This study is part of a larger project to de-
velop a hybrid exoskeleton that combines an electric motor
with FES. An accurate FES-torque model allows for inde-
pendent control and accurate balancing of FES and motor
assistance to suit a patient’s needs. A hybrid exoskeleton
employing FES and an external actuator would also allow
for better fatigue management, as the FES assistance can
be reduced and actuator assistance increased to allow the
patient to recover and extend the therapy time. The reason
for implementing torque control, as explained in Chatfield
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Fig. 1. A single stimulation wave, with a pulse width of
approximately 135 microseconds.

Fig. 2. The stimulation pattern applied during one cycle.
There is a 10 second rest between each stimulation.

et al. (2019), is so that the assistance provided to a person
is directly based on their strength and capabilities for
assist-as-need control. In addition, an FES-torque model
will make it easier to balance FES and motor effort.

To achieve this FES-torque model a logistic function (sig-
moid curve) is proposed, and a particle filter similar to that
in Chatfield et al. (2018) and implemented in Chatfield
et al. (2019) is used to account for the variability in the
muscle response to FES. Section 2 describes the methodol-
ogy of the testing, Section 3 describes the selection of the
FES-torque model, Section 4 details the implementation
of the particle filter, followed by results in Section 5,
discussion in Section 6, and the conclusion in Section 7.

2. METHODOLOGY

The exoskeleton developed and described in Chatfield
et al. (2018) and Chatfield et al. (2019) is used for this
study, with the motor kept stationary. A series elastic ac-
tuator (SEA) is formed by adding an elastic polyurethane
part to the motor shaft for compliance. During the ex-
periment, the subject wears the exoskeleton and FES is
applied on the biceps brachii of the subject, resulting
in dynamic elbow flexion. The stimulation pulse width,
relative displacement across the SEA, and the elbow angle
are recorded to determine the torque exerted across the
SEA, the torque about the elbow due to gravity, and
inertial torque, caused by the FES. The commanded stim-
ulation intensity is sent from an STM32F4 microcontroller
at 100 Hz. The raw angular measurements are sampled
at 1 kHz and averaged at 100 Hz. The data recorded is

analysed offline, which involves model calibration (Section
3) and applying the particle filter to estimate FES-induced
torque (Section 4).

The circuit described in McKenzie et al. (2018) is used to
deliver the stimulation through surface electrodes placed
over the biceps brachii. The electrodes are 40 mm by
40 mm Verity Medical electrodes (model number VS4040).
The biphasic FES waveform produced by the hardware is
shown in Fig. 1. For this study, the amplitude is fixed at
approximately 6 mA, the pulses occur at 50 Hz, and the
pulse width is varied.

The commanded pulse width cycle is shown in Fig. 2. As
can be seen the pulse width gradually increases. When
increasing the stimulation, the pulse width increments in
twenty steps, whereas when decreasing the stimulation,
the pulse width decrements in five steps. The pulse width
increments (decrements) every 150 milliseconds, so a stim-
ulation period is approximately 3 seconds. The pulse width
for each stimulation is gradually incremented to make the
stimulation more comfortable for the subject, rather than
to apply a sudden high stimulation intensity from rest. The
set pulse width limit for a stimulation depends on how far
through the cycle the subject is. What is not shown in Fig.
2 is that after a completed stimulation (when the pulse
width is reset to zero) there is a rest time of 10 seconds
before the FES is applied again. At the end of the cycle
there is a 20 second rest period, and then the next cycle
with the same stimulation pattern as in Fig. 2 is applied.

The subjects are three healthy males. This study was
approved by the University of Canterbury Human Ethics
Committee (HEC 2019/26).

3. MODEL DEVELOPMENT

The aim for the FES-torque model is that it must be par-
simonious and easily invertible. During initial testing (not
shown) it was observed that the FES-torque relationship
was similar to a sigmoid, or the logistic function. A similar
trend can be seen in Kirsch et al. (2017) when increasing
the stimulation current. The logistic function also follows
behaviour described in Kirsch et al. (2017) with minimal
change in the produced torque as the stimulation intensity
increases after a certain point. Additionally, Rouhani et al.
(2017) use a transfer function that depends on an expo-
nential term, similar to the logistic function. The logistic
function proposed for this work is

τF =
a

1 + e−b(PW−d) + c, (1)

with τF being the FES-induced torque (N.m), PW is the
pulse width delivered (µs), d is the pulse width at which
the midpoint of the logistic function occurs (µs), a is the
maximum torque with zero offset (N.m), b describes the
gradient of the curve, and c is the torque offset (N.m).
Knowing the parameters, (1) can be rearranged as

PW =
− ln( a

τdes−c − 1)

b
+ d (2)

to obtain the pulse width for a desired torque (τdes). A
calibration stage is performed by taking a single pulse
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width cycle and the FES-induced torque during that cycle,
and determining the parameters of (1) that fit the cycle
data. The estimated parameters are the basis of the initial
hypotheses of the particle filter.

4. PARTICLE FILTER

The model developed in (1) does not account for the
time-variability of FES-induced torque, and there can
still be error and variability in the estimated torque. A
particle filter is proposed to improve the estimate of FES-
induced torque. A particle filter is a non-parametric Bayes
filter that considers a motion model, a sensor model, and
their variances to improve the estimate of the system’s
states (Thrun et al., 2002). The particle filter can be used
for non-linear and time-varying systems. A particle filter
was previously developed in Chatfield et al. (2018) and
implemented in Chatfield et al. (2019) to improve the
estimate of voluntary torque exerted by a subject during
elbow flexion. In this study a different approach is taken as
the particle filter finds the parameters in (1) that provide
the best estimate of the FES-induced torque.

The particle filter generates of number of hypotheses
(particles). In this study there are N = 50 particles.
Particle m at time t is described as

x
[m]
t =

[
a
[m]
t b

[m]
t c

[m]
t d

[m]
t

]T
, (3)

a vector with four states that represent a hypothesis of the
FES-torque model parameters. The initial particle states
are spread around the parameters found in the model
calibration stage in Section 3. The motion model is

x
[m]
t = x

[m]
t−1 +



N (0, 0.01)

N (0, 0.00001)

N (0, 0.01)

N (0, 0.01)

 . (4)

The motion model updates each particle by adding process
noise to each state, which in this study is considered
as normally distributed noise N (µ, σ) with a mean of
µ and standard deviation σ. The standard deviation for
each particle state was experimentally determined, and
the mean was set as zero. It was noticed that when (1) is
calibrated at different times during the exercise, the value
for b changes within approximately 10%, hence why it is
given a much smaller process noise than the other particle

states. The FES-induced torque for each particle (h
[m]
t ) is

estimated by

h
[m]
t = α(h

[m]
t−1 +N (0, σh)) + (1− α)τ

[m]
F,t , (5)

a weighted sum of the previous torque estimate (h
[m]
t−1)

for the particle and the estimate (τ
[m]
F,t ) calculated when

substituting the particle’s states into the logistic function
(1). To account for error between the current and previous
torque estimate, normally distributed noise is added to the
previous estimate. In this study σh = 0.2 and α = 0.5.

The particle filter ranks each particle using a sensor
model.The sensor measurement z is the same as in Chat-
field et al. (2018) as

z = τg − τa, (6)

representing the difference between the torque about the
elbow due to gravity (τg) and the torque across the series

elastic actuator (τa). The weight of a particle (w
[m]
t ) is

calculated by

w
[m]
t = w

[m]
t−1fv(zt − h

[m]
t ), (7)

where the particle’s previous weighting (w
[m]
t−1) is multi-

plied by the sensor’s probability density function fv, which
compares the estimated torque for the particle calculated
by (5) to the sensor measurement. The probability density
function for the sensor noise is described by

fv(u) =
λ

σv
√

2π
e
−(λ|u|+ u2

2σ2v
)
, (8)

with λ = 0.5 and σv = 0.2. The probability density
function represents a combined Gaussian distribution and
exponential distribution. In this study the motor is station-
ary and inertia has minimal impact on the overall torque,
so the sensor model is a reasonable estimate of the total
torque. To account for the error and variance the sensor
model will have when the motor is moving, and when
the subject is voluntarily moving their arm, the sensor
model has a wider distribution compared to a Gaussian
distribution.

Finally, the FES-induced torque estimated by the particle
filter (τPF,t) is calculated by

τPF,t =

N∑
n=1

w
[n]
t h

[n]
t

N∑
n=1

w
[n]
t

(9)

and the best model parameters (x
[PF]
t ) are estimated by

x
[PF]
t =

N∑
n=1

w
[n]
t x

[n]
t

N∑
n=1

w
[n]
t

. (10)

When the particles are resampled (using sequential impor-

tance resampling) they are generated closer to x
[PF]
t and

their weights are reset to one. The estimated parameters

in x
[PF]
t can change rapidly and appear noisy, so to provide

a smoother transition in parameters for easier control the

moving average (x
[avg]
t ) of x

[PF]
t is taken over the previous

L = 1000 estimates, shown as

x
[avg]
t =

L−1∑
i=0

x
[PF]
t−i

L
. (11)
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Fig. 3. FES-induced torque from the biceps for Subject 2,
Spearman correlation R = 0.98.

Table 1. Average RMS error between the FES-
torque model (1) and measured torque.

Subject / Trial Average
1/1 1/2 2/1 3/1

RMSE (N.m) 0.22 0.12 0.23 0.38 0.24
RMSE (%) 7.69 6.42 7.12 10.19 7.85

The parameters in x
[avg]
t are then used to estimate the

FES-induced torque according to (1).

5. RESULTS

Figure 3 shows how well the logistic function described in
(1) fits to FES-torque data captured during the model cal-
ibration stage for Subject 2. The logistic function provides
a reasonable fit, however, it can be observed in Fig. 3 that
there is variance in the FES-torque relationship.

Figure 4, Fig. 5, and Fig. 6 show trials for the three
subjects with the measured torque, the particle filter
estimate of the FES-induced torque, and the FES-induced
torque estimated by the model (1) and the parameters
from (11). Fatigue can be observed when the FES-induced
torque decreases over time, and the particle filter and FES-
torque model are able to adapt to the change in muscle
response, improving the estimate of FES-induced torque.
The adaptability can also be observed in Fig. 7, which

shows the FES-torque model parameters, x
[avg]
t , over time.

The RMS errors for the entire exercise for four trials are
shown in table 1. A Monte Carlo approach was taken by
applying the particle filter over 1000 times to each trial
data set to calculate the average error. The RMS error
is the difference between the measured torque and the
FES-torque model, and the RMS error is also shown as a
percentage of the maximum measured torque to compare
to other research. The average RMS error across the trials
was found to be 0.24 N.m or 7.85%.

6. DISCUSSION

The results show that the particle filter can adapt to the
time-variable behaviour of the muscle response to FES,
and can be used to determine changes in the FES-torque
model parameters over time to improve the estimate of
FES-induced torque. The improved FES-induced torque
estimate allows for more accurate control of the stimula-

tion for a desired assistive torque and better fatigue man-
agement. The average RMS error for all trials was found
to be 7.85%, which is comparable to recent studies such as
Li et al. (2016). However, previous studies mostly focus on
lower-limb muscles that can produce larger torques or they
focus on isometric contractions. As this study considered
dynamic elbow flexion, the particle filter may need to be
tested on lower-limb muscles and for isometric contractions
for a direct comparison to previous studies.

A moving average of the parameters was used to make
the control of FES for a desired torque easier for later
research. The particle filter could cause a rapid change
in the estimate of a model parameter, which if significant
enough could cause a sudden change in the stimulation
provided. This was also considered when selecting the
process noise added to the particles while still allowing
the particle filter to be adaptable to changes in torque.
Taking the moving average slows the rate of change of
the parameters, which provides a more stable stimulation
for a desired assistive torque. The particle filter is robust
to noise added to the sensor model, and using a moving
average of the parameters further increases the robustness
of the FES-torque model to noise. Further work could
modify the length of the moving average or the process
noise in (4) to depend on the rate of fatigue, which could
be estimated by analysing the change in model parameters
or torque. If the subject fatigues rapidly, then the process
noise can be increased for the particle filter to converge to
the change in torque faster, or the length of the moving
average can be reduced to allow the model parameters to
change faster.

With the improved FES-torque model, the assistance
provided by FES and an electric motor on a hybrid
exoskeleton can be more accurately balanced. If a patient
is fatiguing, then the FES can be reduced and motor
assistance increased to achieve the same total assistive
torque for the movement, allowing the patient to recover
and extend the therapy time. There is still error in the
FES-torque prediction, which could result in too much
or too little total assistance provided to a person. A
possible solution is to incorporate the error in the FES-
torque prediction into the motor control. The error can be
approximated as the difference between the FES-torque
model and the particle filter torque estimate, since the
particle filter will be closer to the true torque. The ratio of
motor to FES assistance would change slightly from what
was initially set, but this would not be a significant change.
The combined motor and FES assistance would be equal
to the torque the person needs to complete the movement,
achieving assist-as-need control. Another consideration is
that the rate of change of motor assistance can also depend
on the fatigue rate of the FES-induced torque.

The particle filter is useful to account for fatigue and will
be important for balancing motor and FES assistance.
However, fatigue management could possibly be improved
if the onset of fatigue can be detected earlier. It is
suggested in De Luca (1984) that a change in amplitude
and frequency spectrum of EMG may indicate the onset
of fatigue. This requires more research to verify, but it
could be another method to reduce FES effort and increase
motor assistance earlier to reduce or delay fatigue.
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Fig. 4. FES-Torque estimation for Subject 1, Trial 2.

Fig. 5. FES-Torque estimation for Subject 2, Trial 1.

Fig. 6. FES-Torque estimation for Subject 3, Trial 1.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16177



Fig. 7. Averaged FES-torque model parameters for Subject 1, Trial 2.

7. CONCLUSION

This study showed a simple logistic model can be used
to estimate FES-induced torque, with a particle filter to
update the model parameters to track the time-varying
muscle response. The model can be easily inverted to
determine the required stimulation for a desired assistive
torque from FES. Future work will implement the FES-
torque model into a hybrid assist-as-need controller for im-
proved balancing of motor and FES assistance and better
fatigue management, leading to improved rehabilitation.
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