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Abstract:
Starting from pioneering works by Lur’e, Popov and Zames, global stability theory for nonlinear
control systems has been primarily focused on systems with only one equilibrium. Global
stability criteria for other kinds of attractors (such as e.g. infinite sets of equilibria) are not well
studied and typically require special tools, primarily based on the Lyapunov method. Analysis
of stability becomes especially complicated for infinite-dimensional dynamical systems with
multiple equilibria, e.g. systems described by delay or more general convolutionary equations.
In this paper, we propose novel stability criteria for infinite-dimensional systems with periodic
nonlinearities, which have infinite sets of equilibria and describe dynamics of phase-locked
loops and other synchronization circuits. Our method combines Leonov’s nonlocal reduction
technique with the idea of Popov’s “integral indices” and allows to obtain new frequency-domain
conditions, ensuring the convergence of every solution to one of the equilibria points.
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1. INTRODUCTION

In spite of enormous progress in nonlinear control (Khalil,
1996; Kokotović and Arcak, 2001; Fradkov et al., 1999),
the results on global stability and stabilization prevailing
in the literature are primarily concerned with stability of
the single equilibrium. Among systems with multiple equi-
libria, the most studied are discontinuous systems arising
e.g. in sliding mode control (Gelig et al., 2004; Utkin, 1992)
and systems with cylindric phase space (Leonov et al.,
1996a; Kudrewicz and Wasowicz, 2007) that arise as feed-
back interconnections of linear time-invariant systems and
periodic nonlinearities. Such systems describe pendulum-
like mechanical systems, electrical machines (Stoker, 1950)
and synchronization circuits such as phase-locked loops
(PLL) (Margaris, 2004; Best, 2003; Leonov et al., 2015).
The global stability (called also gradient-like behavior) of
a system with non-unique equilibrium is typically under-
stood as the convergence of every solution to one of the
equilibria points. Most of the existing results on global
stability are confined to ordinary differential equations and
exploit specially designed Lyapunov functions. The direct
extension of these results to infinite-dimensional systems
such as e.g. semigroup equations (Gil, 1998) remains a
non-trivial open problem.

At the same time, infinite-dimensional systems with pe-
riodic nonlinearities can be examined by the techniques

? The work was supported by Russian Science Foundation grant
16-19-00057 held by the Institute for Problems of Mechanical Engi-
neering of the Russian Academy of Sciences (IPME RAS).

stemming from the Popov’s method of “a priori inte-
gral indices” (Popov, 1973; Rasvan, 2006), later devel-
oped into the method of integral quadratic constraints
(IQCs) (Megretski and Rantzer, 1997; Yakubovich, 2000,
2002). Compared to the usual absolute stability crite-
ria (Megretski and Rantzer, 1997; Yakubovich, 2002), the
relevant results have two principal differences. Since the
system has no globally stable equilibrium, the stability
with respect to the full vector of state and input variables
is replaced by the stability with respect to some output
(which serves as a nonlinear “distance” to the set of
equilibria). Besides this, special IQCs have to be designed
exploiting the periodicity of the nonlinear feedback. Notice
that in PLLs this periodic nonlinearity, typically, has non-
zero integral over period, since it depends on the constant
deviation between the natural frequencies of the reference
and controlled oscillators (Leonov et al., 2015). The IQCs
are derived by either using Leonov’s nonlocal reduction
principle (Leonov et al., 1996b, 1992) (and involve trajec-
tories of a specially chosen comparison systems) or special
decomposition of the nonlinearity, known as the “Bakaev-
Guzh technique” (Leonov et al., 1996b, 1992).

In this paper, we combine the two aforementioned tech-
niques and derive new stability criteria for systems with
periodic nonlinearities. For the reader’s convenience, we do
not rely on the general IQC method and give direct proofs
of all results, stemming from the ideas of (Popov, 1973).
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2. PRELIMINARIES AND NOTATION

Following (Smirnova and Proskurnikov, 2019), we consider
an integro-differential equation

σ̇(t) = b(t) + ρϕ(σ(t− h))−
∫ t

0

γ(t− τ)ϕ(σ(τ)) dτ, (1)

Here h ≥ 0 ; ϕ : R→ R; γ, b : [0,+∞)→ R, The solution
of (1) is uniquely determined by the initial condition

σ(t)|t∈[−h,0] = σ0(t) ∈ C[−h, 0]. (2)

We adopt the following assumptions.

Assumption 1: The functions b(·), γ(·) are continu-
ous and decay exponentially as t → ∞, in particular,
b(t)ert, γ(t)ert are L2-summable for some r > 0.

Assumption 2: The function ϕ(·) is C1-smooth, ∆–
periodic ϕ(σ) = ϕ(σ+∆) and has two simple zeros σ1 < σ2

in the interval [0,∆) with ϕ′(σ1) > 0, ϕ′(σ2) < 0, so that

ϕ(σ) > 0 ∀σ ∈ (σ1, σ2), ϕ(σ) < 0 ∀σ ∈ (σ2, σ1 + ∆) (3)

Without loss of generality, we assume that∫ ∆

0

ϕ(ζ) dζ ≤ 0. (4)

(otherwise, the signs of ϕ, γ, ρ can be flipped).

Equation (1) is a special case of Lur’e system obtained
by interconnection of the integro-differential linear system
and the periodic nonlinearity. As discussed in (Smirnova
and Proskurnikov, 2019), system (1) arises in many ap-
plications, but the main motivation is the dynamics of
PLLs. For PLLs, σ(t) stands for the phase error (deviation
between the phases of the reference and the controlled os-
cillators) and the convergence of all solutions to equilibria
corresponds to phase locking (Leonov et al., 2015).

The frequency-domain stability conditions formulated be-
low will use the transfer function of the linear part from
the input ξ = ϕ(σ) to (−σ̇), defined as

K(p) = −ρe−ph +

∫ ∞
0

γ(t)e−pt dt (p ∈ C). (5)

Definition 1. System (1) is said to be globally sta-
ble (Leonov et al., 2015) or gradient-like (Leonov, 2006)
if every solution converges to one of the equilibria

σ̇(t) −−−→
t→∞

0, σ(t) −−−→
t→∞

σeq, ϕ(σeq) = 0. (6)

The system is said to be Lagrange stable if the solution
σ(t) is bounded for every initial condition σ0.

Notice that global stability in the sense of Definition 1
does not guarantee Lyapunov stability of a specific equi-
librium. As shown by the simplest example of pendulum,
the system usually has both stable and unstable equilibria.
It may seem that the Lagrange stability is a much weaker
property than convergence of all solutions. Nevertheless,
it is often possible to prove the dichotomy property of the
system (Leonov et al., 1996b), ensuring that every solution
either converges or grows unbounded. For dichotomic sys-
tems, Lagrange and global stability are equivalent. For this
reason, our method is based on proving Lagrange stability
as a preliminary step, allowing to establish convergence.

Our method will use two techniques, previously introduced
in the literature. The first trick is the Bakaev-Guzh proce-

dure (Leonov et al., 1992), which is based on the following
decomposition of nonlinearity

ϕ(σ) = Ψ(σ) + ν|ϕ(σ)|, ν
∆
=

∫∆

0
ϕ(ζ)dζ∫∆

0
|ϕ(ζ)| dζ

. (7)

In view of (4) and (7), we have ν ∈ (−1, 0), therefore,
Ψ(σ) = ϕ(σ) − ν|ϕ(σ)| has the same sign as ϕ(σ) (and
thus Ψ(σ) = 0⇔ ϕ(σ) = 0). From (7) and (3), one has∫ ∆

0

Ψ(σ)dσ = 0, (8)

Ψ(σ) ≥ 0 if σ ∈ (σ1, σ2), (9)

Ψ(σ) ≤ 0 if σ ∈ (σ2, σ1 + ∆). (10)

The second technique is the Leonov’s nonlocal reduction
method (Leonov, 1984), exploiting the properties of a
special comparison system. As a comparison system, we
use the model of a viscously damped pendulum

ż = −az − ϕ(σ) (a > 0),

σ̇ = z,
(11)

which has been exhaustively investigated, see (Leonov
et al., 1996b, 1992) and references therein. Equation (11)
has Lyapunov stable equilibria (0, σ1 + k∆) and saddle-
point equilibria (0, σ2 + k∆) (here k = 0,±1, . . .).

Proposition 1. (Leonov et al., 1996b) There exists a value
acr such that if a > acr every solution of (11) converges
to some equilibrium.

Proposition 2. (Leonov et al., 1996b)If a > acr the first
order equation

F (σ)
dF

dσ
+ aF (σ) + ϕ(σ) = 0 (F (σ) = σ̇ = z), (12)

associated with (11), has a solution F0(σ) such that

F0(σ2) = 0, F0(σ) 6= 0 ∀σ 6= σ2,

F0(σ) −−−−−→
σ−→∓∞

±∞. (13)

The solution F0(σ) is produced by two separatrices which
meet at the point (0, σ2) (Fig. 1).

Fig. 1. The separatrices of a saddle and the solution F0(σ)

3. STABILITY CRITERIA

We now formulate our first main result, establishing a
sufficient condition for Lagrange stability.

Theorem 1. Suppose there exist positive ε, δ,κ ∈ [0, 1] and
λ ∈ (0, r2 ) satisfying the following two conditions:
1) the frequency-domain condition

ReK(ıω − λ)− ε|K(ıω − λ)|2 ≥ δ ∀ω ≥ 0; (14)

2)the quadratic form W is positive definite, where

W (x, y, z)
∆
= λx2+εy2+δz2+acr

√
κxy+(1−κ)νyz. (15)
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Then system (1) is Lagrange stable.

Proof. The proof consists of three parts.

A. Popov’s method of a priori integral indices (Rasvan,
2006)
For an arbitrary solution σ(t) of (1) and an arbitrary T > 0
we introduce the functions

η(t)
∆
= ϕ(σ(t)), ηT (t)

∆
=

{
η(t), t ∈ [0, T ],

0, t 6∈ [0, T ],

ζT (t)
∆
= ρηT (t− h)−

∫ t

0

γ(t− h)η(τ) dτ. (16)

Henceforth we denote

[f ]µ(t) = f(t)eµt, ρ0 = ρeλh. (17)

It can be shown that

[ζT ]λ(t) = ρ0[ηT ]λ(t− h)−
∫ t

0

[γ]λ(t− τ)[η]λ(τ) dτ,

[ζT ]λ(t) = [σ̇]λ(t)− [b]λ(t) ∀t ∈ [0, T ] (18)

[ηT ]λ, [ζT ]λ ∈ L2[0,+∞)
⋂
L1[0,+∞).

In view of the Plancherel theorem, the integral functional

IT
∆
=

∫ ∞
0

{[ηT ]λ(t)[ζT ]λ(t) + ε([ζT ]λ(t))2 + δ([ηT ]λ)2} dt

can be expressed via the Fourier transforms

IT =
1

2π

∫ ∞
−∞
{F∗([ζT ]λ)(ıω)F([ηT ]λ(ıω)+

+ε|F([ζT ]λ)(ıω)|2 + δ|F([ηT ]λ)(ıω)|2} dω,
(19)

where F(f)(ıω) stands for Fourier–transform of function f
and (∗) is the complex conjugation. Since

F([ζT ]λ)(ıω) = −K(ıω − λ)F([ηT ]λ)(ıω) (20)

the frequency-domain condition (14) implies that

IT ≤ 0, ∀T > 0. (21)

Since ηT (t) = 0∀t > T , it is obvious that

IT >

∫ T

0

{[ηT ]λ[ζT ]λ + ε([ζT ]λ)2 + δ([ηT ]λ)2} dt (18)
=

= I1T + I2T ,

(22)

I1T
∆
=

∫ T

0

{η(t)σ̇(t) + εσ̇2(t) + δη2(t)}e2λt dt,

I2T
∆
=

∫ T

0

{−η(t)b(t)− 2εb(t)σ̇(t) + εb2(t)}e2λt dt.

(23)

It follows from Assumption 1 that

|I2T | < C1 ∀T > 0 (24)

where C1 depends only on the nonlinearity ϕ(·) and the
initial condition. Then we have from (24) and (22) that

I1T < C1, ∀T > 0. (25)

The condition 2) of Theorem 1 implies that

4λεδ > (1− κ)2ν2λ+ a2
crκδ. (26)

Denoting

ε2
∆
=

(1− κ)2

4δ
ν2, ε1

∆
= ε− ε2, (27)

one obtains from (26) that

4λε1 > a2
crκ. (28)

According to (27) one has

I1T = J1T + J2T , (29)

J1T
∆
=

∫ T

0

{(1− κ)ϕ(σ(t))σ̇(t) + ε2σ̇
2(t)+

+δϕ2(σ(t))}e2λt dt,

J2T
∆
=

∫ T

0

{κϕ(σ(t))σ̇(t) + ε1σ̇
2(t)}e2λt dt.

(30)

B. Bakaev–Guzh technique
Using the decomposition (7), we can now estimate the
function J1T . Note that

J1T =

∫ T

0

{(1− κ)ν|ϕ(σ(t))|σ̇(t) + ε2σ̇
2(t)+

+δϕ2(σ(t))}e2λt dt+ (1− κ)

∫ T

0

Ψ(σ(t))σ̇(t)e2λt dt.

(31)

The first addend in the right–hand part of (31) is positive
definite thanks to (27). We rewrite the second addend
using Bonnet’s mean value theorem (Hobson, 1909). Since
the function e2λt is increasing on [0, T ], there exists T0 ∈
[0, T ] satisfying the condition∫ T

0

Ψ(σ(t))σ̇(t)e2λt dt = e2λT

∫ T

T0

Ψ(σ(t))σ̇(t) dt =

= e2λT

∫ σ(T )

σ(T0)

Ψ(ζ) dζ.

(32)

Then in virtue of the properties (8), (9), (10) one has that∫ σ(T )

σ(T0)

Ψ(ζ) dζ ≥ 0 (33)

for any σ(T0) if σ(T ) = σ2 + k∆ with k ∈ Z.

It follows then from (25) and (29) that

J2T ≤ C1, if σ(T ) = σ2 + k∆ (k ∈ Z). (34)

C. Non-local reduction technique
Consider the equation

F (σ)
dF (σ)

dσ
+ 2

√
λε1

κ
F (σ) + ϕ(σ) = 0. (35)

It follows from (28) and Proposition 2 that (35) has a

solution F0(σ) with the properties (13). Note that F̂0 =√κ
2 F0 is a solution of the equation

F̂0(σ)F̂ ′0(σ) +
√

2λε1F̂0 +
κ
2
ϕ(σ) = 0. (36)

Since ϕ is ∆–periodic, (36) has a set of solutions

F̂k(σ)
∆
= F̂0(σ − k∆) (k ∈ Z), (37)

which are featured by the following properties:

F̂k(σ2 + k∆) = 0, (38)

F̂k(σ) 6= 0 for σ 6= σ2 + k∆, (39)

F̂k(σ) −→ ±∞ as σ −→ ∓∞. (40)

After some computations, one obtains that

J2T =

∫ T

0

{κϕ(σ(t))σ̇(t) + ε1σ̇
2(t)+

+2F̂ ′k(σ(t))F̂k(σ(t))σ̇(t) + 2λF̂ 2
k (σ(t))}e2λt dt−

−F̂ 2
k (σ(T ))e2λT + F̂ 2

k (σ(0)),

(41)
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and therefore

J2T =

∫ T

0

{G(σ̇(t), ϕ(σ(t)), F̂k(σ(t))F̂ ′k(σ(t)))−

− 1

4ε1

(
κϕ(σ(t)) + 2F̂k(σ(t))F̂ ′k(σ(t))

)2

+

+2λF̂ 2
k (σ(t))}e2λt dt− F̂ 2

k (σ(T ))e2λT + F̂ 2
k (σ(0)),

(42)

where G stands for the quadratic form

G(x, y, z) =

(
√
ε1x+

κ
2
√
ε1
y +

1
√
ε1
z

)2

≥ 0. (43)

Then

J2T ≥
∫ T

0

(√
2λF̂k(σ(t))− κ

2
√
ε1
ϕ(σ(t))−

− 1
√
ε1
F̂ ′k(σ(t))F̂k(σ(t))

)(√
2λF̂k(σ(t))+

1
√
ε1
F̂k(σ(t))F̂ ′k(σ(t)) +

κ
2
√
ε1
ϕ(σ(t))

)
e2λt dt−

−F̂ 2
k (σ(T ))e2λT + F̂ 2

k (σ(0)).

(44)

Since F̂k is a solution of (36) the first summand in right–
hand part of (44) is equal to zero. Then it follows from (44)
and (34) that

F̂ 2
k (σ(t))e2λt ≥ F̂ 2

k (σ(0))−C1 for σ(t) = σ2+l∆ (l, k ∈ Z).
(45)

Let us choose the number k0 ∈ N so large that

σ2 − k0∆ < σ(0) < σ2 + k0∆, (46)

and
F̂ 2
±k0(σ(0)) > C1. (47)

Such number k0 exists in virtue of the properties (38),
(39), (40). The inequality (47) implies that

F̂ 2
±k0(σ2 + l∆) 6= 0 (l ∈ Z). (48)

So σ(t) can not reach the values of σ2 ± k0∆:

σ2 − k0∆ < σ(t) < σ2 + k0∆. (49)

Theorem 1 is proved. �

The conditions of Lagrange stability can be further refined,
taking into account the slope restriction on the nonlinear-
ities. Let

µ1
∆
= inf
σ∈[0,∆)

ϕ′(σ);

µ2
∆
= sup
σ∈[0,∆)

ϕ′(σ)
(50)

It is clear that µ1 < 0 < µ2.

Theorem 2. Suppose there exist positive ε, δ, τ,κ ∈ [0, 1],
λ ∈ [0, r2 ), α1 ≤ µ1, α2 ≥ µ2 such that for ω ≥ 0 the
frequency–domain inequality

π(ω, λ)
∆
= Re{K(ıω − λ)− τ(K(ıω − λ)+

+α−1
1 (ıω − λ))∗(K(ıω − λ) + α−1

2 (ıω − λ))}−
−ε|K(ıω − λ)|2 ≥ δ

(51)

is valid and the quadratic form W (x, y, z) defined by (15)
is positive definite. Then the system (1) is Lagrange stable.

Proof. This proof retraces the proof of Theorem 1. It also
consists of three parts, in each part a certain method being
applied. Since algebraic restriction on the parameters
(W (x, y, z) > 0) is the same for both theorems, parts B
and C from the proof of Theorem 1 remain the same here.

But as the frequency inequality (51) essentially differs from
inequality (14) the part A in this proof is more complicated
than in the proof of Theorem 1.

Let σ(t) be an arbitrary solution of (1), η(t) = ϕ(σ(t)).
Determine the function

v(t)
∆
=


0, if t < 0,

t, if t ∈ [0, 1],

1, if t > 1.

(52)

For T > 1 introduce the functions

η1
T (t)

∆
=

{
v(t)η(t), if t ≤ T,
0, if t > T ;

(53)

ζ1
T (t)

∆
= ρη1

T (t− h)−
∫ t

0

γ(t− τ)η1
T (τ) dτ ; (54)

σ0(t) = b(t)−
∫ t

0

γ(t− τ)(1− v(τ))η(τ) dτ−
−ρ(v(t− h)− 1)η(t− h).

(55)

Taking into account (17) we have:

[ζ1
T ]λ(t) = [σ̇]λ(t)− [σ0]λ(t) for t ∈ [0, T ], (56)

with

[ζ1
T ]λ(t) = ρ0[η1

T ]λ(t−h)−
∫ t

0

[γ]λ(t− τ)[η1
T ]λ(τ) dτ. (57)

Notice that for anyT > 1

[ζ1
T ]λ, [η1

T ]λ ∈ L2[0,+∞)
⋂
L1[0,+∞) (58)

Denote the set of all σ2 + k∆ (k ∈ Z) by S. Let

Σ
∆
= {T : T > 1, σ(T ) ∈ S}. (59)

If Σ is bounded then the function σ(t) is bounded as well.

Suppose that Σ is not bounded. Then determine the
function

ξT,λ(t)
∆
=

d

dt
([η1

T ]λ)− λ[η1
T ]λ (T ∈ Σ, t 6= 0, T ) (60)

and consider the functionals

RT
∆
=

∫ ∞
0

{[η1
T ]λ[ζ1

T ]λ + ε([ζ1
T ]λ)2 + δ([η1

T ]λ)2+

+τ([ζ1
T ]λ − α−1

1 ξT,λ)([ζ1
T ]λ − α−1

2 ξT,λ)} dt (T ∈ Σ).
(61)

Notice that

F([ζ1
T ]λ)(ıω) = −K(ıω − λ)F([η1

T ]λ)(ıω), (62)

F(
d

dt
[η1
T ]λ) = ıωF[η1

T ]λ(ıω). (63)

Then in virtue of Plancherel theorem one has

RT = − 1

2π

∫ +∞

−∞

(
Re
{
K(ıω − λ)− τ(K(ıω − λ)+

+α−1
1 (ıω − λ))∗(K(ıω − λ) + α−1

2 (ıω − λ))
}
−

−ε|K(ıω − λ)|2 − δ
)
|F([η1

T ]λ)|2 dt.

(64)

It follows from (51) that

RT ≤ 0 (T ∈ Σ). (65)

Substituting in (61) the function [ζ1
T ]λ(t) computed by (56)

and taking into account the definition (53) we have

RT ≥ I1T + I3T + I4T (T ∈ Σ). (66)

where I1T is defined by (23),
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I3T
∆
=

∫ T

0

(σ̇(t)− α−1
1 ϕ̇(σ(t)))(σ̇(t)− α−1

2 ϕ̇(σ(t)))e2λt dt =

=

∫ T

0

(1− α−1
1 ϕ′(σ(t)))(1− α−1

2 ϕ′(σ(t)))σ̇2(t))e2λt dt,

(67)
and the functional I4T is bounded by a constant which
does not depend on T :

|I4T | ≤ C2, ∀T > 0. (68)

Notice that

α1 ≤
dϕ(σ)

dσ
≤ α2, (69)

whence
I3T ≥ 0. (70)

It follows from (65), (66), (68), (70) that

I1T ≤ C2 (T ∈ Σ), (71)

where C2 does not depend on T . The formula (71) is just
alike the formula (25). So beginning from (71) all the
argument of the proof of Theorem 1 can be repeated for
this theorem. �

Modifying the Bakaev-Guzh decomposition, one can derive
a modified version of Theorem 2 as follows. Denote

Φ(σ)
∆
=

√
(1− α−1

1 ϕ′(σ))(1− α−1
2 ϕ′(σ)), (72)

with α1 ≤ µ1, α2 ≥ µ2 and the constant

ν0 =

∫∆

0
ϕ(σ)dσ∫∆

0
|ϕ(σ)|Φ(σ) dσ

. (73)

Theorem 3. Suppose there exist λ ∈ (0, r2 ), ε, τ, δ >
0, α1 = −α2 satisfying the following conditions:
1) the frequency-domain condition (51) holds ∀ω ≥ 0;
2) the parameters satisfy the inequalities

4λε > a2
cr

(
1− 2

√
τδ

|ν0|

)
, |ν0| < 1. (74)

Then system (1) is Lagrange stable.

Proof. We use here the proof of Theorem 2 starting from
the inequality (66), which can be rewritten as follows

RT ≥ I5T + I4T (T ∈ Σ), (75)

where

I5T =

∫ T

0

{δ(ϕ(σ(t)))2 + εσ̇2(t) + σ̇(t)ϕ(σ(t))+

+τ σ̇2(t)Φ2(σ(t)}e2λt dt.

(76)

It follows from (65) and (68) that

I5T ≤ C2 (T ∈ Σ). (77)

Let us choose κ ∈ (0, 1) such that

4λε

a2
cr

> κ > 1− 2
√
τδ

|ν0|
. (78)

Then

1− κ <
2
√
τδ

|ν0|
. (79)

Let
I5T = J1T + J2T , (80)

where

J1T
∆
=

∫ T

0

{(1− κ)ϕ(σ(t))σ̇(t) + δϕ2(σ(t))+

+τ(σ̇(t)Φ(σ(t)))2)}e2λt dt.

(81)

J2T
∆
=

∫ T

0

{κϕ(σ(t))σ̇(t) + εσ̇2(t)}e2λt dt, (82)

Apply Bakaev–Guzh procedure to functional J1T . For the
purpose introduce the function

Ψ1(σ)
∆
= ϕ(σ)− ν0|ϕ(σ)|Φ(σ). (83)

Then

J1T
∆
=

∫ T

0

{(1− κ)ν0|ϕ(σ(t))|Φ(σ(t))σ̇(t)+

+τ(σ̇(t)Φ(σ(t)))2 + δϕ2(σ(t))}e2λt dt+

+(1− κ)

∫ T

0

Ψ1(σ(t))σ̇(t)e2λt dt

(84)

The first summand in right–hand part of (84) is positive
definite in virtue of (79). For the second addend we have∫ T

0

Ψ1(σ(t))σ̇(t)e2λt dt = e2λT

∫ σ(T )

σ(T0)

Ψ1(ζ) d(ζ) (85)

where T0 ∈ [0, T ]. Notice that∫ ∆

0

Ψ1(ζ) dζ = 0, (86)

Ψ1(σ1) = Ψ1(σ2) = 0, and Ψ1(ζ)ϕ(ζ) ≥ 0. So∫ σ(T )

σ(T0)

Ψ1(ζ) dζ ≥ 0 (T ∈ Σ). (87)

It follows then from (77), (80), and (87) that

J2T ≤ C2 (T ∈ Σ). (88)

Consider the equation

F (σ)
dF (σ)

dσ
+ 2

√
λε

κ
F (σ) + ϕ(σ) = 0. (89)

Since (78) and (89) are valid we can repeat all the
argument of part C of Theorem 1 and thus finish the proof
of Theorem 3. �

Each of Theorems 1-3 can be transformed into the criterion
of global stability by adding another frequency-domain
inequality, being similar to (51), in view of the following
dichotomy criterion.

Theorem 4. (Leonov et al., 1996b) Suppose there exist
ε, τ, δ > 0, α1 ≤ µ1, α2 ≥ µ2 such that

π(ω, 0) ≥ δ, ∀ω ≥ 0. (90)

Then any bounded solution of (1) converges (6).

The requirement of Theorem 4 is usually fulfilled if (51) is
valid for all ω and certain ε, τ, λ, δ, α1, α2.

Example. Consider a phase–locked loop (PLL) with the
proportional integrating filter:

K(p) = T
Tmp+ 1

Tp+ 1
(m ∈ (0, 1)) (91)

and the sine-shaped nonlinearity

ϕ(σ) = sin(σ)− β (β ∈ (0, 1)). (92)

Let us apply Theorem 3. We have

|ν0| =
2πβ

4β + π − 2 arcsinβ + 2β
√

1− β2
(93)

Condition |ν0| < 1 is valid for β ≤ 0.8.
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For δ, ε, τ > 0, λ ∈ (0, 0.5T−1) and |α1| = α2 = 1 the
frequency–domain inequality (51) takes the form

π(ω, λ)
∆
= τ(ω2 + λ2) +ReK(ıω − λ)−

−(ε+ τ)|K(ıω − λ)|2 ≥ δ, ∀ω ∈ R.
(94)

It is not difficult to make certain that if

τ + ε =
1

T (m+ 1)
, δ =

mT

(1 +m)
− δ0 (0 < δ0 <

mT

(1 +m)
),

(95)
the inequality (94) is true for all ω ≥ 0, λ being chosen
small enough, depending on δ0 and T .

Notice that

2
√
τδ =

2
√
m

(1 +m)
− ε′, (96)

with ε′ depending on ε and δ0 which can also be chosen
small enough.

Consider the case of m = 0.2, β = 0.5. In this case

2
√
m

(1 +m)|ν0|
> 1.1. (97)

So for ε, λ, δ0 small enough the requirements of Theorem
3 are satisfied for all T > 0.

Thus for m = 0.2 the capture capacity β is no less than
0.5 for all T > 0. This estimate is rather good for T 2 > 20,
since the genuine value of the capture capacity is no greater
than 0.6 (Leonov et al., 1996b, p. 232, fig.2.16.7).

Meanwhile it follows from (Gelig et al., 2004) that the NRT
applied without the help of Bakaev–Guzh procedure gives
for T 2 > 5 the estimate β < 0.5, and more than that the
estimate for β diminishes as the value of T 2 increases. For
instance, if T 2 > 100 NRT gives β < 0.1.

On the other hand, it can be shown that for T < 0.5
Theorem 2 (with κ = 1) guaranties the capture capacity
β = 1, whereas the Bakaev–Guzh procedure gives a
more conservative estimate β = 0.93 (Smirnova and
Proskurnikov, 2019). Hence, the combination of the two
methods appears to be more efficient than any single
method.

4. CONCLUSION

In this paper, we study asymptotic behavior of synchro-
nization (pendulum-like) systems with distributed param-
eters. We combine two methods previously used for sta-
bility analysis, namely, Leonov’s method of nonlocal re-
duction and Bakaev–Guzh procedure, introducing a novel
class of Lyapunov–type functions. Using Popov’s method
of a priori integral indices, we derive new frequency–
algebraic criteria for the convergence of solutions. In future
works, we are going to extend the nonlocal reduction
method to high-order integro-differential equations.
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