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Abstract: The Nonlinear Auto-regressive eXogenous input (NARX) model has been widely
used in nonlinear system identification. It’s chief disadvantages are that it is a black-box model
that suffers from the curse of dimensionality, in that the number of parameters increases rapidly
with the nonlinearity degree. One approach to dealing with these problems involves decoupling
the nonlinearity, but this requires solving a non-convex optimization problem. Solving non-
convex optimization problems has always been challenging due to the possibility of getting
trapped in a sub-optimal local optima. As a result, these kinds of optimization problems
are sensitive to the initial solution. Providing an appropriate initial solution can increase the
likelihood of finding the globally optimal solution. In this paper, an initialization technique
that uses the polynomial coefficients in a full, albeit low order, NARX model is proposed. This
technique generates a tensor from the coefficients in the from full polynomial NARX model and
applies a tensor factorization in order to generate an appropriate starting point for decoupled
polynomial NARX model optimization problem. The proposed technique is applied to nonlinear
benchmark problem and the results are promising.

Keywords: Nonconvex optimization, Decoupled polynomial, System identification, NARX
model, Nonlinear system, Tensor, Waring Decomposition.

1. INTRODUCTION

The field of system identification has been a very active
area since the late 1950‘s (Zadeh (1962); Åström and
Eykhoff (1971)). In the beginning, linear system identi-
fication was the center of attention. But in some cases,
linear models are not satisfying enough for the user, since
most of the systems around us possess nonlinear behavior.
Nonlinear system identification plays an important role
when linear models are not precise enough to handle the
real system’s nonlinearity (Ljung (1999); Pintelon and
Schoukens (2012)). The area of nonlinear system identi-
fication is an active area of study and research (Noël and
Kerschen (2017); Schoukens and Ljung (2019)).

Strong nonlinear behaviors such as moving resonances,
hysteresis etc., can only be modeled using internal dy-
namics models such as: block-oriented models with feed-
back, nonlinear state-space models (NLSS) or nonlinear
equation error models, such as the NARX or NARMAX
models (Schoukens and Ljung (2019); Billings (2013)).
The common aspect of these models is that the poles of
their best linear approximation (BLA) (Schoukens (2015))
can move depending on the experimental condition. The
? This work is supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) through grant RGPIN/06464-
2015.

major advantage of the NARX model as compared to the
other mentioned methods is, provided the nonlinearity is
modelled using an expansion onto a known basis, it is
linear in its parameters, so the optimization problem will
be convex. This model was developed by Billings (2013)
and has been used in the literature extensively (Caswell
(2014); Chan et al. (2015); Ruiz et al. (2016); Alcan et al.
(2019)).

In the NARX model, the current output of the system is
related to the past inputs and past outputs:

y(t) = f(y(t− 1), · · · , y(t− ny),

u(t), u(t− 1), · · · , u(t− nu)) + e(t) (1)

where t is the discrete-time index, u(t) is the input, y(t) is
the output, e(t) is the equation error, nu is the number of
past input terms and ny is the number of output terms.

When the nonlinear function f is a linear combination
of known basis functions (Sjöberg et al. (1995)) such
as a polynomial, the output is a linear function of the
parameters which results in a linear regression. Since no
more iterative optimization is needed, the global optimal
solution is guaranteed. This is a reason why NARX models
are accepted by industry and have been successfully used
in industrial problems.
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Function f can be expanded using various basis functions
such as a polynomial (Jones and Billings (1989)), sigmoidal
neural network (Alcan et al. (2019)), spline (Shmilovici
and Aguilar-Martin (1999)) etc. For example, using the
polynomial basis, so that f is a polynomial function of its
arguments, the result is the polynomial NARX model:

f(y(t− 1), · · · , y(t− ny),

u(t), u(t− 1), · · · , u(t− nu))

=

M∑
m=0

m∑
p=0

ny∑
k1=1

· · ·
ny∑

kp=kp−1

nu∑
kp+1=1

· · ·
nu∑

km=km−1cp,q(k1, k2, · · · , km)

p∏
i=a

y(t− ki)
m∏

i=p+1

u(t− ki)

 (2)

where cp,q(k1, k2, · · · , km) are the m’th degree polynomial
coefficients that corresponding to various combinations of
the products of p delayed outputs and q = m− p delayed
inputs.

Although the NARX model is used commonly, it still has
some drawbacks, for example, it is a black box model
and very difficult to interpret, which means that there is
no physical insight into the model. Also the number of
parameters grows really quickly with the order, n = nu +
ny and M is the maximum degree. In the case of P-
NARX models, assuming we are interested in a M degree
nonlinearities, the number of parameters is calculated
using (3)

PF =

M∑
i=0

(
(n+ i− 1)

i

)
= 1 + n+

n(n+ 1)

2
+ · · · (3)

As mentioned before, one of the major disadvantages of
polynomial NARX models is the rapid growth in the
number of parameters. In order to tackle this problem, the
full polynomial can be approximated using the structure
in Fig. 1. Then the number of parameters will be given by:

PD = ((n+M)× r) + 1 (4)

note that r is the number of branches in decoupled model.
Provided r is relatively small, this will be less for the full
model – and the polynomial order can be increased since
the number of parameters grows linearly (or less) with the
polynomial order.

This decoupling approach was proposed for multi-input
multi-output (MIMO) systems by Dreesen et al. (2015a).
The decoupling method has been used in many appli-
cations (Dreesen et al. (2015b); Esfahani et al. (2018);
Karami et al. (2019a). in order to simplifies the MIMO
polynomial, the decoupling algorithm replaces the multi-
variate polynomial with a linear mixing matrix, a bank of
single-input single-output (SISO) polynomials followed by
another linear mixing matrix.

We developed a similar approach for MISO systems (West-
wick et al. (2018)) as shown in Fig. 1, the multivariate
function, f(.), will be replaced by a mixing matrix, V
and a bank of univariate polynomials, g(.), whose outputs
are summed together. In that paper, it is shown that the
decoupling method can reduce the number of parameters
significantly.

  f (z)
  z1

 zm
 !

 y  y
 V T

  g1(x1)

  gr (xr )
∑

  x1  z1

 zm
 !  !

Fig. 1. Decoupling a MISO Nonlinearity Into SISO Poly-
nomial Branches and a Mixing Matrix - in P-NARX
model, zi could be either a past input or a past output
(see (2))

Despite the fact that the decoupling approach reduces the
number of parameters significantly, there is still a major
drawback with this method. By decoupling the polyno-
mial NARX model, the new model is no longer linear
the in parameters. The decoupled model is nonlinear in
the elements of the mixing matrix, V , in this situation
an iterative optimization procedure is needed. Since the
optimization is non-convex and solved using an iterative
search, the solution may converge to a sub-optimal local
minimum. Thus, it is critically important to provide the
iterative optimization with a good initial solution to max-
imize the chances that it converges to the global optimum.

In a previous paper (Karami et al. (2019b)), two different
approaches for this initialization were proposed: A 3-way
tensor was constructed by evaluating the Hessian of the
polynomial at each sample in the identification data and
stacking the resulting matrices. This tensor was factored
using the Canonical Polyadic Decomposition (Vervliet
et al. (2016)) (CPD) (either unstructured, or with the
imposition of a constraint that guaranteed the underlying
polynomial structure). In this paper a new initialization
technique based on factoring a tensor constructed di-
rectly from the polynomial coefficients is proposed. The
advantages of this technique are: 1) no differentiation is
required (and hence no loss of information) and 2) the
tensor size does not vary with data length (and is generally
quite small). This paper is balanced as follows, Section 2
summarizes the iterative optimization used in decoupling
polynomial NARX models. Section 3 introduces the new
initialization technique. In Section 4 the results of applying
the proposed technique to a nonlinear benchmark, the
Silver-Box are shown. Lastly, Section 5 summarizes the
paper.

1.1 Notation

Lower and upper case letters in a regular type-face, a,A,
will refer to scalars, bold faced lower case letters, a, refer
to vectors, matrices are indicated by bold faced upper
case letters, A, and bold faced calligraphic script will be
used for tensors, A. ⊗ and ×n will denote the Kronecker
product and mode-n tensor product, respectively.

2. DECOUPLED POLYNOMIAL NARX MODEL

Dreesen et al. (2015a) and Westwick et al. (2018) devel-
oped decoupling techniques for MIMO and MISO polyno-
mials respectively. In both cases, the multivariate polyno-
mial was replaced by a bank consisting of several univari-
ate polynomials as well as mixing matrices before, and in
the MIMO case after, the bank of univariate polynomials.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

343



In the case of a polynomial NARX model, the inputs
to the model are past inputs and outputs, so the vector
z = [z1 · · · zm]T in Fig. 1 becomes z(t) = [y(t−1) · · · y(t−
ny)u(t−nk)u(t−nk−1) · · · u(t−nk−nu)]T where nu and
ny are the number of past input and output samples used
in the model and nk is the input delay which is always
greater than or equal to zero.

The output of a P-NARX model can be written in the
form of a decoupled polynomial:

ŷ(t) = c0 +

r∑
i=1

gi(vi
T z(t)) (5)

where the gi(x) are univarite polynomials given by:

gi(xi(t)) =

M∑
j=1

cj,ix
j
i (t) (6)

In the decoupled representation in (5) and (6), cj,i rep-
resents the degree j polynomial coefficient in the i’th
branch. The vi are the columns of the mixing matrix where
V = [ v1 v2 . . . vr ]. The intermediate signal, xi(k) =
vi

T z(k) is bridge that connects the inputs and the output
of the model. Collecting all the intermediate signals for
all branches at all measurement points we can rewrite the
estimate output equation as:

ŷ = Xc (7)

where

X = [ 1N X1 X2 . . . Xr ] (8)

Xi =
[
xi x2

i . . . x
n
i

]
(9)

xi = [ xi(1) xi(2) . . . xi(N) ]
T

(10)

The ultimate goal is to to find the optimal V and c =

[ c0 c1,1 . . . cM,1 c2,1 . . . cM,r ]
T

that minimize the error
between the measured output and the model output. The
cost function of interest is:

VN (V, c) = ||y − ŷ(V, c)||22 (11)

This cost function is non-convex since the estimated out-
put is nonlinear in the elements of the mixing matrix, V.
However, the optimization problem can be solved using
separable least square (SLS) optimization. The elements of
the vector c can be written as functions of the parameters
of mixing matrix, V, by solving for c in (7) via linear
regression. Then we will end up with the separated cost
function:

V̂ = arg min
V

VN (V, c(V)) (12)

The optimization problem in (12) can be solved using
using a quasi-Newton algorithm (Ljung (1999)). Since
this is an iterative optimization over a non-convex error
surface, a good initial solution for the optimization is nec-
essary. Different approaches for initialization were assessed
in (Karami et al. (2019b)). Those approaches involved
computing the Hessian of the estimated output, ŷ, with
respect to the inputs, z(k). These methods involved heavy
computation. A new approach for generating an initial
estimate is proposed in Section 3.

3. OPTIMIZATION INITIALIZATION

As mentioned before the optimization problem needs a
good initial estimate for the variables in the mixing matrix,

V. The polynomial coefficients, c, are treated as closed-
form functions of V, so they do not need to be initialized.
This initialization is based on the Waring decomposition.
The Waring problem has been extensively discussed in
literature (Comon and Mourrain (1996); Oeding and Ot-
taviani (2013)). The classical Waring problem for polyno-
mials indicates that a general homogeneous polynomial of
n variables and degree kd can be represented as the sum
of terms that are each a sum of degree d terms raised to
the power k (Fröberg et al. (2012)). Such representations
are often called Waring decomposition. The relationships
between the Waring decomposition and various tensor
decomposition have become an important research area
(Comon and Mourrain (1996); Kolda and Bader (2009);
Brachat et al. (2010); Schoukens and Rolain (2012)).

Let y(z) be the output of a MISO polynomial, This
function includes m generic inputs, zi, i = 1..m, and that
in a P-NARX model these can be either past outputs, or
current or past inputs.

y(z) =y0 +

m∑
i1=1

αi1zi1 +

m∑
i1=1

m∑
i2=i1

αi1,i2zi1zi2

+
m∑

i1=1

· · ·
m∑

in=in−1

αi1,··· ,inzi1 · · · zin (13)

For the purpose of illustration, let y(z) be a polynomial
function with 3 inputs z1, z2 and z3 of 3rd degree. The
First order (linear) term in (13) is given by:

f1(z) =

3∑
i1=1

αi1zi1 = TT
1 z (14)

where T1 includes the first order information in a 1st order
tensor (vector):

T1 =

[
α1

α2

α3

]
(15)

For the second degree term:

f2(z) =

3∑
i1=1

3∑
i2=i1

αi1,i2zi1zi2 = zTT2z (16)

where T2 collects the second order information in a 2nd
order tensor (matrix):

T2 =

[
α1,1 α1,2 α1,3

α2,1 α2,2 α2,3

α3,1 α3,2 α3,3

]
(17)

(16) can also be written in forms of tensor product as
f2(z) = T2 ×1 z ×2 z. Then we will compute the SVD of
T2 as it is shown in Fig. 2. Let T2 = V SV T be the SVD
of T2, then (16) can be written as f2(z) = (V T z)TSV T z.

𝑇" =

𝑚×𝑚

⋯

𝑣( 𝑣" 𝑣)

𝑠(
𝑠"

𝑠)

𝑣(+
𝑣"+

𝑣)+

𝑚×𝑚𝑚×𝑚 𝑚×𝑚

⋱ ⋮

Fig. 2. Schematic Representation of Single Value Decom-
position
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Finally, for the third degree term:

f3(z) =

3∑
i1=1

3∑
i2=i1

3∑
i3=i2

αi1,i2,i3zi1zi2zi3

= T3 ×1 z×2 z×3 z (18)

T3 stacks up the third order information in a 3rd order
tensor.

T3 =

α1,1,3 α1,2,3 α1,3,3

α2,1,3 α2,2,3 α2,3,3

α3,1,3 α3,2,3 α3,3,3

α1,1,2 α1,2,2 α1,3,2

α2,1,2 α2,2,2 α2,3,2

α3,1,2 α3,2,2 α3,3,2

α1,1,1 α1,2,1 α1,3,1

α2,1,1 α2,2,1 α2,3,1

α3,1,1 α3,2,1 α3,3,1

(19)
After decomposing the tensor using CPD, it results in the
tensor product of 3 copies of V T z where V is the CPD
factor.

T3 =

r∑
i=1

vi ⊗ vi ⊗ vi (20)

where vi’s are columns of the mixing matrix. Note that
this could be expanded to higher order polynomial degrees.
In general dimension of T1 is m × 1, T2 is m ×m and T3
is m×m×m.

𝑇" 𝐴 𝐵

𝐶

𝑐'

𝑏)

𝑐)

𝑏'

𝑎)𝑎'

⋯+ + ==

𝑚×𝑚×𝑚 𝑚×𝑚 𝑚×𝑚

𝑚×𝑚

Fig. 3. Schematic Representation of Canonical Polyadic
Decomposition

We will use the polynomial information to find an initial
solution for the optimization problem in (12). It is possible
to use all first, second and third order information of
the polynomial by combining the first order vector, eigen
vectors from the singular value decomposition (SVD) of
the second order matrix (Fig 2) and CPD factors from
canonical polyadic decomposition (CPD) of the third order
tensor (Fig 3). Note that since T2 and T3 are symmetric,
the decomposition factors are equal.

The other approach is to only use the third order informa-
tion in T3. This way we will get rid of redundant informa-
tion from T1 and T2. we will use canonical polyadic decom-
position approach as implemented in Tensorlab (Vervliet
et al. (2016)) to decompose the tensor, T3, and use its
factors as an initial solution to the optimization problem.

Comparing this method to previous proposed initial solu-
tion (Karami et al. (2019b)) which involves computing the
Hessian of the polynomial NARX model and evaluating
it at all measurement points, this method is much less
computationally expensive. Assuming that you have N
data points, and n past inputs/outputs, the Hessian tensor
will be n×n×N . On the other hand, the proposed method
requires the CPD of a n×n×n tensor. The quality of the
optimization will be compared in next section.

4. BENCHMARK RESULTS

The proposed algorithm is tested on a nonlinear bench-
mark problem: the Silver-Box measurement data set
(Wigren and Schoukens (2013)). More information can
be found on the nonlinear benchmark website (www.
nonlinearbenchmark.org).

4.1 Silver-Box

The Silver-Box benchmark represents a variety of me-
chanical oscillating processes which are an important set
of nonlinear systems. Examples of these include the sus-
pensions in motor vehicles. The circuitry in the Silver-
Box represents a nonlinear mechanical resonating system
using a mass, viscous damping and a nonlinear spring.
Figure 4 shows a schematic representation of the Silver-
Box differential equation:

m
d2y(t)

dt
+ d

dy(t)

dt
+ k(y(t))y(t) = u(t) (21)

k(y(t)) = a+ by2(t)

where m is the mass, d is the damping constant and k(.)
is the nonlinear spring. u(t) is the input (force) and y(t)
is the output (displacement).

𝑏𝑦 𝑡 $

1
𝑚𝑠( + 𝑑𝑠 + 𝑎-+

𝑢 𝑡 𝑦(𝑡)

Fig. 4. Schematic Representation of Silver-Box (Schoukens
et al. (2016))

The data set provided by Wigren and Schoukens (2013) for
the Silver-Box includes 2 parts: The first part is a white
Gaussian noise sequence filtered by a 9th order discrete
time Butterworth filter with a 200Hz cut-off frequency,
this part of the signal is used for validation of the model.
The second part consists of 10 realizations of a random
phase odd multi-sine, this part of the signal is used for
identification and testing proposes. The accuracy of the
identified model will be examined using the RMS fit:

FIT = 100×
(

1−

√√√√∑Nt

t=1(y(t)− ŷ(t))2∑Nt

t=1(y(t)− yavg)2

)
(22)

The full 3rd order P-NARX model identified by Karami
et al. (2019b) was used to generate the initial estimates
using 3 past inputs and 3 past outputs. Separable least
squares optimizations, using the method described in
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Fig. 5. Silver-Box Reference Signal (Input Signal).

(Karami et al. (2019b)) were initialized using a variety
of starting points.

Figure 6 Shows the cost function of the optimization
problem using two different starting points: the black line
is when we used the proposed approach in this paper as
an initial solution versus the magenta line which used the
CPD of the Hessian as starting point. Although it takes
longer for black line to settle, but it settled at slightly lower
cost function. Both of these methods obtained a 99.81% fit
accuracy in identification data. It is important to note that
even though it took more iterations for the cost function
to reach the optimal value for the proposed technique in
this paper, the mathematical computation for finding the
starting point is much cheaper than what was proposed in
(Karami et al. (2019b)).

0 50 100 150 200 250

Number of Iterations

10-6

10-5

10-4

10-3

10-2

C
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t F
un

ct
io

n

CPD of NARX Coefficient
CPD of Hessian
Starting Point
Starting Point

Fig. 6. Cost Function During Optimization of Decoupled
Polynomial NARX Model of Silver-Box Benchmark
Using Two Different Initial Solution

Table 1 compares the columns of the mixing matrices
among the different initializations, reported as the nor-
malized mean squared error between the matrices. The
two Hessian-based solutions are almost exactly the same,
and are very similar to the polynomial coefficient initial-
ization, but there is little similarity with any of the random
initializations. Table 2 computes the same statistic for the
final solutions. Similar trends were noted among the final
solutions.

Table 3 shows the accuracy of the identified model in the
triangular validation part of the signal for both prediction
and simulation. Also, Fig. 7 demonstrate the prediction
error on triangular validation signal. These results show
that, using this technique we can achieve a model as

Initial Value
Random

Average
Hessian

Hessian

w/struc.

NARX

Coeff.

In
itia

l
V

a
lu

e

Random

Average
- 0.9060 0.9060 0.8994

Hessian 0.9528 - 0.0000 0.0417
Hessian

w/struc.
0.8782 0.0000 - 0.0436

NARX

Coeff.
0.8709 0.0391 0.0391 -

Table 1. Comparison of the Initial Mixing Ma-
trices, V, for Different Initialization Technique

Using Normalized Mean Square Error

Final Value
Random

Average
Hessian

Hessian

w/struc.

NARX

Coeff.

F
in

a
l

V
a
lu

e
Random

Average
- 0.7572 0.7572 0.7921

Hessian 0.7572 - 0.0000 0.2188
Hessian

w/struc.
0.7572 0.0000 - 0.2188

NARX

Coeff.
0.7921 0.2188 0.2188 -

Table 2. Comparison of the Final Mixing Ma-
trices, V, for Different Initialization Technique

Using Normalized Mean Square Error

accurate as other proposed initialization methods while
the computational cost is very inexpensive.

Triangle Validation Fit %
CPD of Hessian

(Karami et al. (2019b))
CPD of NARX Coeff.

(This Paper)

Prediction 99.77% 99.76%
Simulation 99.11% 98.77%

Table 3. Accuracy of Validation Data Set of
1-Step Ahead Prediction and Simulation for

Silver-Box Data
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 CPD of NARX Coefficient- Error x10
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Fig. 7. Prediction Errors on the Validation Data for Silver-
Box Using Two Different Initial Solution. Errors Are
Scaled Up 10x for Better Visibility

5. CONCLUSION

We have proposed an initial solution for the decoupling of
a P-NARX model. This technique collects the coefficients
of the full P-NARX model into a 3-way tensor and then
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decomposes the tensor using the CPD. It then uses one
of the three identical decomposition factors as the initial
mixing matrix. The technique is applied to the Silver-
Box benchmark problem. It leads to similar results (post
optimization) as two previously described Hessian based
approaches, but it is much cheaper in computation.
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Schoukens, J. (2018). Parameter reduction in nonlin-
ear state-space identification of hysteresis. Mechanical
Systems and Signal Processing, 104, 884–895.
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