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Abstract: In this paper, the global stabilization of the Reaction Wheel Pendulum, without
taking into account the wheel position, is addressed despite the presence of Lipschitz distur-
bances and/or uncertainties in the model. Using two Second Order Continuous Sliding Modes
Algorithms, the control task is performed, reaching finite-time convergence in one part of the
dynamics and generating a continuous control signal. Finally, some simulations and experiments
in the real systems are presented to test the proposed algorithms and compare them with a linear
feedback controller.
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1. INTRODUCTION

The pendulae systems have been studied vastly in the
control theory due to the presence of interesting charac-
teristics, like nonlinear dynamics, underactuation, non-
minimum phase and multiple equilibria points. This last
property makes the design of a global control for these
kind of systems as a really challenging task.

As a result of this, usually in the control of the Reaction
Wheel Pendulum (RWP), it is separated the design of such
controller in two tasks: the swing-up and the stabiliza-
tion. Some examples of works that solved the swing-up
problem are Spong et al. (2001) and Andrievsky (2011)
using the energy based control. Some papers dealing with
the stabilization of the RWP are Spong et al. (2001);
Moreno-Valenzuela and Aguilar-Avelar (2017) using the
feedback linearization control, Andrievsky (2011); Iriarte
et al. (2013); Gutiérrez-Oribio et al. (2018) using the
sliding mode control, and Ortega et al. (2002); Srinivas
and Behera (2008) using the passivity-based control with
interconnection and damping assignment.

Nevertheless, there are some results solving both problems,
swing-up and stabilization, simultaneously: Olfati-Saber
(2001a) and Ye et al. (2008) using backstepping and Ryalat
and Laila (2016) using energy shaping. They verify their
results by means of some simulations, but the required
torque is not available for a real experimental platform,
as discussed in (Moreno-Valenzuela and Aguilar-Avelar,
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and 705765; PAPIIT-UNAM (Programa de Apoyo a Proyectos de
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2017, Chapter 8). In any case these papers consider only
the nominal system, i.e., free of uncertainties or disturban-
ces, which are unavoidable in a real experimental setup.

In order to deal with such uncertainties and/or disturban-
ces, one can use the Sliding Modes Algorithms. The main
disadvantage of this approach is the presence of the so
called chattering effect due to the discontinuity used in the
controller. Continuous Sliding Mode algorithms (Chalanga
et al. (2013); Edwards and Shtessel (2016); Laghrouche
et al. (2017); Kamal et al. (2018); Moreno (2016, 2018a)),
a class of homogeneous sliding mode controllers, are able
to compensate Lipschitz uncertainties and/or perturbati-
ons theoretically exact, but produce a continuous control
signal. When the actuator is fast (see Perez-Ventura and
Fridman (2019)), the chattering effect caused by the dis-
continuity and discretization is strongly attenuated.

These algorithms consist in a static homogeneous finite-
time controller for the nominal model of the system
and a discontinuous integral action, aimed at estima-
ting and compensating the uncertainties and perturba-
tions. They are an extension of the (classical) Super-
Twisting (Levant (1993, 1998); Seeber and Horn (2017,
2018)), and are related to the Continuous Twisting Al-

gorithm (CTA) (Mendoza-Ávila et al. (2017); Torres-
González et al. (2017)) and Discontinuous Integral Algo-
rithms (DIA) (Moreno (2016), Moreno (2018a)).

The objective of this work is to design a robust global con-
troller for the third order RWP system using the approach
of Olfati-Saber (2001a) and two Second Order Continuous
Sliding Modes Algorithms: the CTA and the DIA. Such
algorithms ensure global finite-time stability to the zero
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dynamics, which is globally asymptotically stable mani-
fold. This task is performed despite the presence of some
Lipschitz matched disturbances/uncertainties and with a
continuous control signal. Finally, we provide evidence of
the performance of the controllers both in simulations
and through experiments on a laboratory setup, and we
compare them with the linear controller used in Olfati-
Saber (2001a).

The outline of this work is as follows. The problem state-
ment and the main result of the paper are given in Section
2 and Section 3, respectively. The simulation and experi-
mental validation, comparing the proposed algorithms, are
shown in Section 4. Finally some concluding remarks are
discussed in Section 5.

Notation: Define the function ⌈·⌋γ := | · |γsign(·), for any
γ ∈ R≥0.

2. PROBLEM STATEMENT

Consider the RWP shown in Fig. 1. This figure describes
a pendulum rotating in a vertical plane and its pivot pin
is mounted in a stationary base. The pivot pin of the
wheel is attached to the pendulum. The axes of rotation of
the pendulum and the wheel are parallel each other. The
wheel is actuated by the torque τ [Nm]. The states vector
is x = [x1, x2, x3, x4]

T , where x1 [rad] is the angle bet-
ween the upward direction and the pendulum, measured
counter-clockwise (x1 = 0 for the upright position of the
pendulum), x2 [rad/sec] is the pendulum angular velocity,
x3 [rad] is the wheel angular position, and x4 [rad/sec] is
the wheel angular velocity.

x1

x3

mass center

lc1

J2,m2

J1,m1

l1

Fig. 1. Reaction wheel pendulum system.

The system dynamics was presented in Spong and Vidy-
asagar (1989) and can be described by the following equa-
tions:

ẋ1 =x2, ẋ2 =
d22W sin (x1) + d12b2x4 − d12τ

D
,

ẋ3 =x4, ẋ4 =
−d21W sin (x1)− d11b2x4 + d11τ

D
,

(1)

where
d21 =d12 = d22 = J2,

d11 :=m1l
2

c1 +m2l
2

1
+ J1 + J2,

D :=d11d22 − d12d21 > 0,

m̄ :=m1lc1 +m2l1, W = m̄g,

and parameters of the system shown in Table 1.

In Olfati-Saber (2001a) and Olfati-Saber (2001b) is pro-
posed a methodology to globally stabilize the origin of the

RWP system. First, it is defined the next global change of
coordinates

z1 := d11x2 + d12x4, z2 := x1, z3 := x4, (2)

rewriting the system as

ż1 =W sin (z2), ż2 =
z1 − d12z3

d11
,

ż3 =
−d21W sin (z2)− d11b2z3 + d11τ

D
.

(3)

Remark 1. In this paper it is not considered the state x3

(wheel position) as a control objective, so, only the three
states left are going to be controlled. Also, in Olfati-Saber
(2001a) and Olfati-Saber (2001b) is not considered the
viscous friction of the wheel, but is easy to add it to the
system to make it more likely to the reality.

Now, if the control τ becomes

τ =
d21W sin (z2) + d11b2z3 +Du

d11
, (4)

the final system becomes into

ż1 = W sin (z2), ż2 =
z1 − d12z3

d11
, ż3 = u. (5)

The problem of globally stabilize the pendulae systems,
is the presence of infinite equilibria points due to the
sin(z2) function in the system dynamics. One alternative
to deal with this, is to force its argument to only take
values around zero, so the only equilibrium point of the
system will be the origin and if it is stable, the global
stability will be ensured. This is performed saturating
the argument of sin(z2) with a sigmoidal function like
z2 = σ1(z1) := c0 tanh(c1z1), so the first state of the
system (5) becomes

ż1 = W sin (z2) = W sin (c0 tanh(c1z1)), (6)

with the origin as globally asymptotically stable if

−π/2 < c0 < 0, c1 > 0, (7)

and V = z2
1
as a Lyapunov function.

Now, in order to obtain the desired zero dynamics (6), it
is defined the following change of coordinates and control
as

µ1 := z2 − σ1(z1), µ2 := µ̇1, ν := µ̇2, (8)

transforming the system (5) as

ż1 = W sin (σ1(z1) + µ1), µ̇1 = µ2, µ̇2 = ν. (9)

The linear state feedback used in Olfati-Saber (2001b)

ν = −c2µ1
− c3µ2

, c2, c3 > 0, (10)

globally exponentially stabilizes µ1 = µ2 = 0 for the
µ-subsystem of (9). Due to the fact that for any expo-
nentially vanishing function µ

1
(t), the solution of the z1-

subsystem in (9) is uniformly bounded and the origin
of the system (9) is globally asymptotically and locally
exponentially stable due to a theorem by Sontag (1989).
The overall nonlinear state feedback u can be explicitly
calculated as the following

u =
d11
d12

(

−ν +
W

d11
sin(z2)− σ̈1

)

,

σ̈1 =c0c1W (1− tanh2(c1z1))×
(

cos(z2)
z1 − d12z3

d11
− 2c1W tanh(c1z1) sin

2(z2)

)

.

(11)
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This is an alternative to globally stabilize the origin of a
system that in principle looks like a really difficult result
to obtain. The problem is that in the reality, the systems
present disturbances/uncertainties ϕ(t) on its dynamics
and the system (9) could be presented in the form

ż1 =W sin (σ1(z1) + µ
1
),

µ̇
1
=µ

2
, µ̇

2
= ν + ϕ(t).

(12)

In this case, the control (10) can not achieve the task of
driving the states to the origin globally. In this paper,
the global stability of the origin of RWP system is ad-
dressed considering the presence of Lipschitz uncertain-
ties/disturbances, i.e., |ϕ̇(t)| ≤ L, using sliding modes
algorithms that generate continuous control signals, redu-
cing the chattering effect.

3. MAIN RESULT

Defining the next global change of coordinates (similar to
the one used in Olfati-Saber (2001a))

z1 := d11x2 + d12x4, z2 := x1, z3 := x2, (13)

the RWP system can be rewriten as

ż1 =W sin (z2), ż2 = z3,

ż3 =
d22W sin (z2) + b2(z1 − d11z3)− d12τ

D
.

(14)

Now, if the control τ becomes

τ =
d22W sin (z2) + b2(z1 − d11z3)−Du

d12
, (15)

the final system becomes into

ż1 = W sin (z2), ż2 = z3, ż3 = u. (16)

Using the same approach as the section before, the system
(12) can be obtained, despite the different change of
coordinates used, just with a different state feedback u
like

u =ν + σ̈1,

σ̈1 =c0c1W (1− tanh2(c1z1))×
(

cos(z2)z3 − 2c1W tanh(c1z1) sin
2(z2)

)

.

(17)

Remark 2. The main advantage of using the transforma-
tion (13) instead of (2), is that is less the information
you need of the system in order to implement the control
(17) in comparison to the control (11) (in concrete the
parameters d11 and d12).

Now the task is to design a control ν which drives the
states µ1, µ2 globally to the origin, despite the presence
of the Lipschitz function ϕ(t) and then the origin of the
system (12) will be globally stable.

Let us introduce two Continuous Higher Order Sliding
Modes Algorithm, the second order Continuous Twisting
Algorithm (2-CTA) (introduced in Torres-González et al.
(2015)):

ν =− k1 ⌈µ1
⌋

1

3 − k2 ⌈µ2
⌋

1

2 + ζ,

ζ̇ =− k3 ⌈µ1⌋
0
− k4 ⌈µ2⌋

0
,

(18)

and the second order Discontinuous Integral Algorithm (2-
DIA):

ν =− k2

⌈

⌈µ2⌋
3

2 + k
3

2

1
µ1

⌋
1

3

+ ζ

ζ̇ =− kI1

⌈

µ1 + kI2 ⌈µ2⌋
3

2

⌋0

.

(19)

which is an integral extension of the static controller
presented in Cruz-Zavala and Moreno (2017). In both
algorithms, the static part ν drives the states µ1, µ2 to
the origin in finite-time, while the integral part ζ rejects
the disturbance ϕ(t). Note that due to the discontinuous
function sign is in the integrator, the generated control
signal of both algorithms is continuous.

The following theorem is the main result of this paper:

Theorem 1. The origin of µ
1
, µ

2
-system in (12) is globally

stable in finite-time, despite the presence of the Lipschitz
disturbances/uncertainties ϕ(t), and z1 will be driven to
the origin globally asymptotically, when the control τ takes
the form of (13), (15) and (17), and ν takes the form of
(18) or (19).

Remark 3. As a consequence of the Theorem 1, the origin
of the RWP system (1), i.e., x1, x2, x4 = 0 is globally
asymptotically stable. The wheel position x3 will only be
driven to an arbitrary constant, due to the fact that is not
a controlled state.

Proof.

The proof can be done by analysing only the system

µ̇1 = µ2, µ̇2 = ν + ϕ(t), (20)

because if the states µ1, µ2 in (12) are globally taken to
zero, it is clear that the state z1 will be driven to the
origin asymptotically as seen in the approach of Olfati-
Saber (2001b).

The closed-loop system of (20), with the controller (18)
and the new variable µ

3
= ζ + ϕ(t) is

µ̇1 =µ2,

µ̇2 =− k1 ⌈µ1⌋
1

3 − k2 ⌈µ2⌋
1

2 + µ3

µ̇3 =− k3 ⌈µ1⌋
0
− k4 ⌈µ2⌋

0
+ ϕ̇(t),

(21)

whose origin is proven to be finite-time stable in Torres-
González et al. (2017) designing properly the gains
k1, k2, k3, k4 and using the following Lyapunov function

V (µ) =α1 |µ1|
5

3 + α2µ1µ2 + α3 |µ2|
5

2 +

α4µ1 ⌈µ3⌋
2
− α5µ2µ

3

3
+ α6 |µ3|

5
.

On the other hand, the closed-loop system of (20), with
the controller (19) and the new variable µ

3
= ζ + ϕ(t) is

µ̇
1
=µ

2
,

µ̇2 =− k2

⌈

⌈µ2⌋
3

2 + k
3

2

1
µ1

⌋
1

3

+ µ3

µ̇3 =− kI1

⌈

µ1 + kI2 ⌈µ2⌋
3

2

⌋0

+ ϕ̇(t).

(22)

whose origin is proven to be finite-time stable in Moreno
(2018b) designing properly the gains k1, k2, kI1, kI2 and
using the following Lyapunov function

V (µ) =
3

5
γ1 |ξ1|

5

3 + ξ1ξ2 +
2

5
k
− 3

2

1
|ξ2|

5

2 +
1

5
|ξ3|

5
,

where

ξ1 = µ1 − ⌈ξ3⌋
3
, ξ2 = µ2, ξ3 = k

− 1

2

1
k1
2
µ3.
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Therefore, it is not difficult to prove that the origin of the
system (12) in closed loop with controllers (18) or (19) is
asymptotically and globally stable. Furthermore, by the
change of coordinates (8) and (13), the original states of
the RWP system x1, x2, x4 will be driven to the origin
asymptotically and globally.

4. SIMULATION AND EXPERIMENTAL
VALIDATION

In order to illustrate the performance of the presented
algorithms, simulations and experiments have been done
over the RWP system described in (1). The used system
parameters were obtained with an off-line identification
algorithm, given in Table 1.

Table 1. Parameters of the Reaction Wheel
Pendulum system

Name Description Value

m̄ Equivalent mass of the system 0.191[kgm]

d11 Equivalent moment of inertia 0.0543[kgm2]
of the system

J2 Moment of inertia of the wheel 0.0027[kgm2]

b2 Friction coefficient of the wheel 0.01[Ns/m2]

g Acceleration of the gravity 9.81[m/s2]

The experiments were made in the real RWP system
depicted in Fig. 1. This system was developed in the
Institut für Regelungs- und Automatisierungstechnik of
TU Graz, Austria. The experiments are performed in
Matlab Simulink over a data-acquisition board connected
to the RWP system.

The real RWP system only counts with the information of
the positions, so it was implemented a second order robust
exact differentiator Levant (2008) in order to obtain an
estimate of the velocities x2, x4 for the control.

Also, it is important to say, that the control signal τ from
the algorithm has to be converted to a voltage signal using
the next expression V = −0.2778τ + 3.6 × 10−5x4. This
signal is saturated between [−0.9, 0.9][V] and, after an
amplification stage, is connected to a 12[V] DC motor.

4.1 Simulation results

The control (15) and (17), the transformation (13), the
2-DIA described by (19) with k1 = 4.16, k2 = 28.5,
kI1 = 6.3, kI2 = 0, and the 2-CTA described by (18)
with k1 = 47.57, k2 = 19.84, k3 = 16.1, k4 = 7.7
were implemented in Matlab Simulink with the Runge-
Kutta’s integration method of fixed step and a sampling
time equal to 1 × 10−4[s]. On the other hand, to make a
comparison with the algorith used in Olfati-Saber (2001a),
the control (4) and (11), the transformation (2) and the
linear feedback described by (10) with c2 = c3 = 30 was
implemented as well. The simulations were made with the
same unbounded perturbation ϕ(t) = 2 sin(2t) + 2t + 2,
the same initial condition x0 = [100π,−50, 0, 50]T and the
same gains c0 = −1.5 and c1 = 5.

The results are shown in Figs. 2-4. The sliding modes
algorithm drive the µ1, µ2 states to the origin in finite-
time making the original states of the RWP system to be

attracted to the origin asymptotically and maintain there
despite the presence of the unbounded disturbance (due
to the fact that they are able to identified the disturbance
exactly as shown in Fig. 4). The linear algorithm, at
the beginning of the simulation, achieve the stabilization
of the states but when the disturbance is big enough,
the controller is not able to maintain the states in the
origin and this is more evident in the wheel velocity. With
respect to the control signal, the three algorithms present
a continuous one, but the linear algorithm shows a large
overshoot.
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Fig. 2. State trajectories in the simulations.
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Fig. 3. µ1-µ2 trajectories in the simulations.
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Fig. 4. Perturbation identification and control signal in the
simulations.

4.2 Experimental validation

The control (15) and (17), the transformation (13), the
2-DIA described by (19) with k1 = 2.43, k2 = 14.62,
kI1 = 1.26, kI2 = 0, c0 = −1.5 c1 = 6.5 and the 2-CTA
described by (18) with k1 = 36.3, k2 = 19.84, k3 = 4.02,
k4 = 1.92, c0 = −1.5 c1 = 7 were implemented in the real
RWP system with the Runge-Kutta’s integration method
of fixed step and a sampling time equal to 1 × 10−4[s].
As was done in the simulations, the control (4) and (11),
the transformation (2) and the linear feedback described
by (10) with c0 = −1.5 c1 = 4, c2 = c3 = 30, was
implemented as well. The experiments were made with the
same initial condition x0 = [π, 0, 0, 0]T .

The results are shown in Figs. 5-7. The three algorithms
drive the states of the pendulum from the downward
position close to the origin and stay around it, but the
linear controller performs this in a large time than the
others (around 15[s]). The wheel velocity is again a ro-
bust indicator, because only the sliding modes algorithm
maintain it close to the origin and the linear one does not.
This is because the linear algorithm can not deal with the
uncertainties present in the real system and can not drive
the µ1 state to the origin. Again, the chattering effect is
diminished as seen in the continuous control signal of the
sliding modes algorithms.

In theory, the three algorithms can achieve global stabi-
lization, but in practice, with the saturation of the real
control signal (voltage) is no longer possible. Despite this,
the three algorithms achieve the swing-up and stabilization
in one step.

5. CONCLUSION

The global stabilization of the third order RWP system ori-
gin was obtained, robustly due to the rejection of Lipschitz
disturbances/uncertainties in the system. Using two con-
tinuous second order sliding modes algorithm, the finite-
time convergence of a part of the dynamics is ensured with
a continuous control signal. Simulations and experimental
validation were performed to test the proposed algorithm
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Fig. 5. State trajectories in the experiment.
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and compare them with a linear controller, obtaining bet-
ter results due to the disturbance rejection.
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