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Abstract: In order to stabilize the vertical take-off/ vertical landing reusable launch vehicles in acrodynamic guidance
phase against complex disturbances and partial state constraints, an asymmetric logarithm-type barrier function and
asymmetric double-exponential-type barrier function are proposed, where the latter is smooth with respect to system
states and has a higher application value compared with the logarithm-type one. Based on the barrier functions and
practical fixed-time control theory, two practical fixed-time control laws are derived to drive the attitude tracking
errors to a small neighborhood of the origin within a fixed time and ensure the attitude constraints unviolated.
Simulation results demonstrate the efficiency of the controllers.
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1. INTRODUCTION

In the typical flight profile of vertical take-off/ vertical
landing (VTVL) reusable launch vehicles (RLVs),
aerodynamic guidance phase plays a significant role in
successful and precise landing (C.Z. Wei, X.Z Ju, R. Wu,
2019). VTVL RLVs adjust attack angle and sideslip angle in
this phase to utilize the pneumatic overload for position
correction. Due to the strong couplings and external
disturbances (Zhang L., Wei C., Wu R., Cui, N. 2018), the
control system of VTVL RLVs requires high robustness.

Many advanced methods have been developed to stabilize
flight vehicles, such as adaptive control (Xu B. 2015), sliding
mode control (SMC) (An H., Wang C., Fi dan. 2017) and so
on. However, due to slender structure, VTVL RLVs are more
vulnerable to structural damage caused by aerodynamic
overload than common flight vehicles. Hence the attack angle
and sideslip angle should maintain within a specific range to
prevent aerodynamic load from exceeding the limits (Blanchet
P, Bartos, B. 2001). Therefore, the essential control problem is
to stabilize RLVs against complex disturbances and guarantee
the constraints unviolated, which makes the control of RLVs
more difficult and challenging.

Barrier Lyapunov function (BLF) based control is efficient
in addressing such complicated problems with rigorous
constraints. This methodology utilizes barrier functions to
ensure constraints unviolated (Tee K. P, Ge S S. 2012). The
logarithm-type BLF (LBLF) was first used for Brunovsky
systems (Ngo, Mahony, and Jiang 2005). After that, integral-
type BLF (IBLF) was proposed for state constraints of strict
feedback systems (Tee K. P, Ge S S. 2012). To achieve the
trajectory tracking in the presence of output constraints, an
asymmetric barrier integral-type function is employed (He W.,
Yin, Z., Sun C. 2016). Other applications of BLF can be found
in An H., Xia H., Wang C. (2017) and so on. Although
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simulation results prove the effectiveness, system states
converge in an exponential manner. Since a faster response is
expected in the aerodynamic guidance phase, a fixed-time
convergent controller should be developed.

Exponential-type BLF (EBLF) is a novel type of BLF, based
on which Z.W Wang derived a fixed-time controller for
bilateral teleoperation systems (Wang, Z., Liang B, Wang, X.
2018). Then a further research on EBLF was accomplished by
Z.W. Wang for synchronization control with position error
constraints (Wang, Z., Sun Y, Liang B. 2019). However, these
two controllers are dedicated to deal with symmetric
constraints, while the constraints on attack angle and sideslip
angle are asymmetric given the asymmetric aerodynamic
coefficients of VTVL RLVs.

Motivated by the aforementioned analysis, we propose two
practical fixed-time convergent controllers based on
asymmetric IBLF (AIBLF) and asymmetric double-
exponential-type BLF (ADEBLF) respectively. The main
contributions of this paper are as follows.

1) AIBLF and ADEBLF are proposed to deal with control
problems with asymmetric constraints. ADEBLF is a
smooth function and still works in the condition of
infinite bound, therefore it has a higher value of
application compared with AIBLF.

2) Two practical fixed-time controllers based on AIBLF
and ADEBLF are proposed to guarantee the practical
fixed-time convergence and maintain partial states
within allowable ranges.

3) ‘Barrier function’ is used to guarantee the stability
against the lumped disturbances instead of utilizing
disturbance observers or adaptive laws, resulting in a
control system with much simpler structure.

The remainder of this research is organized as follows. Sec.2
provides some definitions and useful lemmas as preliminaries
for controller deduction. The control problem of VTVL RLVs
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is formulated in Sec.3, and the derivation process of two
controllers is presented in Sec.4. Simulation results are given
in Sec.5 to demonstrate the effectiveness of the developed
controllers, which are followed by the conclusion in Sec.6.

2. PRELIMINARIES

Some definitions and useful lemmas are introduced here for
controller design. Considering the following system:
)'c(t):f(x(t)), x(t,)=x, (1)
where xeR” is the state vector, f e R" represents the vector
field, which is piecewise continuous and Lipschitz in x.
Definition 1 (He W, Dong Y, Sun C. 2015) (Practical FxTC)
System (1) is said to be uniformly finite-time convergent to a
vicinity § cR" of the origin, if for any initial conditions
x, eR", there exists T such that the system state x(¢t)eS for
all t>7.1f T can be explicitly bounded by 7, 0<T,

max < +w b
then the system is called practical fixed-time convergent to a
vicinity of the origin.

Lemma l (TeeK. P., Ge S. S., Tay E. H. 2009) For any positive

constants k,, k,, let i:={xeR:—k,<x<k,}cR . Suppose

there exist two functions U:R'xR* —R" and V,:h—>R",

which are continuously differentiable and positive definite in
their respective domains, such that
V,(x) > o asx - —k, orx - k,

2)
7 (lef) < U (@) = 7, (Jle])
where » and y, are class K, functions. Let
V(x,)=V,(x)+U(w) and x(0)ene(-k,,k,). If:
oV Jot < —uV + A (3)

where 4 and 4 are positive constants, then x(7) remains in
the open set xe(-k,.k,), Vi e[0,+»).
Lemma 2 (Jiang B., Hu Q., Friswell M. I. 2016): Consider the
system (1). Suppose there exists a positive continuous-
derivable function ¥ :R" — R, such that
V(x)<—aV”(x)-pVE(x)+0 4)
where p<1, g<1, 6, a and >0 . Then the system is
practical fixed-time stable. The settling time 7T and
convergence neighbourhood D, can be represented as

1 1
eI )

D, = [gnrlx |V (x)< min{a”(lf’;y,ﬁp[]_&:Jé’”

where 0<¢ <1 .
Lemma 3 (Wang Z., Sun Y., Liang, B. 2019): Denote
sig(x, p) =sgn(x)|x" . If p,>0 and 0< p, <1, Vx,yeR, then

|sig(x, p,p,) —sig (v, pip, )| < 27 [sig (x. p,) - sig (v, p, )| (6)
Lemma 4 (Wang, Z., Sun, Y., Liang, B. 2019): If ¢, d >0 and
y >0, we have

c+d ’5 c+d c d 7
c+d ¥ +d y i =l y\ )
Lemma 5 (Tee, K. P., Ge, S. S. 2012): Consider the function:
z ok’
V(z,a):jo mda (8)

where z=x-a, |d<k.. V(z,0) Skfzz/(kf—xz) , Vx| <k, .
Lemma 6 (Zhang L., Wei C., Wu R., Cui, N. 2018): If veR"
and v>1, then for any x,yeR, we have |x+){" <2"|x" +)"

3. PROBLEM FORMULATION

Along the deduction lines in Zhang L., Wei C., Wu R., Cui,
N.(2018), the nominal control-oriented model of VTVL RLVs
can be described as follows.

Q=Ro+Af )
&=-J'oJo+J'BU+J'Ad
where w=[p ¢ r]T is the attitude angular velocity vector,

!22[(1 g G]
unknown bounded disturbance vector. @* represents the
skew-symmetric matrix operator on vector o , J is the inertia
matrix, B, and R are respectively the control moment matrix

" is the attitude vector. Ad and Af means the

and the coordinate transformation matrix, of which detailed
forms can be found in Zhang L., Wei C., Wu R. (2018).

Considering uncertainties of rotational inertia and

aerodynamic coefficients, the system (9) is converted to

{xl—xsz (10)
X, =M + g(t)+v(t)

where x, =Q, x,=Rw, v(t)=-RJ'o"Jo, M=RJ"'BU , and:

¢(1)==R(J+AJ)" (B, + AB,)U + Ad - " (J+AT o) - RJ'BU (11)

where AJ and AB, denote the uncertain parts of J and B,.
Denote the reference signals as y, =[y,, 7. ¥u] » Where

Yau» Vs and y,, are attitude orders in roll, yaw and pitch
channels. Here give assumptions for the deduction.
Assumption 1 There exist constants ¢ such that |¢(z)|<z, i.e.

disturbances g(t) are bounded.
Assumption 2 There exists a constant « such that |y, —Af]<x,

i.e. y, satisfy the Lipschtiz condition.

The main objective is to design the control law U such that:
1) Both x,(f)-y, and x,(f) converge to a small
neighbourhood of the origin in a fixed time in spite of
couplings and uncertainties. 2) During the convergence
process, states x,(¢) don’t violate the constraints as follows:

(12)

—k,; <x, <k,

bi

SJor x,ex,, Vt=0

where k, and k,, are specified positive values.

4. CONTROLLER DESIGN

In this section, two practical fixed-time controllers are
proposed respectively dependent on AIBLF and ADEBLF.
Both controllers achieve the practical fixed-time convergence,
while the application field and continuity of the ADEBLF-
based controller is better than the AIBLF-based controller.

4.1 Asymmetric Integral Barrier Lyapunov function based

Practical Fixed-time Control
We first give a control law as follows:
U=(RI"'B) [M.M,.M,]

(13)

where
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—Vi—%sgn(zr)—sig(zz,)%lf
M- ki (t)-z3, ' ' ey A 0 x,>0
i . W (lfA“)ké =X ™ Ya 1 x,<0
B i T i e e
K2 ;. —
221:x21+¢(x1,,zl,)—[/\11 k2x1,+(1 A Inkzx“}’(il‘lp] sgn(z,)
0

#(x,.z,) and k,(¢) are specified functions which will be

illustrated in the following part. ¢, is a positive coefficient.
Both ¢,/p, >1 and 1>g,/p, >0.5 hold.

Theorem 1: With the controller (13), the system (10) has the
following properties: 1) x,(¢)-y, converge into a small
neighbourhood of the origin within a fixed time. 2) The
predefined constraints -k, <x,, <k, will not be violated

during the convergence process.
Proof Consider a Lyapunov candidate function:

3 3
0!) = ZVII + ZVL
i=1 =
J'z], O'kf;
o kuzli(al-'—a()l)

where z,=x,-a, , a,

Vz,':Z;' (14)
do +(1-A,) [} ok
O (o +ay)

=yu » —ky<—4,<a, <4, <k, holds for
A, eR,,j=12, z,,=x, —a,, a, is the stabilizing function of

hi= j

z,,. ¥, is a positive definite, piecewise differentiable function

1i*
which becomes infinite if x,, approaches —k, and k,, .
Step 1: Based on Lemma 5, the functional ¥, satisfies

BN Ef (15)
Vishy 55 K= x} +(1*A11)kziz

ai bi

If z,#0, then the time-derivative of V|, is given by

k’z
2,0, A a1
120 1i
(, ,) s >

kyz ov,
1-A U_(z, +a, +A IS IR
( )kbzl 11 ( 2i 1i \f; — Yd:) £ Yai
Via integration by parts and substitution o, = Bz, , we have:

plan) | A7

(ZZi +a, + A - ydi)+

(16)

2

i k
=AMz 1x[k2 “ pl(ZmJ’m)J (17/\1:)21[[162 b

by (ke )(E,
n
2z, (kai_zll _ydf)(km'"ydi)
+(1-A,) Ky In (ko + 21+ v ) ko = Yar)
2z, (khi i ydi)(kbi + ydi)
With the use of L’Hopital’s rule, it can be derived that
k2 k2
i (znya)= 1 ai .
lelina l ( l d) lelin ky (le +yd1) kazt _yji
ks, ks,

_(zli + ydi)z - kbzt _ydzt
Given that —k, <y, <k, , according to Assumption 1,

oV,
Vai

- y‘n)

P (Zli7ydi) =Ay

(18)

(19)

lim A1 (2574)= lim

2
;> z;—>0. kh

£(z,;,y,) is well-defined in the neighbourhood of z,=0.

Design the stabilizing function ¢, as follows

2
k, xh

;= _¢(xli’zli ) +{Alx

2 _ 2 2 _ 2 a % (20)
) {Ali k‘li xli + (1 7Ali) khi x” ](kliul? + kliUll;A J Zil # 0

2
ai“li

¢(X“,Z

2.2
Zy . Zy .
L. A ai”li 1 ) bi<1i 21
1i li ki- _x12’ ( ]’)kz,' _ ( )
where ¢, is a small positive constant such that |g,| emin{k,.k,| ,

and &, >0 determining the convergence rate. Considering that

Zlhirl})qﬁ(x”,z”) =¢(x,,0)=0, ¢(x,.,z,)is a continuous function.

Substituting (20) into (16) yields:

y - G kmzz, \ k}iZZi
Vll(th’aOt) ko +k1,Uh A 2+(1_A11/ > 2
ai i Ky —x,
22)
I K- \xz (
+(AI,T;1+(17A“)‘T;1]$Sgn(z“)
k. —x, k. —x,
_[AhTmh (1 A ) Ikm 1']/01}{,, z,#0
Step 2: Based on (10), the time-derivative of 7, is
VZi = ZZZi(gi+Vi +M; 70“11) (23)
where ¢, exists if z, doesn’t equal to zero.
Design the stabilizing function as:
24 29,
-, H;sgn( )—sig(zy, ) m 1—sig(zzl.)pz :
) (t) (24)
I Allk:r _( — Ii)khzi
2k -2x 2k -2x]
where |k, (¢) is a decreasing function, |k, (0)>|z,(0)] and

)—zzz[) is exactly a

km.(t)‘<§|t>tl,§e]R+ < 1} . Here, 1/(kf,(t

{

barrier function that it grows infinity if z, approaches £k, (t) .
Substituting (24) into (23) yields

. #sgn(zzl) sig(z,, )7
Vyi =22y 5 P (25)
—sig(z, ).:z g, - Aky (L=, )kh

! bO2kL-2x) 2k -
Step 3: Based on (22) and (25), we obtam the time-derivative
of the Lyapunov function candidate ¥,(z,«) as follows

3 539 @ 539 4

SS Y < 2 nErr 2 mERE e

(26)

where Z=min{k,,2}, and
=% Jey =,

ai bi

. 1 .
jplyd + 2221[ mSgn(zzt ) _auJ

xh\lrzhp,
kz } &

sen(z, )

For ease of derivation, four regions are introduced here:

ool

Q= {Zlfazzi}l Zi

Zai

{ 211’221 |Zn>go’zz<\/ k([(t)—min{l,kj} }

li 7
{ zll,zz, [z, SSO,ZZiZ\/ kj(t)—min{.l,kfi} }

a]i
{ le’ZZI |z Sgo,zziﬁ\/ kczi(t)_min{lakz} }
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If {z,(0),2,(0)} € 2, then 9 <0 and we have
3 Ll @ @ Ken s 3a @ 550
sz[— [V +1 ] @[V;' VP D =2 "oy -2 ”zcbe'
i=1

where ® =min{2,k,,k,.k} . According to Lemma 2, {z,, z,}

(28)

will move across region 2, into 2,, @, or 2, within 7,
1 + 1

25—5%/?.5(1 _ql/pl) 2556/ (qz/pz _1) '

, then

where T, <
If {z,, z,,} moves into @,

@ 2
V (le’aﬂz) [k O +k, Ulz ]+9i1 (29)

where:
@%ﬁ@mﬁ#%M&ﬁﬂﬂ%@mﬁ&%M%@

Thus {z,, z,,} will converge into the region D, within 7,
1 1
+
kli(l _ql/pl) kli(qz/pz _1)

{Zu,zzx} ‘ Vli(zlz )<mln{k f;: (01/(1_g)):’klijj(gil/(l_g))sf:|

el

1i
If {z,, z,,} movesinto @,,then {z,, z,} will converge into

where 7, < and

) =

Zyi <

the region D, within ¢, where

D, ={{z,2,}] <¢) (30)

Based on the abovementioned analysis, {z,, z,} with any

<&,

Zy Zyi

initial values can converge into the region D, within 7,
where D, =, U D, U D, and T, <max{t, +7T,,T,+7T;} . Moreover,
constraints —k, <x,, <k, aren’t violated.
4.2  Asymmetric Double-exponential Barrier Lyapunov
function based Practical Fixed-time Control

As can be seen in (14), the AIBLF is not continuously
differentiable at z, =0 . In order to get rid of discontinuity, an
ADEBLF is proposed, which is inspired by Wang, Z., Liang,
B., Wang, X. (2018). Furthermore, a practical fixed-time
control law is deduced based on the proposed novel BLF. The
boundaries of tracking errors are set as &, =k, -y, ., and

0, =Ky~ V4 mx » Where ( Vi min> ydiimax) are the limits of reference

orders in three channels. Via redefining the states
x(1)=8(t)-y,(¢) and x,(t)=Re(r) , a converted model is
derived as follows

x,(t)=x,(6)+F (1), x,(1)=M +¢(t)+v(¢) (31)
where F (t)=-y,(t), v(t)=—RJ '@"Jo , M=RJ'BU and
s(t)=—R(J+AT) '@ (J+AT )+ (J+AT) ' Ad (1) (32)
+R(J+AT) " (B, +AB,)U +Ad)-v(r)- RJ"'BU
The form of ADEBLF is given by:
_ nY(3,,5, = =
:(é‘a,é‘h,xl) ﬁ[e@(%/(% + 5{,)) + exp(xl/<5,7 —xl)) —2} (33)

Y(6.8)=(0,40)" " % =g & =()

5;= Sig(é;)(z"s“z)/ﬁ 5;7 :Sig(é;y)(ﬂw:)/n — (34)
Remark 1: The proposed ADEBLF is inspired by the EBLF in
Wang Z., Liang B., Wang X. (2018). However, given the
asymmetric constraints on the attack angle of VTVL RLVs,
the EBLF is not suitable for use. Here the ADEBLF
£(0,.5,,x,) approaches infinity if x, > -5, or x, > ¢, , thus

25 =2r,>0

it has a larger application field compared with the EBLF.
Theorem 2: Consider a control law as follows

U=(RI'B) [M,.M.M,] (35)
where
M, =—v, (t) _; = Pk _ESig(é’zk )2’7:3
é:ilk _gz(t) 2 (36)

2 2341y 25+

K (é‘lk nF |Gl 7 Jsgn(éu)
where ¢,(¢) is a positive decreasing function, &,(0)>¢&,(0) and
23/n, /251213/4)

SulZe. py>0, pe>0,

7(pis+p0)sgl(é‘:i2k) - po‘//(ézk) i

&(h)<g , 6,50, 0<g <1, (//(§2k):sin(7r\§2k
holds if

P> Eapand &, are will be defined in the following part.

With the control law (36), the system (10) has the following
properties: 1) x,(7) converge into a small neighbourhood of

Enl<e, and y(&,,)=1 if

the origin within a fixed time. 2) The predefined constraints
-8, <x, <6, will not be violated.

Proof: The candidate Lyapunov function for the closed-loop
system is given by V=V, +V, , V= X E(6,.5,,x,) and

i=1,2,3

V,= X J-;“ sig(sig(r)’a/rz —sig(x;k )’4/"2 )“;/m 4

i=1,2,39 X2k

Step 1: Taking the derivative of V] yields

V = Z Y(5,6,)E,si e 50 4 S[b Xiok —Xiok (3 7)
1= i-123 ( a’ b) ikSIg(xi]) i — —ot -
o (x'1+é;a) (51'1; 7xil) 12/:+F

where Eik:exp()%il/()?il + g‘m)) + eXp('%il/(éTib _7‘1'1)) .

Via denoting §“k=sig(x”)"‘/r‘ > X ™ ngr1(§”k)—a05ig(§“k)“/" ,
a, >0, we have:

Vl < Y(é"’g”)(;:%g Vin _I:I,Z,SV;IZJ
PR A 5, .
Vii :E[kSIg(xil) i — — ot - 2 (xi2k _xm) (38)
(xil +5fa) (é‘lb _xtl)
Via = aOEikSIg(éilk)m Slg(xil) i — et — ll; 7
(xil + é‘m) (é‘m _le)
Denote &,,=sig(x,,, )" ~sig(x), )WZ , we have
. 2n-n ; 2 2n-n l—% 2
Slg(le) i (xizk sz) 2 ! %‘é]k no420 2}% Suln (39)
3
Therefore, we have:
Vs % X(koh)Es (5 J(F.+8.) +3,/(5, )
n n : (40)
- — 2 - 2
MZI w2 _ao] Sk 7+2] " i‘é ‘|
€] 2r,
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Step 2: Given the form of &,, , V, satisfies:
2ry 41y m
Silz“z(lfizkl a +|§i1k & j (41)

The derivative of ¥, with respect to ¢ is given by:

2r3
74

*
< X |xi2k _xizk“éZk

i=1,2,3

P . * n/n
) 2, 2 25+ |dsig x,,, . 2w
VZSHZNT}Z | (dt ) +sig(&y ) " Ky (42)

According to Lemma 4, the following inequality holds

dsig(xfz,{ )W2

" el #3)

<p ‘fil&

| rn—n . » 7, , -
where plzi #a;/ﬁ +a(()'4”z)/rz , pzziiza(r;/:z )
n\7n—-n nn—n

Substitute (43) into (42). Based on Lemma 4, we have

. 2 2 . 2i/r .
v, Sﬁ%}ﬂs Sanl Py || +Slg(§i2k) Xiok (44)
L _ L _ L
where p=2 " p il 5 p HathTh 205
4 A A
Step 3: The time derivative of ¥ is deduced as:
. 5 Ey 2
V<- Y(ku’kh)E:’k — =gt = b7 A2 pz‘étnk‘“
i=1,23 (xl _._5(4) (5[’_){1) =123 (45)

2i
7y

B oty B % i
P . -
-2 4;‘@%‘& +0 g jLSlg(ézk) Xiok
3

éiZk

‘% 28, —r
l:{_z ) H+%Jélk
6]

For ease of deduction, here we define:

Pis :Y(éa’(sb)Eik — é‘iaf 7t — 5”; 2 {_2 w2 42—7'2 +ao}_pz
(Xn +5,(,) (5,17 *x,1) £ (46)
§m é‘ib 217:}"72_'_ﬁ74

Pis =Y(8,,6,)E, — —
T S By )
Along the deduction lines in Wang Z., Liang B., Wang X.
2018, we can obtain that

Bt 2+ Bt 2r+n

7 2ry 47 2ry 41 2r5+1, 2r5+r
VoS=p " =p 7 = ppl T ) vy,

. 2 /r, 1
— X sig(&y, ) [gz(t)_

=123 é]k

h 2r+ny 2r;+
where wizpn(17W(§izk))( 5,'11( noo+ ‘Dtiﬂf

29 )
p”_(_z 74&26“”0]“’3 V(0,0 Ey| — =t ="
7 (xi+3.) (3-%)

_ A
_t 5‘17 ) é‘lk " _ Py _ Py

12
2N(mra) (5,-m) X4 Rt 2

(47)

2+ 2+

2+, 2+,

Bty 2r3+1y
I}+Ii N
2r+r 54 A+ 2r+r 5t 4+
3™h 4 1T A =i 3°h 40
Pro £y Tmn
K B i 2+,

2r+n
4r5 -+
9

Pyo=min [

With (41) and Lemma 6, it can be derived that

4r+2ry

2ry+ry 772140
_p]32 l]+r_V Bt + Z @,

i=1,2,3

l)sgn(§[2k)+g(t)J

2r3+25 B+

Vg_pnz 2r+n V2r3+r2

2r5+ry

(43)

i=1,2,3

T ——
ilk 2

where p, =min{py,, 01,005,015} -
Since ¢,(1,)=¢, <1 holds, the absolute value of &, will
always be less than &,(¢) under sufficient control quantities.

According to Lemma 2, the settling time 7 and convergence
neighbourhood D, can be represented as

T<t+ ! — ! (49)
rn+rn r+7,
17 3 1 3 4 71
pl}( 2'3+r2] p13(2'3+r2 j
- B -
1 ngl(é'l) i3+
| asigla)"| fal-a() ||
+() (50)

D, ={limx| V() <min N

=T 24

1 _ Sgn(gl) i
| T aysigla)| lal-a()

=123
+(7)

By adjusting &,(¢) and & , D, can be arbitrarily small.

Therefore, the fixed-time convergence and high accuracy are
both guaranteed by the proposed controller (35).

5. SIMULATION

In order to demonstrate the effectiveness of the proposed
controllers, numerical simulation results are presented here.
The parameters of VTVL RLVs in of Zhang L., Wei C., Wu
R. (2018) are adopted. Control parameters are as follows:
4,=16,p =1, ¢, =1, p, =144 k, =k, =k, =17, &,=0.17/180, x =17/180
5 =005, 1, =025, 1, =0.05, , =0.05, p, =65, o, =12, k=15

r 19957 . (mt r 19957 . (mt
5— ™ sin EY t<1 5— 150 sin By t<1
3
{km’(t)}l = & (t):
0.057 . (¢ 0.057 . (nt
——sin| — t>1 ——sin| — t>1
180 2 180 2
The constraints of angles are ¢, =-02", «a, =10",
Bow=-02, B =22, 0, =06,0,, =-005 . The initial

parameters are =0, =0, o=0.5, angular velocities p,
q and r equal to zero. Simulation results presented in Figs.

1-3 reveal the high accuracy and fast convergence rate of the
AIBLF-based fixed-time controllers. The constraints are not
violated during the tracking process. Tracking errors in three
channels are less than 0.1deg, and converge to the small
residual of steady desired values within 2.1s.

To validate the efficiency of ADEBLF-based controller,
attitude orders and initial states are set to be the same as those
in the simulation of AIBLF. The predefined constraints are
E _=-02,E =100, E, =-02°, E, =22,E =06,

amin amax Bmin max omin

E__ . =-0.05 .Simulation results are presented in Figs.4-6. The

orange dot line and the blue dot line represent the upper bound
and the lower bound. During the tracking process, the tracking
errors are less than 0.1deg, and the constraints stay unviolated.
The attack angle, sideslip angle and bank angle are driven to
the small residual of desired values within 2.1s.
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6. CONCLUSIONS

This paper proposes ALBLF and ADEBLF to deal with
asymmetric constraints of VIVL RLVs in aerodynamic
guidance phase. They both tend to infinity when the
constrained states approach the boundary, while ADEBLF is
of higher application value due to its continuity. Furthermore,
practical fixed-time control laws based on two BLFs are
derived, which guarantee that the order tracking errors
converge to a small neighbourhood of the origin within a fixed
time and constraints are not violated during the tracking
process. Simulation results demonstrate the efficiency of the
two proposed controllers.
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