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Abstract: In order to stabilize the vertical take-off/ vertical landing reusable launch vehicles in aerodynamic guidance 
phase against complex disturbances and partial state constraints, an asymmetric logarithm-type barrier function and 
asymmetric double-exponential-type barrier function are proposed, where the latter is smooth with respect to system 
states and has a higher application value compared with the logarithm-type one. Based on the barrier functions and 
practical fixed-time control theory, two practical fixed-time control laws are derived to drive the attitude tracking 
errors to a small neighborhood of the origin within a fixed time and ensure the attitude constraints unviolated. 
Simulation results demonstrate the efficiency of the controllers. 
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1. INTRODUCTION 

In the typical flight profile of vertical take-off/ vertical 
landing (VTVL) reusable launch vehicles (RLVs), 
aerodynamic guidance phase plays a significant role in 
successful and precise landing (C.Z. Wei, X.Z Ju, R. Wu, 
2019). VTVL RLVs adjust attack angle and sideslip angle in 
this phase to utilize the pneumatic overload for position 
correction. Due to the strong couplings and external 
disturbances (Zhang L., Wei C., Wu R., Cui, N. 2018), the 
control system of VTVL RLVs requires high robustness.  

Many advanced methods have been developed to stabilize 
flight vehicles, such as adaptive control (Xu B. 2015), sliding 
mode control (SMC) (An H., Wang C., Fi dan. 2017) and so 
on. However, due to slender structure, VTVL RLVs are more 
vulnerable to structural damage caused by aerodynamic 
overload than common flight vehicles. Hence the attack angle 
and sideslip angle should maintain within a specific range to 
prevent aerodynamic load from exceeding the limits (Blanchet 
P, Bartos, B. 2001). Therefore, the essential control problem is 
to stabilize RLVs against complex disturbances and guarantee 
the constraints unviolated, which makes the control of RLVs 
more difficult and challenging. 

Barrier Lyapunov function (BLF) based control is efficient 
in addressing such complicated problems with rigorous 
constraints. This methodology utilizes barrier functions to 
ensure constraints unviolated (Tee K. P, Ge S S. 2012). The 
logarithm-type BLF (LBLF) was first used for Brunovsky 
systems (Ngo, Mahony, and Jiang 2005). After that, integral-
type BLF (IBLF) was proposed for state constraints of strict 
feedback systems (Tee K. P, Ge S S. 2012). To achieve the 
trajectory tracking in the presence of output constraints, an 
asymmetric barrier integral-type function is employed (He W., 
Yin, Z., Sun C. 2016). Other applications of BLF can be found 
in An H., Xia H., Wang C. (2017) and so on. Although 

simulation results prove the effectiveness, system states 
converge in an exponential manner. Since a faster response is 
expected in the aerodynamic guidance phase, a fixed-time 
convergent controller should be developed.  

Exponential-type BLF (EBLF) is a novel type of BLF, based 
on which Z.W Wang derived a fixed-time controller for 
bilateral teleoperation systems (Wang, Z., Liang B, Wang, X. 
2018). Then a further research on EBLF was accomplished by 
Z.W. Wang for synchronization control with position error 
constraints (Wang, Z., Sun Y, Liang B. 2019). However, these 
two controllers are dedicated to deal with symmetric 
constraints, while the constraints on attack angle and sideslip 
angle are asymmetric given the asymmetric aerodynamic 
coefficients of VTVL RLVs. 

Motivated by the aforementioned analysis, we propose two 
practical fixed-time convergent controllers based on 
asymmetric IBLF (AIBLF) and asymmetric double-
exponential-type BLF (ADEBLF) respectively. The main 
contributions of this paper are as follows. 

1) AIBLF and ADEBLF are proposed to deal with control 
problems with asymmetric constraints. ADEBLF is a 
smooth function and still works in the condition of 
infinite bound, therefore it has a higher value of 
application compared with AIBLF. 

2) Two practical fixed-time controllers based on AIBLF 
and ADEBLF are proposed to guarantee the practical 
fixed-time convergence and maintain partial states 
within allowable ranges. 

3) ‘Barrier function’ is used to guarantee the stability 
against the lumped disturbances instead of utilizing 
disturbance observers or adaptive laws, resulting in a 
control system with much simpler structure. 

The remainder of this research is organized as follows. Sec.2 
provides some definitions and useful lemmas as preliminaries 
for controller deduction. The control problem of VTVL RLVs 
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is formulated in Sec.3, and the derivation process of two 
controllers is presented in Sec.4.  Simulation results are given 
in Sec.5 to demonstrate the effectiveness of the developed 
controllers, which are followed by the conclusion in Sec.6.   

2. PRELIMINARIES 

Some definitions and useful lemmas are introduced here for 
controller design. Considering the following system: 

      0 0,    t t t x f x x x    (1) 

where nx   is the state vector, nf   represents the vector 
field, which is piecewise continuous and Lipschitz in x . 
Definition 1 (He W, Dong Y, Sun C. 2015) (Practical FxTC) 
System (1) is said to be uniformly finite-time convergent to a 
vicinity nS   of the origin, if for any initial conditions 

0
nx  , there exists T  such that the system state  t x S  for 

all t T . If T  can be explicitly bounded by maxT , max0 T   , 

then the system is called practical fixed-time convergent to a 
vicinity of the origin. 
Lemma 1 (Tee K. P., Ge S. S., Tay E. H. 2009) For any positive 
constants ak , bk , let  : : a bx k x k        . Suppose 

there exist two functions : lU       and 1 :V   , 

which are continuously differentiable and positive definite in 
their respective domains, such that  
 
     

1

1 2

 as  or a bV x x k x k

U    

    

 
   (2) 

where 1  and 2  are class K  functions. Let 

     1, = +V x V x U   and    0 ,a bx k k   . If: 

V t V         (3) 

where   and   are positive constants, then  x t  remains in 

the open set  ,a bx k k  ,  0,t   . 

Lemma 2 (Jiang B., Hu Q., Friswell M. I. 2016): Consider the 
system (1). Suppose there exists a positive continuous-
derivable function : nV    such that  

     p gV V V     x x x    (4) 

where 1p  , 1g  ,  ,   and 0  . Then the system is 
practical fixed-time stable. The settling time T  and 
convergence neighbourhood 0D  can be represented as 

   

 
1 1

1 1

0

1 1

1 1

lim | min ,
1 1

p g
p p

t T

T
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D V

 

  
 

 



 
 

  
                   

x x

  (5) 

where 0 1   . 
Lemma 3 (Wang Z., Sun Y., Liang, B. 2019): Denote 

   sig sgn
p

x p x x, . If 1 0p   and 20 1p  , ,x y  , then 

        221
1 2 1 2 1 1sig , sig , 2 sig , sig ,

ppx p p y p p x p y p     (6) 

Lemma 4 (Wang, Z., Sun, Y., Liang, B. 2019): If c , 0d   and 
0  , we have 

c
c d c d c dd

c d
x y x y

c d c d
 

  
 

  (7) 

Lemma 5 (Tee, K. P., Ge, S. S. 2012): Consider the function: 

 
 

2

220
, d

z
c

c

k
V z

k

 
 


     (8) 

where z x   , ck  .    2 2 2 2, c cV z k z k x   , cx k  . 

Lemma 6 (Zhang L., Wei C., Wu R., Cui, N. 2018): If v   

and 1v  , then for any ,x y , we have 12
v v v vx y x y   . 

3. PROBLEM FORMULATION 

Along the deduction lines in Zhang L., Wei C., Wu R., Cui, 
N.(2018), the nominal control-oriented model of VTVL RLVs 
can be described as follows. 

1 1 1
1

= +
   

 


    

Ω Rω f

ω J ω Jω J B U J d




  (9) 

where  T= p q rω  is the attitude angular velocity vector, 

 T=   Ω  is the attitude vector. d  and f  means the 

unknown bounded disturbance vector. ω  represents the 
skew-symmetric matrix operator on vector ω , J  is the inertia 
matrix, 1B  and R  are respectively the control moment matrix 

and the coordinate transformation matrix, of which detailed 
forms can be found in Zhang L., Wei C., Wu R. (2018). 
Considering uncertainties of rotational inertia and 
aerodynamic coefficients, the system (9) is converted to 

   
1 2

2

= +

+t t


  

x x f

x M ς ν




   (10) 

where 1 x Ω , 2 x Rω ,   1=t  ν RJ ω Jω , 1
1= M RJ B U , and: 

        1 1
1 1 1= + +t

          ς R J J B B U d ω J J ω RJ B U  (11) 

where J  and 1B  denote the uncertain parts of J  and 1B .  

Denote the reference signals as  T1 2 3d d d dy y yy , where 

1dy , 2dy  and 3dy  are attitude orders in roll, yaw and pitch 

channels. Here give assumptions for the deduction. 
Assumption 1 There exist constants   such that  t ς , i.e. 

disturbances  tς  are bounded. 

Assumption 2 There exists a constant   such that d  y f , 

i.e. dy  satisfy the Lipschtiz condition. 

The main objective is to design the control law U  such that: 
1) Both  1 dt x y  and  2 tx  converge to a small 

neighbourhood of the origin in a fixed time in spite of 
couplings and uncertainties. 2) During the convergence 
process, states  1 tx  don’t violate the constraints as follows: 

1 1 1   ,  0ai i bi ik x k for x t     x   (12) 

where aik  and bik  are specified positive values. 

4. CONTROLLER DESIGN 

In this section, two practical fixed-time controllers are 
proposed respectively dependent on AIBLF and ADEBLF. 
Both controllers achieve the practical fixed-time convergence, 
while the application field and continuity of the ADEBLF-
based controller is better than the AIBLF-based controller. 
4.1 Asymmetric Integral Barrier Lyapunov function based 
Practical Fixed-time Control 

We first give a control law as follows: 

   1 T1
1 1 2 3, ,M M M

U RJ B    (13) 

where  
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 1 1,i ix z  and  cik t  are specified functions which will be 

illustrated in the following part. 0  is a positive coefficient. 

Both 1 1 1q p   and 2 21 0.5q p   hold. 

Theorem 1: With the controller (13), the system (10) has the 
following properties: 1)  1 dt x y converge into a small 

neighbourhood of the origin within a fixed time. 2) The 
predefined constraints 1ai i bik x k    will not be violated 

during the convergence process. 
Proof Consider a Lyapunov candidate function: 

 

 
 

 
1 1

3 3
2

1 1 2 2 2
1 1

2 2

1 1 12 22 20 0
0 0

,         

d 1 d
i i

i i i i
i i

z z
ai bi

i i i i i

ai i i bi i i

V z V V V z

k k
V

k k



  
   

 

  

   
   

 

 
  (14) 

where 1 1 0i i iz x   , 0i diy  , 1 0 0bi i i i aik A A k      holds for 

jiA  , 1,2j  , 2 2 1i i iz x   , 1i  is the stabilizing function of 

1iz . 1V  is a positive definite, piecewise differentiable function 

which becomes infinite if 1ix  approaches aik  and bik .  

Step 1: Based on Lemma 5, the functional 1iV  satisfies 

 
2 2 2 2

1 1i
1 1 12 2 2 2

1 1

+ 1ai i bi
i i i

ai i bi i

k z k z
V

k x k x
   

 
  (15) 

If 1 0iz  , then the time-derivative of 1iV  is given by 

   

   

2
1

1 1 0 1i 2 12 2
1

2
1 1

1i 2 12 2
1

, +

                1

ai i
i i i i i i di

ai i

bi i i
i i i di di

bi i di

k z
V z z f y

k x

k z V
z f y y
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  (16) 

Via integration by parts and substitution 1i i iz  , we have: 

     
2 2

1
1 1 1 1 1 1 1 12 2 2 2

1 1

, 1 ,i ai bi
i i i di i i i di

di ai i bi i

V k k
z z y z z y

y k x k x
 

   
             

(17) 

    
  

    
  

1
1 1 1

1 1

1
1

1 1

, ln
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                 1 ln
2

ai i di ai diai
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i
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  (18) 

With the use of L’Hôpital’s rule, it can be derived that 
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,

,
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z z
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  (19) 

Given that ai di bik y k   , according to Assumption 1, 

 1 1 ,i diz y  is well-defined in the neighbourhood of 1 0iz  . 

Design the stabilizing function 1i  as follows 

     

   
1 2

1 2

2 2 2 2 2
1 1 1 1

1 1 1 1 1 12 2
0

2 2 2 2
1 1

1 1 1 1 1 1 12 2
1 1 1 1

1

, + 1 sgn

1 0
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i i i i i i
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x z k z k z

z

  


 


  
     

 
    
           

 

 (20) 

 
2 2 2 2

1 1
1 1 12 2 2 2

1 1

1ai i bi i
i i i

ai i bi i

k z k z

k x k x
    

 
  (21) 

where 0  is a small positive constant such that  0 min ,i ai bik k  , 

and 1 0ik   determining the convergence rate. Considering that 

   
1

1 1 10
lim , ,0 0

i
i i iz

x z x 


  ,  1 1,i ix z is a continuous function.  

Substituting (20) into (16) yields: 
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  (22) 

Step 2: Based on (10), the time-derivative of 2iV  is  

 2 2 12 +i i i i i iV z M         (23) 

where 1i  exists if 1iz  doesn’t equal to zero. 

Design the stabilizing function as: 

       

 

1 2

1 2

2 2
1 1

2 2 22 2
2
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11
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1
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M
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  (24) 

where  cik t is a decreasing function,    20 0ci ik z  and 

  1| , 1cik t t t      . Here,   2 2
21 ci ik t z  is exactly a 

barrier function that it grows infinity if 2iz  approaches  cik t . 

Substituting (24) into (23) yields 
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  (25) 

Step 3: Based on (22) and (25), we obtain the time-derivative 
of the Lyapunov function candidate  1 ,V z   as follows 

1 1 2 2

1 1 2 2

5 53 3 5 5

1 1 2 1 1
1 1

2 2
q q q q

p p p p
i i

i i

V V V V V 
 

 

             (26) 

where  1min ,2ik  , and 
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For ease of derivation, four regions are introduced here: 
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If     1 2 10 , 0i iz z Ω , then 0  and we have  
21 1 2 1 1 2 2
2

1 1 2 1 1 2 2

5 53 5 5

1 1 1 2 2 1 1
1

2 2
q

p

q q q q q q q

p p p p p p p
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i
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   (28) 

where  11 12 13min 2, , ,k k k  . According to Lemma 2,  1 2,  i iz z  

will move across region 1Ω  into 2Ω , 3Ω  or 4Ω  within 1T , 

where 
   1 1 2 21 5 5 5 5

1 1 2 2

1 1

2 1 2 1q p q p
T

q p q p  
  

. 

If  1 2,  i iz z  moves into 2Ω , then  
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where: 

     2 2 2 2 2 2 2 2 2 2
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Thus  1 2,  i iz z  will converge into the region 1D  within 2T , 

where 
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If  1 2,  i iz z  moves into 3Ω , then  1 2,  i iz z  will converge into 

the region 2D  within 1t , where  

  2 1 , 2 1 0 2| ,  i i i iz z z z   D   (30) 

Based on the abovementioned analysis,  1 2,  i iz z  with any 

initial values can converge into the region 3D  within 3T , 

where 3 4 1 2  D Ω D D  and  3 1 1 2 1max ,T t T T T   . Moreover, 

constraints 1ai i bik x k    aren’t violated. 

4.2 Asymmetric Double-exponential Barrier Lyapunov 
function based Practical Fixed-time Control 
As can be seen in (14), the AIBLF is not continuously 

differentiable at 1 0iz  . In order to get rid of discontinuity, an 

ADEBLF is proposed, which is inspired by Wang, Z., Liang, 
B., Wang, X. (2018). Furthermore, a practical fixed-time 
control law is deduced based on the proposed novel BLF. The 
boundaries of tracking errors are set as _mina ai dik y    and

_ maxb bi dik y   , where  _ min _ max,di diy y  are the limits of reference 

orders in three channels. Via redefining the states 
     1 dt t t x Ω y  and    2 t tx Rω , a converted model is 

derived as follows 
           1 2 2+ ,   = +t t t t t t x x F x M ς ν    (31) 

where    = dt tF y ,   1=t  ν RJ ω Jω , 1
1= M RJ B U  and 

         
      

1 1

1 1
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= + + +

          +
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ς R J J ω J J ω J J d

R J J B B U d ν RJ BU
  (32) 

The form of ADEBLF is given by: 
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1
1 1 1 1 1

3 2

22 2

1 1

,
ˆ ˆ, , exp exp 2

2

ˆ, = +      sig        

a b
a b a b

r r rr r r r r r

a b a b

r
x x x x x

r r

x x x x

 
   

   
 

        

  

  (33) 

     3 2 1 3 2 12 2

3 4 1 2= sig    sig     2 0
r r r r r r

a a b b r r r r           (34) 

Remark 1: The proposed ADEBLF is inspired by the EBLF in 
Wang Z., Liang B., Wang X. (2018). However, given the 
asymmetric constraints on the attack angle of VTVL RLVs, 
the EBLF is not suitable for use. Here the ADEBLF 
 1, ,a b x   approaches infinity if 1 ax    or 1  bx  , thus 

it has a larger application field compared with the EBLF. 
Theorem 2: Consider a control law as follows 

   1 T1
1 1 2 3, ,M M M

U RJ B    (35) 

where 
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where  2 t  is a positive decreasing function,    2 10 0i k   and 

 2 2 3t  , 2 0t  , 30 1  ,    3 4 3 4
2 2

2 2 1sin 2
r r r r

i k i k      

holds if 2 1i k  , and  2 1i k    if 2 1i k  . 0 0  , 6 0i  , 

6i , 1i k and 2i k  are will be defined in the following part. 

With the control law (36), the system (10) has the following 
properties: 1)  1 tx  converge into a small neighbourhood of 

the origin within a fixed time. 2) The predefined constraints 
ai i bix     will not be violated. 

Proof: The candidate Lyapunov function for the closed-loop 
system is given by 1 2V V V  ,  1 1
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Step 1: Taking the derivative of 1V  yields 
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where      1 1 1 1ˆ ˆ=exp expik i i ia i ib iE x x x x    . 
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Denote     4 24 2 *
2 2 2=sig sig

r rr r

i k i k i kx x  , we have 
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Therefore, we have: 
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Step 2: Given the form of 2i k , 2V  satisfies: 
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The derivative of 2V  with respect to t  is given by: 
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According to Lemma 4, the following inequality holds 
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Substitute (43) into (42). Based on Lemma 4, we have 
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Step 3: The time derivative of V  is deduced as: 
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For ease of deduction, here we define: 
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(46) 

Along the deduction lines in Wang Z., Liang B., Wang X. 
2018, we can obtain that  
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With (41) and Lemma 6, it can be derived that 
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  (48) 

where  13 10 11 12 13min , , ,      . 

Since  2 2 3 1t    holds, the absolute value of 1i k  will 

always be less than  3 t  under sufficient control quantities. 

According to Lemma 2, the settling time T  and convergence 
neighbourhood 0D  can be represented as 
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  (50) 

By adjusting  2 t  and 1 , 0D  can be arbitrarily small. 

Therefore, the fixed-time convergence and high accuracy are 
both guaranteed by the proposed controller (35). 

5. SIMULATION 

In order to demonstrate the effectiveness of the proposed 
controllers, numerical simulation results are presented here. 
The parameters of VTVL RLVs in of Zhang L., Wei C., Wu 
R. (2018) are adopted. Control parameters are as follows: 

    

1 1 2 2 11 12 13 0

1 2 3 2 0 0

3

21

1.6,  1,  1, 1.44, 17, 0.1 180, 1 180 

0.05, 0.25, 0.05, 0.05, 6.5, 1.2, 1.5 

19.95 19.9
sin 1

9 180 2 9
  

0.05
sin 1

180 2

ci

q p q p k k k

r r r r

t
t

k t t
t

t

   
  

   


 

        

      

     
   

     

5
sin 1

180 2

0.05
sin 1

180 2

t
t

t
t

 

 

    
  


     

 

The constraints of angles are min 0.2    , max 10   , 

min 0.2    , max 2.2   , min max0.6 , 0.05     . The initial 

parameters are 0  , 0  , 0.5  , angular velocities p , 

q  and r  equal to zero. Simulation results presented in Figs. 

1-3 reveal the high accuracy and fast convergence rate of the 
AIBLF-based fixed-time controllers. The constraints are not 
violated during the tracking process. Tracking errors in three 
channels are less than 0.1deg, and converge to the small 
residual of steady desired values within 2.1s. 

To validate the efficiency of ADEBLF-based controller, 
attitude orders and initial states are set to be the same as those 
in the simulation of AIBLF. The predefined constraints are 

min 0.2E    , max 10E   , min 0.2E    , max 2.2E   , min 0.6E   , 

max 0.05E    .Simulation results are presented in Figs.4-6. The 

orange dot line and the blue dot line represent the upper bound 
and the lower bound. During the tracking process, the tracking 
errors are less than 0.1deg, and the constraints stay unviolated. 
The attack angle, sideslip angle and bank angle are driven to 
the small residual of desired values within 2.1s. 
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Figure 1 Time histories of attack angle under 

AIBLF-based control 

 
Figure 2 Time histories of sideslip angle 

under AIBLF-based control 

 
Figure 3 Time histories of bank angle under 

AIBLF-based control 

 
Figure 4 Time histories of attack angle under 

ADEBLF-based control 

 
Figure 5 Time histories of sideslip angle 

under ADEBLF-based control 

 
Figure 6 Time histories of bank angle under 

ADEBLF-based control 

6. CONCLUSIONS 

This paper proposes ALBLF and ADEBLF to deal with 
asymmetric constraints of VTVL RLVs in aerodynamic 
guidance phase. They both tend to infinity when the 
constrained states approach the boundary, while ADEBLF is 
of higher application value due to its continuity. Furthermore, 
practical fixed-time control laws based on two BLFs are 
derived, which guarantee that the order tracking errors 
converge to a small neighbourhood of the origin within a fixed 
time and constraints are not violated during the tracking 
process. Simulation results demonstrate the efficiency of the 
two proposed controllers. 
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