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Abstract: To monitor the voltage stability state of complex power grid, a four-category stability 
classification problem that incorporates a set of serious contingencies is posed. Quick decision-making 
and high accuracy are critical for the safety operation of power system. However, this problem involves 
feature of different types, levels and dimensions and is hard to be handled by the traditional classifier. 
This paper utilizes the deep learning technique and proposes a multi-level deep neural network (ML-
DNN) that achieves feature fusion of the electrical parameter measurements, topology and contingency 
information. Experiments are implemented on IEEE-39 system, the ML-DNN performs better in four 
main evaluation indices comparing with five existing models, which demonstrates its advantage for 
online voltage stability monitoring. 
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

1. INTRODUCTION 

The continuous increment of various loads in modern power 
grid aggravates the situation of supply/demand imbalance. 
The large variations in electrical load and generation pose 
considerable threats to the voltage stability of the whole 
power system. Therefore, a monitoring system that provides 
accurate online situational assessment of voltage stability 
condition is necessary. For operators, one of the key 
measurement indices of the stability state is the voltage 
stability margin (VSM) (Zhou et al., 2010), which is defined 
as the difference of active power between the current 
operating point (OP) and the voltage collapse point. A large 
VSM indicates that the power system can hold heavy loads 
and afford large variations. Conversely, the reduction of 
VSM signifies the degradation of stability condition and 
proper preventive measures are supposed to be implemented. 

Given the load increment directions (LIDs), VSM can be 
obtained by searching the maximal total transfer capability of 
the power system. The most frequently used method is the 
continuous power flow (CPF) (Chiang et al., 1995). CPF 
increases the load demand step by step until the Jacobian 
matrix of power flow equations becomes singular and the 
total active power increment in this process is equivalent to 
VSM. CPF is a powerful tool but suffers from high 
complexity due to the iterative computation. For online 
applications with rapid load variations, its responses might 
delay. To solve this problem, researchers use CPF offline to 
generate training data for online machine learning-based 
model. The objective is to build a precise VSM estimation 
model for quantitative analysis or classification model for 
qualitative analysis (Zhou et al., 2010). The latter categorizes 
the voltage stability state into several patterns according to 
the convergence of power flow computation, voltage stability 

indices or VSM (Li et al., 2018). The advantage of qualitative 
classification model lies in its ability to incorporate possible 
contingencies. VSM is affected directly by the topological 
structure of power grid. Failures on transmission lines, 
electrical generators, etc. change the grid topology, destroy 
the balance between power supply and demand and reduce 
VSM. Owing to the uncertainty of contingency, a qualified 
monitoring system should store an anticipated contingency 
set and check them one by one for each OP. With the 
development of wide-area measurement system (WAMS), the 
so-called contingency-based voltage stability monitoring 
employs machine learning model to map the acquired data of 
the current OP into their corresponding categories with 
consideration of the major contingencies. Approaches 
including decision trees (DT) (Mohammadi and Dehghani, 
2015), random forest (RF) (Negnevitsky et al., 2015), support 
vector machine (SVM) (Kalyani and Swarup, 2010), various 
neural networks (NN) (Javan et al., 2013), ensemble learning 
(Zhukov et al., 2019) are adopted by researchers to construct 
the key classification model based on either real 
measurements from phasor measurement units (PMUs) 
(Venkatesh and Jain, 2018) or software simulation. 
Categories of voltage stability state are defined according to 
the range of evaluation indices like loading index, voltage 
deviation index and others. However, due to the complexity 
of power grid dynamics, the performance and reliability of 
current monitoring approaches are still unsatisfactory. On the 
one hand, voltage instability has different manifestations or 
subtypes. It may stem from regional abnormal distribution of 
power supply and demand or overload of the whole system. 
Therefore, the classification model should focus on both 
regional and global characteristics. On the other hand, 
contingencies lead to topology change of power grid and may 
directly alter the category of stability state, thus the topology 
information should also be taken into consideration. 
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To solve the difficulties, the deep learning approaches are 
adopted due to its powerful layer-wise feature extraction and 
fusion ability. In this paper, a multi-level deep neural 
network (ML-DNN) architecture is proposed to achieve 
information fusion of both topology feature and electrical 
parameter measurements in different regions. The layers in 
ML-DNN incorporate only the same level features thus the 
architecture can handle the subtype problem as well as 
integrate topology information.  

The major contributions of this paper are presented in the 
following three aspects. (1) A grid partition strategy is 
designed to extract regional characteristics based on the 
energy transmission path. (2) The betweenness centrality 
index is utilized to describe the change of topological 
structure caused by the contingences. (3) A ML-DNN-based 
voltage stability state classification model is proposed to 
integrate features with different levels, include regional 
electrical characteristics, degree of topology change and the 
contingency information. 

This paper is organized as follow. Section 2 introduces the 
concept of contingency-based voltage stability monitoring. 
Section 3 elaborates the proposed ML-DNN model in details. 
Experiments on the IEEE-39 system are implemented and 
analysed in Section 4 and Section 5 summarizes the paper. 

2. PROBLEM STATEMENT 

For online contingency-based voltage stability monitoring, a 
problem of building a four-category classifier is considered. 

Given an input variable set  1 2, ,..., N n
nX x x x    and an 

output label set   1NY y   , the classifier creates a 

mapping f  that achieves  i if X y , where N  refers to 

the number of samples, n  refers to the number of input 

variables and  1 2, ,...,i i i niX x x x . The label iy  is a 

categorical variable that satisfies  0,1,2,3iy  . These 

numbers are the indicators of voltage stability state. From 

0iy   to 3iy  , the stability state shifts from unstable to 

stable. The stability criterion of power system is the 

convergence of load flow, which determines whether iy  

equals to 0 or other. The degree of voltage stability is 
determined by VSM. In Fig. 1, the P-V curves of both normal 
and contingency conditions are illustrated. VSM is the 
difference between the current OP and the critical OP, 
namely a P  that fulfils: 

 max 0P P P     (1) 

where maxP  and 0P  are the maximal and current total transfer 

active power. The stability state is further classified into three 
categories according to VSM: “less stable”, “stable” and 

“more stable”, which correspond with  1,2,3iy  . Note that 

the contingency will reduce the current P  from nP  to 
cP  in most cases. In Fig. 1, the stability state drops from 

“more stable” to “less stable” due to the occurrence of 
failures on two transmission lines. Therefore, the difficult of 
this problem is that even with identical load and generation 

distribution, the categories of pre and post contingencies are 
different. It requests the classifier to utilize available 
information including active/reactive power measurements 
and grid topology to achieve high performance. For the 
“unstable” state, the classifier should monitor both regional 
and global power distribution to discriminate the possible 
reasons. The effects towards VSM of contingencies are 
measured by removing the relevant components and 
recalculating VSM. Those with serious impact, frequencies 
and vulnerabilities form the anticipated contingency set. In 
this paper, the line faults that lead to interruptions of one or 
more buses (fault 1 in Fig. 1) are included in the contingency 
set. 

 

Fig. 1 Illustration of voltage stability state  

3. PROPOSED APPROACH 

The development of deep learning enables flexible 
information fusion by designing appropriate network 
structure and end-to-end training. In this paper, a ML-DNN 
model is proposed to integrate regional measurements and 
topology information for contingency-based voltage stability 
monitoring. The framework is shown in Fig. 2, which can be 
basically divided into three parts. 

 

Fig. 2 The framework of proposed model 

The first part is grid partition. It aims to separate the network 
into several local regions according to the energy 
transmission path. The shortest electrical distance between 
each generator-load (G-L in Fig. 2) pair is calculated. After 
that, a correlation analysis will be implemented. Generators 
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with similar energy transmission path will be assembled in a 
cluster. Next, the load nodes will be assigned to the closest 
generator cluster to form a local region. 

The second part is topology representation. It aims to design 
or select appropriate index that can reflect the topology 
change of power grid. In this paper, the betweenness 
centrality (BC) index of each node is calculated and form a 
global feature vector to describe the change of topological 
structure of power grid. 

The third part is contingency selection. Only the serious 
contingency which creates isolated grid is considered and 
added into the anticipated contingency set. The one-hot 
encoding is adopted to represent these contingencies. 

The aforementioned three parts are connected through the 
ML-DNN model. The measurements of active/reactive power 
of generators and loads in their respective regions are 
regarded as the initial “level-1” input feature. The topological 
feature vector, as the “level-2” feature, are integrated with the 
concatenated measurements. The one-hot representation of 
contingencies are taken as the “level-3” features and merged 
with the previous fused features. The output of ML-DNN is 

the stability state, namely iy . The “L0” to “L3” in Fig. 2 are 

equivalent to  0,1,2,3iy  . 

3.1 Grid partition 

Power grid can be simply divided into three parts: source, 
connection network and load. The electrical energy is created 
by the source, transmitted along the connection network and 
consumed by the load. Although the process of energy 
flowing is complex, the power generators will give priorities 
to the loads with shorter electrical distance. These generators 
and loads form a local region that basically realize the 
balance of supply and demand. The out-of-balance problem 
of any local regions may affect the whole power grid, thus 
need to be monitored separately.  

Let the generator and load set be GV  and LV , the number of 

generators and loads be gn  and ln , an electrical distance 

matrix g ln n
D


  between each “generator-load” pair is 

firstly calculated using the Dijkstra’s algorithm. A power grid 

can be regarded as a graph  , ,G V E A , where A  is a 

weight adjacent matrix of the branch connecting impedance. 
The Dijkstra’s algorithm find a path p  between a generator 

node gv  and load node lv  with minimal total weights: 

  
 

, ,

,

min
i j

g l i j

v v p

D L p A


     (2) 

This algorithm is a successive approximation scheme. It uses 

two types of labels: tentative T  and permanent P . From sv , 

all neighbours will be searched and given T . The label of 
node on the shortest path will changed to P  and its 
neighbour will be searched. This process will iterate until a 
path that is composed of all P  label nodes is found. 

Next, the generator node (G-node) will be clustered via 
correlation analysis. The row vectors in matrix D  represent 
the shortest distance between each G-node and all load node 
(L-node) in the same order. On the basis of a principle that 
the arrangement of L-nodes on the energy transmission path 
of similar G-nodes should be similar, the Spearman 
correlation coefficient (SCC) is adopted to measure their 
relationships. For two grade variable sequences r  and s  with 

length rsn , SCC is defined as: 

         
2 2

1 1 1

,
rs rs rsn n n

s i i i i
i i i

r s r r s s r r s s
  

       (3) 

For general continuous variable sequence, the grade sequence 
can be formed by its ordinal number after sorting. A 
threshold T  is used to determine whether two G-nodes are 

similar. A G-node cluster gc  is defined as: 

   | , , , ,g G i j g s i jc v v V v v c v v T       (4) 

All gc  form the G-node cluster set. The L-nodes will be 

assigned to their neighbour gc , which is measured by the 

minimal average distance between each G-node and the 
target L-node. The partitioned region, namely the merged G-
node and L-node cluster is defined as: 

 
 

,

1
| , ,arg min

i
j g

r g L i r L i j
v v cg

c c v v V v c V D
c 

  
     

  
  (5) 

Measurements from all rc  will be collected and utilized as 

the “level-1” feature for ML-DNN. 

3.2 Topology Representation 

The betweenness centrality index is adopted in this paper for 
topology representation. Likewise, BC assumes that the 
electrical energy transmits along the shortest path and is 
defined as the ratio of the number of the shortest path 

between sv  and tv  that contains v  and the total number of 

the shortest path: 

  
 

 s t

st

v v v V st

v
b v



  

    (6) 

where st  is the total number of the shortest path between sv  

and tv ,  st v  is the shortest path that contains v . 

BC is a global index for node importance evaluation. No 
matter where a contingency occurs, it will affect the BC of 
every nodes in the power grid. Two other common used 
centrality index are degree centrality (DC) and closeness 
centrality (CC). DC is a local index that considers the first 
order neighbour of nodes. If a line contingency occurs, only 
the value of the direct connected nodes will be influenced. 
CC is defined as the average shortest distance between a 
target node and other nodes. It cannot well describe the 
topology change because the averaging operation reduces its 
impacts. Comparing with them, BC takes account of both 
local changes and their global impacts. A global feature 
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vector B  is formed by the BC value of all nodes in the power 
grid: 

      1 2, ,...,
V

B b v b v b v 
 

  (7) 

The vector B  is employed to monitor the topology change of 
the whole power grid and utilized as the “level-2” feature of 
ML-DNN. 

3.2 Contingency selection 

The anticipated contingency set is critical for the voltage 
stability monitoring. In general, if a contingency causes the 
formation of isolated grid, it is considered serious. The 
isolated grid refers to the case where the only transmission 
line between a local region and the rest part of power grid is 
broken. If the isolated grid contains G-nodes, the active and 
reactive power supplement as well as the VSM will be 
reduced. If the isolated region contains L-nodes, the 
electricity customers will be affected. Therefore in this paper, 
these serious contingencies are selected and represented by 
one-hot encoding. The encoded contingencies are utilized as 
the “level-3” feature of ML-DNN because they have direct 
impact to the stability state of the power grid. 

3.4 Architecture of ML-DNN 

After obtaining multi-level features, the ML-DNN is 
employed to achieve feature fusion and construct the 
transformation between them and the stability state. The 
proposed ML-DNN is an essentially a multi-layer perceptron 
(MLP) composed of many fully-connected layers according 
to a particular architecture, which is shown in Fig. 3. 
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Fig. 3 The architechture of ML-DNN 

DNN owns the ability of hierarchical feature transformation 
and layer-wise joint feature learning, thus can achieve 
effective feature fusion under the supervision of the given 
labels. For input like image pixels, speech signals, etc., 
features are at the same level and can be arranged in a vector. 
DNN can extract high-order representation of such type of 
data successively. For the problem of voltage stability 
classification, features are at different levels. For example, 
the measurements acquired from a region cannot be 
processed together with the topology vector. Therefore, the 
level of data should match the level of layer in the DNN. 

The basic idea of ML-DNN is to design an architecture that 
allows multi-level input via concatenation operation. In Fig. 3, 
the “level-1” input measurements are connected with their 
respective neurons and the outputs are concatenated after 
feature transformation. The concatenated vector goes through 
another transformation and its output will be integrated with 
the “level-2” input. Likewise, the higher the feature level, the 
deeper the network structure. 

4. EXPERIMENTS 

The IEEE-39 New-England power system (Fig. 4) is used to 
test the model performance. There are total 39 buses (nodes) 
and 46 branches in this system. The number of nodes are 
marked in Fig. 4. The symbol “G” represents the G-nodes 
and the triangle symbol represents the L-nodes. Except node 
31 and 39, the system contains 10 G-nodes and 17 L-nodes. 
The node 31 is the slack bus with constant voltage magnitude 
and phase angle. 
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Fig. 4 The IEEE-39 system 

4.1 Experimental data 

The MATPOWER (Zimmerman et al., 2011) power flow and 
continuous power flow tools are used to generate 
experimental data. In this paper, it is assumed that the active 
power of all generators, the active and reactive power of all 
loads varies from -20% to 100% of their base values, namely: 

  0.8 1.2
L i

b
L i L i PP P 

     (8) 

  0.8 1.2
L i

b
L i L i QQ Q 

     (9) 

  0.8 1.2
G j

b
G j G j PP P 

     (10) 

where 
L iP 

, 
L iQ 

 and 
G jP 

 are random variables under 

uniform distribution from 0 to 1. The symbol i  and j  refer 

to the number of L-nodes and G-nodes. The superscript “b” 
indicates the base value. 

The selected contingencies are 11 single line contingencies 
between node number 2-30, 6-31, 10-32, 19-33, 20-34, 22-35, 
23-36, 25-37, 29-38, 16-19, and 19-20. For each generated 
normal cases, all 11 contingencies are simulated. In this 
paper, 3000 normal cases and 33000 contingency cases form 
the experimental data set. 
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For each cases, the power flow test is implemented. If the 

power flow does not converge, then 0iy  . For other 

situations, the CPF tool is employed to calculate VSM and 

determines the labels, namely  1,2,3iy  . The generated 

data set contains 5670, 9894, 11152 and 9284 cases for the 
corresponding labels and is randomly divided into training, 
validation and testing set with a proportion of 10:1:1. 

4.2 Experimental Results 

(1) Results of grid partition 

The shortest distance matrix 10 17D   between all “G-L” 
pair is firstly calculated. Next, the Spearman correlation 
analysis is implemented based on D . The result is illustrated 
in Fig. 5. Through manual selection, the threshold T  is set to 
0.8. From the figure, apparently four G-node clusters: 

 30,37,39A
gc  ,  31,32B

gc  ,  33,34,35,36C
gc  , and 

 38D
gc   are obtained. The special node 39 should have 

formed a new cluster E, whereas none of the L-nodes will be 

assigned to E if so. Therefore, it is manually classified as A
gc  

according to the topological structure in Fig. 4. 
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Fig. 5 Results of Spearman correlation analysis 

The L-nodes with the shortest average distance will be 

assigned to their corresponding gc  to form rc . The grid 

partition results is shown in Table 1. 

Table 1. Partitioned regions 

Partitioned region  G-Nodes L-Nodes 

A 30,37,39 3,25,26 
B 31,32 4,7,8,12 
C 33, 34,35,36 15,16,18,20,21,23,24,27 
D 38 28,29 

(2) Results and comparison of stability classification 

The active and reactive power of all L-nodes as well as the 
active power of G-nodes are selected as input measurements. 
On this foundation, the architecture and parameters of the 
proposed ML-DNN is listed in Table 2. 

The min-max normalization is used to transform the range of 
the original measurements to 0 and 1. Measurements from 4 
regions are concatenated at layer 4 after one fully connected 
layer. For each contingency, the BC of each node v  in the 

IEEE-39 system is calculated. The global topological feature 
vector B  is added at layer 8 and contingency information is 
added at layer 12. The categorical cross entropy is selected as 
loss function and “Adam” is selected as optimizer. The 256 
epochs training process is shown in Fig. 6.  

Table 2. Architecture and parameters of ML-DNN 

No. Layers Parameters 

1 Input 9 10 20 5 

2 Fully connected (ReLU) 27 30 60 15 
3 Batch normalization \ 
4 Concatenation 132 
5 Fully connected (tanh) 40 
6 Batch normalization \ 
7 Dropout 0.2 
8 Input Concatenation 40 39 
9 Fully connected (tanh) 40 

10 Batch normalization \ 
11 Dropout 0.2 
12 Input Concatenation 40 12 
13 Output (softmax) 4 

During model training, the learning rate of the optimizer 
reduces twice at 112th epoch and 178th epoch to accelerate 
convergence and stabilize the performance. 
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Fig. 6 Training of ML-DNN 

For the purpose of performance assessment, the following 
evaluation indices including macro-precision (macro-P), 
macro-recall (macro-R), macro-F1-score (macro-F1) and 
micro-F1-score (macro-F1) are introduced: 

 
1

0

TP1
macro-P

TP FP

Ln
i

iL i in








   (11) 

 
1

0

TP1
macro-R

TP FN

Ln
i

iL i in








   (12) 

 
1

0

2 TP1
macro-F1

2 TP FP FN

Ln
i

iL i i in








  
   (13) 

 
1 1 1 1

0 0 0 0

micro-F1 2 TP 2 TP FP FN
L L L Ln n n n

i i i i
i i i i

   

   

        (14) 

where true positive (TP), false negative (FN) and false 

positive (FP) are the three basic elements. 4Ln   is the 

number of label type. Five existing classifier including the 
classification and regression tree (CART), support vector 
machine (SVM), random forest (RF), adaptive boosting 
(AdaBoost) and deep neural network (DNN) are compared 
with the proposed model. 
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Table 3. Performance comparison 

Model  macro-P macro-R macro-F1 micro-F1 

CART 0.5878 0.5839 0.5858 0.5720 
SVM 0.7579 0.7343 0.7441 0.7270 
RF 0.6980 0.6719 0.6810 0.6673 

AdaBoost 0.6755 0.6614 0.6641 0.6533 
DNN 0.9319 0.9182 0.9240 0.9217 

ML-DNN 0.9560 0.9536 0.9546 0.9517 

The performance comparison is shown in Table 3. For all 
four indices, the proposed ML-DNN outperforms the other 
models. To better demonstrate the results, the confusion 
matrices are shown in Fig. 7. The horizontal and vertical axes 
indicate the number of the predicted and real samples, which 
increase as the colour deepens.  
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Fig. 7 Confusion matrices 

According to the table and figure, CART is unable to achieve 
effective classification due to the complexity of input. The 
number of estimators are set to 300 for RF and AdaBoost. It 
is understandable that the ensemble operation raises the 
performance. SVM is the best performed traditional model 
that even gets 94.72% precision in distinguishing L0 and L1. 
However, results are not satisfactory for other categories. The 
introduction of deep learning is a huge progress. DNN raises 
the value of indices to 0.9 and reduces the error rate of all 
categories because of the feature fusion ability. Based on it, 
the ML-DNN considers both local and global characteristics 
and matches the layer the network with the level of different 
features, thus obtains the best performance. 

5. CONCLUSION 

In summary, aiming to solve the classification problem for 
contingency-based voltage stability monitoring, a ML-DNN 
model is proposed to integrate multi-level and multi-type 
feature. First, the power grid is partitioned to extract the local 
supply-demand relationship information. The “level-1” 
electrical parameter measurements in all regions are 
transformed and merged in the network. Second, the BC is 
employed to describe the topology change caused by the 
contingencies. As the “level-2” feature, the BC vector is 
concatenated with the merged measurements. Finally, the 
representation of contingency is regarded as “level-3” feature 
to strength the classification effect. Performance and 
comparison on IEEE-39 system suggests that ML-DNN 
improves at least 2.41%, 3.54%, 3.06% and 3% of macro-P, 
macro-R, macro-F1 and micro-F1 comparing with the other 
models. We have reasons to believe that ML-DNN can 

increase the security of power system depend on its 
classification ability. Future research will concern about 
involving real PMU measurements and testing with more 
complex power grid structure. 
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