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Abstract: Nowadays, many industrial processes generate large amounts of multimode data,
which generally have a natural tensor structure, causing some faults invisible with traditional
process monitoring (PM) and fault diagnosis (FD) methods. Tensor decomposition (TD) is a
more practical approach for its effectiveness in solving high dimensionality problems as well as
indicating the links between different modes. This paper proposes a common and individual
feature extraction method based on TD, which identifies and separates the common and
individual features from multimode data. The newly proposed approach is applied to a typical
multimode hot strip mill process (HSMP), where common and individual feature for all steel
products are existing. The final results indicate that the proposed approach can accurately
detect and identify different faults in the HSMP.
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1. INTRODUCTION

Modern industrial processes have the characteristics of
changeable conditions, numerous procedures and complex
levels. If a fault cannot be detected and eliminated in
time, it may spread during the process, thus affecting the
product quality, even causing catastrophic consequences.
In order to ensure the safety and stability of production
process, process monitoring (PM) and fault detection (FD)
have received considerable attention in the last few decades
(Venkatasubramanian et al., 2003; Gao et al., 2015).

In modern industrial processes such as the hot strip mill
process (HSMP), product quality is determined by a series
of working units, including many stands connected via a
network, each stand also including different subsystems.
The quality of the exit steel can ultimately be influ-
enced by the operating conditions of each stand (Peng
et al., 2013, 2014). The data-driven PM method, which is
based on the collected process data and uses various data
analysis and processing approaches to mine the hidden
information and obtain the process state so as to guide
the production operation, is more versatile than other PM
methods for the ability to deal with the nonlinearity and
time-varying characteristics of the process, and has been
widely studied and applied in industrial processes (Ge
et al., 2013; Shen et al., 2014).

1 This work was supported by the the Fundamental Research
Funds for the Central Universities (Grant No. FRF-TP-19-042A2)the
National Key R&D Program of China (Grant No. 2017YFB0306403),
and the Natural and Science Foundation of China (NSFC) (Grant
No. 61703036, 61673053 and 61873024).

Most of the existing PM methods about industrial process-
es are operated in a single mode. However, due to complex
factors such as material changes, market demands, equip-
ment aging, and seasonal changes, there are often multiple
modes in actual processes. Multimode PM requires more
complex data, which makes traditional multivariate sta-
tistical process control methods no longer applicable, and
thus different multimode methods have been developed for
multimode PM (Ge et al., 2010; Wang et al., 2012; Zhang
et al., 2016; Zhou et al., 2016). Common to these methods
is that they only capture the individual feature of each
mode data or only account for correlated features within
multimode data, which limits their practical applications.

It is not hard to find out that such multimode data natu-
rally share some common features as well as exhibit their
own individual features. Intuitively, the common informa-
tion shared by all modes helps to discover connections
between modes while the individual information helps to
identify each mode, both of their dimensionality are much
lower than the original data. For example, in an HSMP,
the mode is often switched from one to another, corre-
sponding to processes producing different steel products.
The different modes share some common information, such
as the trend of rolling forces and the change of the rolling
speed. Besides, there also exists some individual informa-
tion representing the specific property of each type of steel.
Hence, if we can capture the common and individual fea-
tures of multiple modes, and alternatively monitor the two
subspaces, detailed fault information could be acquired for
further PM and FD.
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Fig. 1. The idea of common and individual feature extrac-
tion

The rest of this paper is structured in the following. Sec-
tion 2 formulate the problems and the basic idea of com-
mon and individual feature extraction. Section 3 propose
the common and individual feature extraction method
using TD. Section 4 develops process monitoring and
fault diagnosis methods based on common and individual
feature. Section 5 examines the applicability of the new
approach to an actual HSMP. The final conclusions will
be drawn in Section 6.

2. PROBLEM FORMULATION AND BASIC IDEAS

During the processes to generate different steel slabs in an
HSMP, the rolling force variables follow the similar trajec-
tory and can be classified into the common information,
while the bending force variable that mainly affect the
slab surface quality should be specifically designed for each
steel. The common features can significantly determine the
operation state which should be monitored in particular.
We consider a set of matrices formulated by D samples,
M process variables and N operating modes of the HSMP:
X = {Xn ∈ RD×M : n = 1, 2, · · · , N . The measurement
space Xn can be partitioned into common and individual
subspaces, which can be shown as

Xn = X̄n + X̆n (1)

where X̄n represents the common subspaces shared by the
N modes, and X̆n represents the individual subspaces of
each mode.

Under this framework, we seek to find

Xn ≈ AnB
T
n = [Ān Ăn]

[
B̄

B̆n

]
= ĀnB̄

T + ĂnB̆
T
n = X̄n + X̆n

(2)

where B̄ ∈ RD×C represents the common feature within
the modes while B̆n ∈ RD×(M−C) represents the individ-
ual feature of each slices.

In this way, each mode data Xn is represented through
a combination of components from the common subspace
X̄n = ĀnB̄

T and the individual subspace X̆n = ĂnB̆
T
n ,

as illustrated in Fig. 1.

Fig. 2. CPD of a three-order tensor X

3. COMMON AND INDIVIDUAL FEATURE
EXTRACTION

3.1 Common Feature Extraction Based on the Canonical
Polyadic Decomposition (CPD)

A novel approach to calculate the common feature can
be achieved by TD, which aims to factorize a data tensor
into physically interpretable or meaningful factor matrices
and a single core tensor that indicates the links between
components in different modes, is more practical in solving
high dimensionality problems (Cichocki et al., 2015; Lath-
auwer, 2008). CPD is the most practical method for TD,
which factorizes a tensor into a sum of component rank-
one tensors. The CPD of a third-order tensor of rank-R is
given by

X ≈
R∑

r=1

Xr ≈
R∑

r=1

ar ◦ br ◦ cr = [A,B,C] (3)

If the columns corresponding to the decomposed matrices
A, B, and C are regularized, there is a weight vector λ
after the decomposition, which is shown in Fig. 2. The
formula above is converted as

X ≈
R∑

r=1

Xr ≈
R∑

r=1

λr · ar ◦ br ◦ cr

≈ Λ×1 A×2 B×3 C = [Λ;A,B,C]

(4)

where Λ is a superdiagonal core tensor that guarantees
“one to one relation” for the factor vectors ar, br and
cr, while A, B and C are factor matrices which are
composed of the corresponding factor vectors, e.g. A =
[a1,a2, · · · ,aR] and likewise for B and C. The sub-matrix
B contains the common components shared by all the
frontal slices of X. And thus, we can define B̄ = B for
further calculation.

The CPD format can be written in matricized form as

X(1) = A(C
⊙

B)T

X(2) = B(C
⊙

A)T

X(3) = C(B
⊙

A)T

(5)

Alternating Least Squares (ALS) is the most used algo-
rithm for CPD application. The detailed algorithm of a
three-order tensor is shown in Table 1 (Kolda et al., 2009).

After calculating the parameters of CPD, the common
subspace is defined as

X̄n = AC(n)BT (6)

where C(n) = diag(cn), for n = 1, 2, · · · , N , and B̄ = B.
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Table 1. CPD-ALS algorithm

1 : Given: Tensor X, rank R
2 : Initialization: A ∈ RN×R, B ∈ RM×R, C ∈ RK×R

3 : Repeat
A = X(1)(C

⊙
B)(BTB ∗CTC)†

B = X(2)(C
⊙

A)(ATA ∗CTC)†

C = X(3)(B
⊙

A)(ATA ∗BTB)†

normalize columns of A, B and C (storing norms as λ)
Until fit ceases to improve or maximum iterations exhausted

4 : Output: λ,A,B, · · · ,C

3.2 Individual Feature Extraction Based on Principal
Component Analysis (PCA)

After figuring out the common subspaces, PCA can be
applied on the rest parts Xn − X̄n = X̆n, which is
expressed as

X̆n = ĂnB̆
T
n (7)

4. PM AND FD METHODS BASED ON COMMON
AND INDIVIDUAL FEATURE

4.1 PM method

Given the new measurements from n-th mode xnew, it
is first normalized, then we replace the train samples of
the n-th mode with this new observation while keeping
the train samples of the other modes fixed. And then,
we unfold the new tensor into a matrix from the sample
direction to gain the mode-1 factorization x(1)new. The
common score is obtained as:

Ānew = x(1)new[(C
⊙

B)T ]† (8)

And then, the common part can be calculated as:

x̄new = ĀnewC
(n)BT (9)

After removing the common part, the left part is acquired
as:

x̃new = xnew − x̄new (10)

The specific score is calculated as:

Ănew = x̃newB̆n (11)

Using Ănew, the specific part is reconstructed as:

x̆new = ĂnewB̆
T
n = x̃newB̆nB̆

T
n (12)

Finally, the remained part is obtained as:

enew = xnew − x̂new (13)

The T 2 statistic, which is the projection size of the
variables in the principal subspace, reflecting the amount
of changes of each variable, can be used to monitor
common subspaces. The mathematical expression is

T 2
c = Ānew(

1

n− 1
ĀT

n Ān)
†ĀT

new (14)

T 2
i = Ănew(

1

n− 1
ĂT

n Ăn)
†ĂT

new (15)

The control limit of T 2 is expressed as

T 2
α =

A(n2 − 1)

n(n−A)
FA,n−A,α (16)
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Fig. 3. A schematic illustration of the proposed monitoring
approach

where FA,n−A,α represents the critical value of the F
distribution with A and n − A degrees of freedom and
a confidence level of α.

Since the individual subspaces use PCA, it can be mon-
itored by the T 2 and squared prediction error (SPE)
statistic, which start from the linear relationship between
variables to detect whether the system is faulty or not
(Peng et al., 2011).

The SPE statistic reflects the changes in the projection
of the data sample vector in the residual subspace, that is

SPE =∥ enew ∥2 (17)

The control limit of SPE is expressed as

δ2α = θ1[
cα

√
2θ2h2

0

θ1
+ 1 +

θ2h0(h0 − 1)

θ21
]

1
h0 (18)

where θi =
∑m

j=A+1 λ
i
j(i = 1, 2, 3), h0 = 1− 2θ1θ3

3θ2
2
, λj rep-

resents the i-th eigenvalue of the data sample covariance
matrix, cα represents the threshold of the standard normal
distribution under confidence α.

If T 2
c is larger than the threshold, a structural fault causing

changes to the common feature has occurred. If only T 2
i or

SPE are larger than their thresholds, a fault that affects
only the specific characteristics of this mode occurred.

The schematic illustration of the proposed method is
shown in Fig. 3.

4.2 FD method

However, when the SPE and T 2 statistics exceed their
control limits, they can only determine that the process
has failed. It is impossible to find out the fault happened
in which part of the HSMP from the SPE and T 2

figures. The contribution plot is a simple and practical FD
method, which reflects the influence of each variable on
the stability of the system statistical model. The core idea
of the method is that the high contribution value of the
process variable can be considered as the cause of the fault.
Combining these analytical results with the knowledge of
the HSMP will make it easier to identify the cause of the
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Fig. 4. The layout of the hot rolling mill process

failure. The T 2 contribution value is represented by the
contribution of each variable to the score:

c
T 2
c

i = (ξTi (B̄Λc
−1B̄T )1/2x̄new) (19)

c
T 2
i

i = (ξTi (B̆Λi
−1B̆T )1/2x̆new) (20)

where ξi is the i-th column of the identity matrix, .

5. APPLICATION TO THE HSMP

5.1 Description of the HSMP

Modern HSMP is an automated production line running in
the order form and the production line is mainly composed
of furnaces, rolling mill, transfer table and shear, finishing
mill, laminar cooling and coiler. The steel slab is first
heated up to about 1200◦C in the reheating furnace. The
thickness and the length of hot steel slab are shaped rough-
ly to the expectations during the roughing mill process
(RMP). The finishing mill process (FMP) gives further
precise gauge reduction towards the preset width and
thickness. Then the extremely hot strip steels are cooled
to the desired temperature by laminar-cooling equipment
and are finally coiled by the coiler for convenient loading.
An HSMP consists of a sequence of mill stands, which work
collectively to mill the raw steel slab to the required speci-
fications. At each stand, two types of rollers are equipped.
Two kinds of forces are applied to rollers to ensure that the
steel thickness can be reduced as expected, and the steel
crown that quantifies the thickness across the width of the
strip can reach an acceptable level. Four rollers are rotated
by driven motors so that the steel slab can smoothly move
forward. Meanwhile, the steel temperature at the exit of
an HSMP should strictly fall into a certain range to ensure
the required microstructure property inside the steel. The
layout of an hot rolling mill process is shown in Fig. 4.

The FMP plays an important role in HSMP, by which a
hot strip steel coming from the rough mill process can be
precisely milled to meet the technical requirement. There
are seven stands in FMP, of which each stand has two
supporting rolls in two sides and two working rolls in
the middle. Before a strip steel enters a stand, a proper
initial rolling force is given to the upper supporting roll
by the hydraulic system, which makes the gap between
two working rolls less than the thickness of the coming
steel. An initial speed is set on the upper working roll
via a driving motor. When the head of a strip steel
reaches two working rolls, the actual gap will be enlarged
due to the rebounding phenomenon. An electromechanical
system is placed to rotate the rolls so that the strip

steel can be smoothly moved forward. Meanwhile, the
rolling and bending forces can be measured in real time
by piezomagnetic and straingauge sensors. In practice, the
gap between the two working rolls can be a proxy variable
that can be measured by the height difference between
the two supporting rolls, and the exit thickness can be
measured by an X-ray device with time delay due to it
being placed far from the exit of the last stand (Ma et al.,
2018; Zhang et al., 2018).

5.2 Data preparation

The data come from the database of a real steel plant. We
consider three operating modes, one of which producing
2.70-mm strip steels and the other two producing 3.95-mm
strip steels. We truncate a period covering 35s of normal
operations, with a sampling interval of 0.1s. A total of 3500
samples of 20 process variables of roll gap, rolling force and
bending force of seven stands (1st stand without bending
rolls) were collected as X1 ∈ R3500×20, X2 ∈ R3500×20,
and X3 ∈ R3500×20.

5.3 Fault scenarios

Three typical fault scenarios are taken into consideration.
The first fault is a structural fault, which arises due to the
fault of the hydraulic system in the forth stand. This fault
will immediately propagate to the downstream stands and
finally affect the exit thickness, which has both impacted
the common and individual features. The second fault is
a non-structural fault, which occurs in the bending force
sensor at the fifth stand. The influence of this fault can
be compensated by enlarging the bending force in sixth
and seventh stands, thus will not affect the exit thickness
and will not affect the common feature. The third fault is
also a structural fault, arising by blocking of spray water
valve located between second and third stands. It increases
the surrounding temperature, then the downstream stands
are affected due to the feedforward controller and can both
affect the common and individual features.

5.4 Simulation results

The data of the three modes can be organized as a third-
order tensor X ∈ R3500×20×3. CPD is applied to X.
However, determining the rank-R of a tensor X is often
a difficult problem. There is no straightforward algorithm
to determine the rank of a specific given tensor. In this
paper, a multilinear singular values-based method is used
to help choosing R, by which we can plot an L-curve
which represents the balance between the relative error

of the CPD ∥X−
∑R

r=1 ar ◦br ◦ cr∥/∥X∥ and the number
of rank-one terms R. The algorithm computes the CPD
of the given tensor for various values of X, starting at
the smallest integer for which the lower bound on the
relative error is smaller than the MAX option. The
number of rank-one terms is increased until the relative
error of the approximation is less than MIN option. It is
recommended to set MAX higher than the expected noise
level and to set MIN at a value near the noise level and
smaller than MAX, as is shown in Fig. 5, the dimension
of the common subspace R is set as 2.
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Fig. 5. The rankest tool for choosing the number of R in
a CPD

Table 2. FDR of fault case 1 when R varies

R 1 2 3 4 5

T 2
c 0.864 1.000 0.989 0.891 0.883

T 2
i 0.934 1.000 1.000 1.000 0.991

SPE 1.000 1.000 1.000 1.000 1.000

Fig. 6. Monitoring results of fault 1

According to the result, the best R value is 2. Nevertheless,
we also need to verify this set. We make R=1, 2, 3, 4, 5
respectively, and then carry out CPD on the three-order
tensor X, and extract common and individual features for
PM. Take fault case 1 for example, the fault detection rate
(FDR) when R varies is shown in Table 2, which confirms
the previous inference.

The monitoring results of the three fault scenarios are
shown in Figs. 6-8. It can be seen that fault 1 occurs at
the 2000th sample, and all three statistics have detected
this fault. Fault 2 arises at the 1000th sample, and only T 2

i
and SPE statistics have detected this fault while T 2

c does
not have any reaction to this fault. Fault 3 occurs at the
1000th sample, and all three statistics have detected the
fault, which are consistent with the former descriptions.

The FDR and fault alarm rate (FAR) can be used to
compare the PM results between different methods. The
compared fault detection rate of the proposed TD-PCA-
based method and multimode PCA is shown in Table 2
and Table 3. From the compared fault detection rate, we
can see that the PM of common and individual subspaces
has better results than traditional PCA methods.

The T 2 contribution plots of the three fault cases as shown
in Figs. 9-11. It can be seen that the sources of fault
scenario 1 roughly locate at the rolling force and gap in

Fig. 7. Monitoring results of fault 2

Fig. 8. Monitoring results of fault 3

Table 3. FDR by TD-PCA-based method and
multimode PCA

Methods Monitoring
Statistics

Fault 1 Fault 2 Fault 3

TD-PCA
T 2
c 1.000 0.015 0.824

T 2
i 1.000 0.915 0.955

SPE 1.000 0.975 0.949

Multimode PCA
T 2 1.000 0.129 0.521

SPE 1.000 1.000 0.924

Table 4. FAR by TD-PCA-based method and
multimode PCA

Methods Monitoring
Statistics

Fault 1 Fault 2 Fault 3

TD-PCA
T 2
c 0.102 0.094 0.116

T 2
i 0.128 0.097 0.012

SPE 0.017 0.162 0.109

Multimode PCA
T 2 0.124 0.113 0.131

SPE 0.112 0.136 0.127

stand 6 in the common subspace and rolling force in stand
4 and gap in stand 4 in the individual subspace. The main
sources of fault scenario 2 are the bending force in stand
5 and stand 6. And the fault variables in fault scenario 3
are the rolling force in stand 5 and gap in stand 3-6 in
the common subspace and rolling force in stand 3 in the
individual subspace.
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Fig. 9. Contribution plot of fault 1
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Fig. 10. Contribution plot of fault 2
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Fig. 11. Contribution plot of fault 3

6. CONCLUSION

In this paper, a new common and individual feature
extraction PM method based on TD was proposed for
multimode data. The common feature of different mode
data can be extracted by CPD and the individual feature
of each mode data can also be calculated. The new
framework was realized using T 2 and SPE statistics for
PM and using contribution plot for fault diagnosis. The
proposed methods have been applied to a multimode
HSMP, where three typical fault cases were taken into
account. Using the proposed approach, faults that affect
the common and individual features can be accurately
detected than traditional methods.

REFERENCES

Venkatasubramanian, Venkat and Rengaswamy, Raghu-
nathan and Yin, Kewen and Kavuri, Surya N. A review
of process fault detection and diagnosis: Part I: Quanti-
tative model-based methods. Computers and Chemical
Engineering, 27(3):293–311, 2013.

Gao, Zhiwei and Cecati, Carlo and Ding, Steven X. A Sur-
vey of Fault Diagnosis and Fault-Tolerant Techniques-
Part I: Fault Diagnosis With Model-Based and Signal-

Based Approaches. IEEE Transactions on Industrial
Electronics, 62(6):3757–3767, 2015.

Peng, Kaixiang and Kai, Zhang and Gang, Li and Zhou,
Donghua. Contribution rate plot for nonlinear quality-
related fault diagnosis with application to the hot strip
mill process. Control Engineering Practice, 21(4):360–
369, 2013.

Peng, Kaixiang and Hao, Zhong and Liang, Zhao and
Kai, Xue and Ji, Yidao. Strip shape modeling and its
setup strategy in hot strip mill process. International
Journal of Advanced Manufacturing Technology, 72(5-
8):589–605, 2014.

Ge, Zhiqiang and Song, Zhihuan and Gao, Furong. Re-
view of Recent Research on Data-Based Process Moni-
toring. Industrial and Engineering Chemistry Research,
52(10):3543–3562, 2013.

Shen, Yin and Ding, S. X. and Xie, Xiaochen and Hao,
Luo. A Review on Basic Data-Driven Approaches for
Industrial Process Monitoring. IEEE Transactions on
Industrial Electronics, 61(11):6418–6428, 2014.

Ge, Zhiqiang and Song, Zhihuan. Multimode process mon-
itoring based on Bayesian method. Journal of Chemo-
metrics, 23(12):636–650, 2010.

Wang, Fuli and Shuai, Tan and Peng, Jun and Chang,
Yuqing. Process monitoring based on mode identifica-
tion for multi-mode process with transitions. Chemo-
metrics and Intelligent Laboratory Systems, 110(1):144–
155, 2012.

Zhang, Yingwei and Fan, Yunpeng and Nan, Yang.
Fault diagnosis of multimode processes based on sim-
ilarities. IEEE Transactions on Industrial Electronics,
63(4):2606–2614, 2016.

Cichocki, Andrzej and Mandic, Danilo and De Lathauwer,
Lieven. Tensor Decompositions for Signal Processing
Applications From Two-way to Multiway Component
Analysis. IEEE Signal Processing Magazine, 32(2):145–
163, 2015.

De Lathauwer, Lieven. Decompositions of a Higher-Order
Tensor in Block TermsPart III: Alternating least squares
algorithms. Siam Journal on Matrix Analysis and Ap-
plications, 30(3):1067–1083, 2008.

Zhou, G. and Cichocki, A and Zhang, Y. and Mandic,
D. P. Group Component Analysis for Multiblock Da-
ta: Common and Individual Feature Extraction. IEEE
Trans Neural Netw Learn Syst, 27(11):2426–2439, 2016.

Kolda, Tamara G. and Bader, Brett W. Tensor Decompo-
sitions and Applications. SIAM Review, 51(3):455–500,
2009.

Peng, Kai Xiang and Zhou, Dong Hua and Li, Na. Quality-
Related Monitoring and Control in Hot Strip Mill Pro-
cess. Control Engineering of China, 18(4):650–654, 2011.

Ma, Liang and Dong, Jie and Peng, Kaixiang and Zhang,
Chuanfang. Hierarchical Monitoring and Root Cause
Diagnosis Framework for Key Performance Indicator-
Related Multiple Faults in Process Industries. IEEE
Transactions on Industrial Informatics, 15(4):2091–
2100, 2018.

Zhang, Kai and Peng, Kaixiang and Dong, Jie. A Common
and Individual Feature Extraction-Based Multimode
Process Monitoring Method with Application to the
Finishing Mill Process. IEEE Transactions on Industrial
Informatics, 14(11):4841–4850, 2018.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

132


