
Modeling and Manipulating Dynamic
Font-based Hairy Brush Characters using
Control-Theoretic B-spline Approach

Xie Zhenyu ∗ Hiroyuki Fujioka ∗∗ Akinori Hidaka ∗∗∗

Hiroyuki Kano ∗∗∗

∗Graduate School of Engineering, Fukuoka Institute of Technology,
Fukuoka 811-0295, Japan.

∗∗Department of System Management, Fukuoka Institute of
Technology, Fukuoka 811-0295, Japan.

∗∗∗Division of Science, Tokyo Denki University, Saitama 350-0394,
Japan.

Abstract: In this study, we consider a problem of modeling and manipulating hairy-brush
characters based on the so-called ‘dynamic font’ method with control-theoretic B-spline
approach, in which the characters are constituted as a result of trajectory curves using
normalized uniform B-splines as basis function. First, typefaces of pre-designed dynamic font
characters with one-pixel thickness are transformed to hairy-brush ones by introducing a deep
learning method ‘Pix2Pix’. We then develop a method for modeling hairy-brush characters by
formulating the problem as an optimal function-approximation problem, which minimizes an
input energy of writing trajectory. Also, manipulations for generating cursive words as seen in
Japanese calligraphy in a systematic way are described. A design example of cursive words is
included.

Keywords: modeling and manipulation; hairy-brush characters; dynamic font; control-theoretic
B-splines; optimal function approximation; deep learning.

1. INTRODUCTION

Spline functions have been studied and used extensively
in many industrial applications -such as robotic path
following problem (Gill (2015)) and image registration
(Sun (2017)), etc. Egerstedt and Martin have studied
the theory of such splines from the viewpoint of optimal
control theory (e.g. (Egerstedt and Martin (2010))), which
has been called as ‘dynamic splines’. Inspired by their
works, we have also studied B-splines from that viewpoint
(e.g. (Kano (2003))), which will be referred to as ‘control-
theoretic B-splines’ in this paper.

As an application using such control-theoretic B-splines,
this paper focuses on the problem of generating and ma-
nipulating characters based on the so-called ‘dynamic font’
method (Takayama (1996)). The dynamic font method
has been developed by mimicking the writing process by
humans, in which characters are generated by moving a
writing device on a writing plane continuously in both
time and space. Unlike the ordinary design methods -such
as dot matrix, outline vector, and skeleton vector meth-
ods, etc. (e.g. (Uehara (1990))), this method is powerful,
particularly when we want to generate and manipulate
characters in Japanese calligraphy where the thickness of
the stroke is important. For example, we have developed
a scheme for generating cursive characters by employing
control-theoretic B-spline function approximation (Fujioka
(2006)). But, in these design, hairy-brush ink effect on

characters as seen in a real calligraphy has never been
considered.

A typical approach for generating such a hairy-brush ink
effect on characters may be to employ model-based one.
For example, Wong and Ip (Wong (2000)) have developed
a writing device model that can create characters with
hairy-brush ink effects by using a parameterized model
which captures (i) the writing brush 3D geometry, (ii) the
brush hair properties and (iii) the variations of ink depo-
sition along a stroke trajectory. Similar works have been
exhibited by various groups (e.g. (Mi (2004), Xu (2002))).
However, optimally setting the parameters required in
the models may be a complex task for finely generating
hairy-brush ink effect. Also, excessive computational time
is required as the fineness of hairy-brush ink becomes
high. Another approach for the above issue is to introduce
a deep-learning approach. In Lyu’s work (Lyu (2017)),
the calligraphy synthesis problem has been treated as an
image-to-image translation problem and then a deep neu-
ral network-based model is developed to generate calligra-
phy images from standard character font images directly.
Once such a network is trained, the fineness of hairy-brush
ink may be achieved independently with the computa-
tional time. However, manipulating such characters may
be difficult since these characters are treated as planar
static patterns.

This paper is a continuation of our studies on the dynamic
font method in (Fujioka (2006)). In particular, we here

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 4805



consider the problem of constructing and manipulating
(in particular, reconstructing cursive) dynamic font-based
hairy-brush characters using the control-theoretic B-spline
approach. Therein, introducing a deep learning approach,
the pre-designed characters with one-pixel thickness are
transformed to hairy-brush ones with some ink effects. As
a deep learning approach, we here employ ‘Pix2Pix’ (Isola
(2017)) which is a conditional Generative Adversarial
Network (cGAN) model for general-purpose image-to-
image translation. We then develop a method of modeling
such hairy-brush characters in a scheme of dynamic font
by employing the control-theoretic function approximation
theory. The basic idea may be similar to Lyu’s work (Lyu
(2017)) using the deep learning approach, but the big
difference is on the manipulability based on the dynamic
font method. Therefore, we present that the characters
modeled in this way are connected and reconstructed in a
systematic way to yield cursive words as seen in Japanese
calligraphy.

The paper is organized as follows. In Section 2, we
briefly present the dynamic font method and deep learning
method ‘Pix2Pix’ as preliminaries. Then in Section 3, we
develop a scheme for modeling the dynamic font-based
hairy-brush characters based on the control-theoretic B-
spline smoothing. Also, the method for manipulating char-
acters is described in Section 4. In Section 5, a design
example is included, and concluding remarks are given in
Section 6.

2. PRELIMINARIES

As preliminaries, we briefly present the dynamic font
(Takayama (1996)) and Pix2Pix (Isola (2017)), which will
be used to develop a scheme for modeling hairy-brush
characters in Section 3.

2.1 Dynamic Font

Figure 1 illustrates a dynamic font model for generating
characters. We here consider a virtual writing device
modeled by a circular cone moving in 3-dimensional space
O-XYZ and a virtual writing plane O-XY. Characters are
then obtained by moving the device in the space according
to the designed writing motion and then by deriving the
cross-sectional area on the writing plane. As the cone, say
its tip, moves along a trajectory, the circle moves in the
plane and results in a character.

Using such a method, we here suppose that a character
with one-pixel thickness is pre-designed. Then, the corre-

Fig. 1. Dynamic font model.

sponding writing motion xd(t) = [Xd(t) Yd(t)]T ∈ R2, t ∈
[t0, tm] on 2-dimensional plane O-XY is designed as

xd(t) =

m−1∑
i=−3

piB3(α(t− ti)). (1)

Here, B3(·) is a normalized, uniform cubic B-splines (e.g.
(Takayama (1996))), m is an integer that determines the
time interval of motion, pi’s are 2-dimensional weighting
vectors called “control points”, and α(> 0) is a scalar for
scaling the interval between equally-spaced knot points ti
with ti+1 − ti = 1/α.

Remark 1. As we see from (1), once an appropriate α and
m are chosen, designing characters reduce to that of a
sequence of control points called as “control polygon”Md

defined by
Md = p−3 p−2 · · · pm−1. (2)

The control polygon Md represents a geometrical outline
for writing motion. Thus,Md can be regarded as a formal
representation of the writing motion xd(t) and hence the
character.

2.2 Pix2Pix

We next present “Pix2Pix” architecture (Isola (2017)),
which will be used to transform the pre-designed charac-
ters with one-pixel thickness in Section 2.1 to hairy-brush
ones.

The architecture is illustrated in Fig. 2, in which a con-
ditional generative adversarial network (cGAN) is used to
learn a function to map from an input image (i.e. pre-
designed character) to an output image (i.e. hairy-brush
character).

The network consists of two main pieces, i.e. ‘Generator’
G and ‘Discriminator’ D. The Generator transforms the
input image x to the output image G(x), where U-net
in Ronneberger’s work (Ronneberger (2015)) is employed
as the generator. On the other hand, the Discriminator
measures the similarity of the input image x to either
a target image y from the dataset or an output image
G(x) from the generator and then discriminates if this
was produced by the generator. These G and D are trained

Fig. 2. Pix2Pix architecture.

(a) output (b) input

Fig. 3. An example of training dataset.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4806



simultaneously in an adversarial process so that G seeks to
better fool the discriminator D and also D seeks to better
identify the counterfeit images, i.e. G(x).

As training dataset, we here used 2073 paired character
images, where Kouzan hairy-brush font images (Aoyanagi
(2016)) with gray-scale values and the corresponding bi-
nary images thinned by Zhang-Suen method (Gonzalez
(2004)) are used as output and input images, respectively.
An example of output and input images is illustrated in
Fig. 3.

3. MODELING HAIRY-BRUSH CHARACTERS
USING CONTROL-THEORETIC B-SPLINE

APPROACH

We are now in the position to develop a method to model
the dynamic font-based hairy-brush characters by employ-
ing a control-theoretic function approximation theory.

3.1 Problem Statement

Now suppose that we are given some pre-designed char-
acters whose typefaces were transformed by employing
Pix2Pix in Section 2.2 (see Fig. 4). From the relation of
training dataset, we may regard the pre-designed character
as the skeleton of the transformed character (i.e. red lines
in Fig. 4).

Let n(t) ∈ R2 be a unit normal vector, denoted as the red
arrow in Fig. 4, to the motion of pre-designed characters
on O-XY plane, say xd(t) in (1). Then we can compute
n(t) as

n(t) =
1√

(Ẋd(t))2 + (Ẏd(t))2
[−Ẏd(t) Ẋd(t)]T , (3)

where Ẋd(t) and Ẏd(t) denote dXd(t)
dt and dYd(t)

dt respec-
tively. Moreover, we obtain a set of hairy-brush ink data
by scanning the transformed characters to the normal
direction n(si) from xd(si) at a sampling time si ∈ [t0, tm]
for i = 1, 2, · · · , N as follows.

Let xkd(si) = [Xk
d (si) Y

k
d (si)]

T ∈ R2 be a point given by

xkd(si) = xd(si) + ak · n(si) (4)

with a(> 0) ∈ R and vk(si) ∈ N be the gray-scale value
on xkd(si) at a sampling time si. Here, k ∈ [kL, kU ] ⊂ Z is
an index of scanning line given by xkd(t). Also, kL, kU ∈ Z

are set so that the region between xkL

d (t) and xkU

d (t) covers
the whole character.

We thus measure and store a set of hairy-brush ink data
for each k, denoted as Dk, as

Fig. 4. Overview of pre-designed character.

Dk = {(dki , si) : dki = [(xkd(si))
T vk(si)]

T ∈ R3,

si ∈ [t0, tm], i = 1, 2, · · · , N}. (5)

Then, we consider the following problem based on the idea
of ‘dynamic font’ in Section 2.1:

Problem 1. Suppose that a set of hairy-brush ink data for
each k, i.e. Dk in (5) is given and that an appropriate α and
m are chosen. Construct the corresponding hairy-brush ink
motion xk(t) = [Xk(t) Yk(t) vk(t)]T ∈ R3, t ∈ [t0, tm] for
index k, which can be represented with the same form as
(1), i.e.

xk(t) =

m−1∑
i=−3

pkiB3(α(t− ti)), (6)

where pki ∈ R3 are control points .

Equivalently, letting Mk be a control polygon given as

Mk = pk−3p
k
−2 · · · pkm−1, (7)

we may notice from Remark 1 in Section 2.1 that Problem
1 can be regarded to find M given by

M =

kU⊎
k=kL

Mk, (8)

which is a formal representation of the hairy-brush char-
acters. Also,

⊎
denotes the multiset union. Then, hairy-

brush characters are constructed by filling the point
(Xk(t) Yk(t)) with the gray-scale value vk(t) for ∀t ∈
[t0, tm] and ∀k ∈ [kL, kU ], which are determined from M.

3.2 Control-Theoretic B-splines

For solving Problem 1, we here introduce the control-
theoretic B-spline approximation theory (Fujioka (2006)).
For the sake of simplicity, we here assume as follows:

(A1) The parameter α is set as α = 1, and ti = i for
i = −3,−2, · · · ,m.

(A2) Each element in xk(t) ∈ R3 is modeled independently,
and using notational abuse, pki , d

k
i are assumed to

be one-dimensional with the understanding that they
represent one of the three elements.

Now, let us consider a third order linear system

d3

dt3
xk(t) = uk(t), xk(−3) = ẋk(−3) = ẍk(−3) = 0, (9)

and a restricted set of controls

Uk =

{
uk(t) : uk(t) =

m−1∑
i=−3

pki
d3

dt3
B3(t− i), pki ∈ R

}
.

(10)
Here, we assume m ≥ 5 and that the first and last three
coefficients,

pIk =

 pk−3pk−2
pk−1

 , pFk =

 pkm−3pkm−2
pkm−1

 (11)

are prescribed.

Remark 2. In (11), we here prescribe pIk and pFk as

pIk = dk1 · 13, p
F
k = dkN · 13 (12)

with 13 = [1 1 1]T ∈ R3, which implies that an motion
xk(t) in (6) coincides with the data and is stationary on
starting and ending, i.e.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4807



xk(0) = dk1 , ẋk(0) = ẍk(0) = 0

xk(m) = dkN , ẋk(m) = ẍk(m) = 0. (13)

We then consider an approximation problem formulated
as the following control problem:

Problem 2. Find an optimal input uk(t) and solution xk(t)
such that

min
uk∈Uk

Jk(uk) (14)

where

Jk(uk) = λ

∫ +∞

−∞
u2k(t)dt+

N∑
i=1

wi(xk(si)− dki )2 (15)

with λ > 0 and 0 < wi ≤ 1 for i = 1, 2, · · · , N .

Remark 3. In Problem 2, we note that λ and wi are
introduced in order to adjust the weights on input energy
and the goodness of fit to the given data Dk in (5).

3.3 Optimal Solution

Note that the Problem 2 is of finite-dimensional since the
space of control Uk is finite, and can be solved as follows
(see (Fujioka (2006)) for the details): Letting pk, b3(t) ∈
RM (M = m+ 3) be vectors defined as

pk = [pk−3 p
k
−2 · · · pkm−1]T (16)

b3(t) = [B3(t+ 3) B3(t+ 2) · · · B3(t− (m− 1))]T ,

(17)

we can rewrite (6) as

xk(t) = pTk b3(t). (18)

Using such an expression, the cost Jk(uk) in (15) can be
expressed in terms of pk as J̄k(pk),

J̄k(pk) = λpTkQMpk + (Bpk − dk)TW (Bpk − dk) (19)

which now is to be minimized with respect to

p̂k =
[
pk0 p

k
1 · · · pkm−4

]T ∈ RM−6 (20)

since pIk and pFk in (11) are prescribed. Here, the matrices
B ∈ RN×M and W ∈ RN×N , and the vector dk ∈ RN are
defined by

B = [b3(s1) b3(s2) · · · b3(sN )]T , (21)

W = diag{w1 w2 · · · wN}, (22)

dk = [dk1 d
k
2 · · · dkN ]T . (23)

Also, the matrix QM ∈ RM×M is a Grammian defined as

QM =

∫ +∞

−∞
b
(3)
3 (t)

(
b
(3)
3 (t)

)T
dt, (24)

and can be computed using B-splines explicitly.

In view of (11), pk in (16) is written as

pk =

 pIkp̂k
pFk

 . (25)

What we want to do here is to optimize J̄k(pk) with respect
to p̂k. For this purpose, let QM be decomposed as

QM =

Q11 Q12 Q13

QT
12 QM−6 Q23

QT
13 QT

23 Q33

 , (26)

where Q11, Q13, Q33 ∈ R3×3, Q12 ∈ R3×(M−6), Q23 ∈
R(M−6)×3, and QM−6 ∈ R(M−6)×(M−6) is the principal
minor of QM of size M − 6, thus

QM−6 > 0. (27)

Then straightforward calculation yields

pTkQMpk = p̂TkQM−6p̂k + 2(QT
12p

I
k +Q23p

F
k )T p̂k + const.

(28)
Next we consider the second term in J̄k(pk). In accordance
with (26), the matrix B in (21) is also partitioned as

B =
[
BI B̂ BF

]
, (29)

where BI , BF ∈ RN×3 and B̂ ∈ RN×(M−6). We then have

(Bpk − d)TW (Bpk − dk) = p̂Tk B̂
TWB̂p̂k

+2
(
BIp

I
k +BF p

F
k − d

)T
WB̂p̂k + const.

(30)

Thus the cost J̄k(pk) can be expressed in terms of p̂k as
J̄k(p̂k),

J̄k(p̂k) = p̂Tk

(
λQM−6 + B̂TWB̂

)
p̂k

+2
[
λ
(
QT

12p
I
k +Q23p

F
k

)
+B̂TW

(
BIp

I
k +BF p

F
k − dk

)]T
p̂k

+const. (31)

Since λQM−6+B̂TWB̂ > 0, J̄k(p̂k) has a unique minimum
when

p̂?k =
(
λQM−6 + B̂TWB̂

)−1
×
[
B̂TW (dk −BIp

I
k −BF p

F
k )− λ

(
QT

12p
I
k +Q23p

F
k

)]
.

(32)

Thus, there always exists a unique optimal solution to the
Problem 2, and the optimal control u?k(t) and the optimal
solution x?k(t) are given by

u?k(t) =

m−1∑
i=−3

pk?i
d3

dt3
B3(t− i), (33)

x?k(t) =

m−1∑
i=−3

pk?i B3(t− i). (34)

Note here that p?k = [pk?−3 pk?−2 · · · pk?m−1]T ∈ RM is
obtained by pk in (25) with p̂k substituted by p̂?k in (32).
By computing p?k for ∀k ∈ [kL, kU ], we then get M in (8)
as a model of hairy-brush dynamic font-based characters.

4. MANIPULATING CHARACTERS

As seen in the previous section, the control polygon Mk

uniquely determines the motion xk(t), hence the motion
on k-th line of hairy-brush ink effect. This fact implies
that manipulating characters can be defined as operations
on control polygons. Here, we develop such operations,
where we restrict ourselves to constituting words from
some modeled characters.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4808



Now suppose that some characters are modeled in a default
position and in default size in XY-plane, or equivalently,
the corresponding control polygons M in (8) in a default
position and in default size in XY-plane.

First, we introduce a translation operation T (·; ·) such
that, for given Mk in (7) and a matrix Ak ∈ R3×M given
as

Ak = [ak−3 a
k
−2 · · · akm−1]

with column vectors aki ∈ R3 for i = −3,−2, · · · ,m− 1,

T (Mk;Ak) = (pk−3 + ak−3)(pk−2 + ak−2) · · · (pkm−1 + akm−1).
(35)

Note here that the control polygon Mk can be translated
by the amount Ak to result in a polygon T (Mk;Ak). In
particular, setting ak−3 = ak−2 = · · · = akm−1 = a with a

constant vector ak ∈ R3 whose third element is zero, we
can simply translate the k-th line of hairy-brush ink, say
characters, on the XY-plane. In addition, we note that the
third element of vector aki for i = −3,−2, · · · ,m − 1 can
be used to adjust the gradation on the hairy-brush ink.

Remark 4. In (35), setting aki as aki = β(pki − p0i ) for a
proper real value β(≥ 0), it is noted that the width of
characters can be manipulated on the XY-plane.

A natural way to construct a word M consisting of n
characters may be by simply concatenating translated
polygons of k-th hairy-brush line, i.e.

Mk = T (M[1]
k ;Ak)T (M[2]

k ;Ak) · · · T (M[n]
k ;Ak), (36)

where M[i]
k denotes the control polygon on k-th hairy-

brush line of i-th character for i = 1, 2, · · · , n. However,

the number of control polygon M[i]
k for each characters,

that is the range of k (i.e. kL and kU ), may be different.
Due to that fact, the concatenation as in (36) may be
generally unavailable. We therefore adjust the numbers of

control polygon M[i]
k as follows: Let kmin

L and kmax
U be

minimum and maximum index of k
[i]
L and k

[i]
U of characters

M[i] for i = 1, 2, · · · , n, where k
[i]
L and k

[i]
U denote the lower

and upper indices of hairy-brush ink line of i-th character.
Then, characters M[i] is modified as M̄[i],

M̄[i] =M[i]
⊎
M[i]

L

⊎
M[i]

U (37)

with

M[i]
L =M[i]

kL

⊎
M[i]

kL

⊎
· · ·
⊎
M[i]

kL︸ ︷︷ ︸
k
[i]

L
−kmin

L

(38)

M[i]
U =M[i]

kU

⊎
M[i]

kU

⊎
· · ·
⊎
M[i]

kU︸ ︷︷ ︸
kmax
U
−k[i]

U

. (39)

Thus, letting M̄[i]
k , i = 1, 2, · · · , n be control polygon on

k-th hairy-brush line of i-th characterM[i], the wordM is
constructed as the multiset union of Mk, k ∈ [kmin

L , kmax
U ]

Mk = T (M̄[1]
k ;Ak)T (M̄[2]

k ;Ak) · · · T (M̄[n]
k ;Ak). (40)

In the sequel, we will refer such a word M as ’standard
word’.

Remark 5. The conditions in (13) imply that the writing
motion of each modeled character (i.e. xk(t)) stops at
the beginning and ending of its character. Therefore, in

order to get a word with smoother interconnections in
(40), we here remove the first and/or last two control

points from the connected side of M̄[i]
k , i = 1, 2, · · · , n and

∀k ∈ [kmin
L , kmax

U ] and concatenate each control polygon as
in (40).

In addition, by employing the approximation method in
Problem 2, we can reconstruct the words consisting ofMk

in (40) to cursive words with omitted running style as often
seen in Japanese calligraphy. Specifically, let xck(t) be a
motion of k-th line constituting such cursive hairy-brush
words and be given by

xck(t) =

m−1∑
i=−3

τki B3(t− i) (41)

with control points τki ∈ R, i = −3,−2, · · · ,m − 1. Also,
the control point vector τk = [τk−3 τ

k
−2 · · · τkm−1]T ∈ RM

be partitioned compatibly with pk in (25) as

τk =

 τ Ikτ̂k
τFk

 , τ Ik =

 τk−3τk−2
τk−1

 , τFk =

 τkm−3τkm−2
τkm−1

 , (42)

where τ̂k = [τk0 τk1 · · · τkm−4]T ∈ RM−6. In Problem 2, we
impose the start and terminal conditions as

pIk = τ Ik , p
F
k = τFk (43)

and let the data set Dk in (5) be given as

si = i, di = xk(si), i = 1, 2, · · · ,m− 2(= N). (44)

Note here that pIk and pFk are first and last three control
points of standard word, i.e. Mk in (40), and are given
with a form in (11). The condition (43) implies that the
reconstructed motion xck(t) has the same property as the
motion of modeled word xk(t) at the start and terminal
points, i.e.

xck(t) = xk(t), ẋck(t) = ẋk(t), ẍck(t) = ẍk(t) for t = 0,m.
(45)

Substituting (43) and (44) to (32), we thus get τ̂?k =
[τk?0 · · · τk?m−4]T ∈ RM−6. Therefore, letting S(·;λ;W ) be
an operator for reconstructing standard words to cursive
words with the parameters λ and wi, i = 1, 2, · · · , N , then
we have

S(Mk;λ;W ) = pk−3p
k
−2p

k
−1τ

k?
0 · · · τk?m−4p

k
m−3p

k
m−2p

k
m−1.

(46)

5. A DESIGN EXAMPLE

We here show an example of modeled characters and
cursive words produced by using our proposed method in
Sections 3 and 4.

Figure 5 shows the results for the modeled characters ‘i’
and ‘shi’. Here, (a) and (b) are the ‘pre-designed’ and
‘transformed’ characters that are obtained by the dynamic
font method and Pix2Pix in Section 2. Also, (c) is the
corresponding modeled characters. We here set a and
[kL, kU ] as a = 1 and [kL, kU ] = [−24, 18] for ‘i’ and
[kL, kU ] = [−15, 13] for ‘shi’ respectively. Also, m is set
as m = 15 for ‘i’ and m = 6 for ‘shi’, respectively.

The method described in Section 4 is then applied to the
word ‘i-shi’ constructed by concatenating ‘i’ and ‘shi’ in
Fig. 5 (c). The results are shown in Fig. 6, where the
parameter λ is set as (a) λ = 0.1, (b) λ = 1 and (c) λ = 5

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4809



(a) pre-designed (b) Pix2Pix (c) modeled

Fig. 5. (a) pre-designed characters, (b) characters trans-
formed by Pix2Pix and (c) modeled dynamic font-
based characters.

(a) λ = 0.1 (b) λ = 1 (c) λ = 5

Fig. 6. Reconstructed words with (a) λ = 0.1, (b) λ = 1
and (c) λ = 5.

0 5 10 15 20

t

-300

-200

-100

0

100

200

300

400

500

u
0
(t

)

=0.1

=1

=5

Fig. 7. Optimal control input u(t) for λ = 0.1, λ = 1 and
λ = 5.

all for W = I. We may observe that hairy-brush characters
(i.e. Fig. 5 (c)) and cursive words (i.e. Fig. 6 (a)-(c)) as seen
in real Japanese calligraphy have been produced. As for the
generation of cursive words, we see that the smoothness of
not only respective characters but also their connection
increases as λ increases. This indicates that the degree
on omitted running style of reconstructed cursive words
can be arbitrarily adjusted by λ. In addition, the optimal
control input u?k(t) for k = 0 is plotted in Fig. 7. Then, we
obviously see that the control input becomes smaller as λ
increases.

6. CONCLUDING REMARKS

We considered a problem of modeling and manipulating
hairy-brush characters based on the dynamic font method.

We, in particular, developed a scheme for modeling hairy-
brush characters by formulating the problem as an optimal
function-approximation problem. Then, a central issue was
to determine control points for generating optimal input
and solution. In addition, we derived some operations
in order to generate cursive words in a systematic way,
and it has been applied successfully as shown in a design
example. We here considered only the case of Japanese
Kana characters, but the scheme can be used in other
languages as well.

REFERENCES

Aoyanagi K., Kouzan Hairy-Brush Font,
https://opentype.jp/kouzanmouhitufont.htm.

Egerstedt M. and C. Martin, Control Theoretic Splines:
Optimal Control, Statistics, and Path Planning, Prince-
ton University Press, 2010.

Fujioka H. and H. Kano et al, Constructing and Recon-
structing Characters, Words and Sentences by Synthe-
sizing Writing Motions, IEEE Trans. Systems, Man and
Cybernetics, Part A, Vol.36, No.4, pp.661-670, 2006.

Gill R. J., D. Kulić and C. Nielsen, Spline Path Follow-
ing for Redundant Mechanical Systems, IEEE Trans.
Robotics, Vol.31, Issue 6, pp.1378 - 1392, 2015.

Gonzalez R. C., R. E. Woods and S. L. Eddins, Digital
Image Processing Using MATLAB, Pearson Education
Inc., 2004.

Isola P., J-Y. Zhu, T. Zhou, A. A. Efros, Image-to-
Image Translation with Conditional Adversarial Net-
works, Proc. 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp.5967-5976, Honolulu,
HI, USA, July 21-26, 2017.

Kano H., M. Egerstedt, H. Nakata, and C.F. Martin, B-
Splines and Control Theory, Applied Mathematics and
Computation, Vol.145, No.2-3, pp.265-288, 2003.

Lyu P., X. Bai, C. Yao, Z. Zhu, T. Huang and
W. Liu, Auto-Encoder Guided GAN for Chinese
Calligraphy Synthesis, arXiv.org, Computer Science,
arXiv:1706.08789v1, June, 2017.

Mi X.-F., M. Tang and J-X Dong, Droplet: A Virtual
Brush Model to Simulate Chinese Calligraphy and
Painting, J. Comput. Sci. and Technol., Vol.19, No.3,
pp.393-404, 2004.

Ronneberger O., P. Fischer and T. Brox, U-Net: Convo-
lutional Networks for Biomedical Image Segmentation,
arXiv.org, Computer Vision and Pattern Recognition,
arXiv:1505.04597, May, 2015.

Sun W., W. J. Niessen and S. Klein, Randomly Perturbed
B-Splines for Nonrigid Image Registration, IEEE Trans.
Pattern Analysis and Machine Intelligence, Vol.39, Issue
7, pp.1401 - 1413, 2017.

Takayama K. and H. Kano et al, Dynamic Font: A New
Representation Technology, FUJITSU Sci. and Tech. J.,
Vol.32, No.2, pp.192-202, 1996.

Uehara T., Current Technology and Problems in Com-
puter Font (in Japanese), Trans. Information Processing
Society of Japan, Vol.31, No.11, pp.1570-1580, 1990.

Wong H. T.F. and H.S. I. Horace, Virtual brush: a model-
based synthesis of Chinese calligraphy, Computers &
Graphics, Vol.24, Issue 1, pp.99-113, 2000.

Xu S., M. Tang, F. C.M. Lau, A Solid Model Based Virtual
Hairy Brush, HKU CSIS Technical Report, TR-2002-04,
2002.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4810


