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Abstract: This paper concerns the optimal model reference adaptive control problem for unknown
discrete-time nonlinear systems. For such problem, it is challenging to improve online learning efficiency
and guaranteeing robustness to the uncertainty. To this end, we develop an online adaptive critic robust
control method. In this method, a critic network and a new supervised action network are constructed to
not only improve the real-time learning efficiency, but also obtain the optimal control performance. By
combining the designed compensation control term, robustness is further guaranteed by compensating
the uncertainty. The comparative simulation study is conducted to show the superiority of our developed
method.
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1. INTRODUCTION

During past several decades, reinforcement learning (RL) has
gained a great deal of research attention in the artificial in-
telligence community. In the control system society, approx-
imate/adaptive dynamic programming (ADP) Werbos (1992)
(also called adaptive critic design), which combines RL and
the adaptive control, has been employed to address the optimal
regulation issue firstly via the action-critic network framework.
Fruitful results Chen et al. (2019); Lian et al. (2016); Ha et al.
(2018); Wang et al. (2020); Pang & Jiang (2019); Si et al.
(2001) have been reported on ADP in recent years.

In the aforementioned results, an online ADP method Si et al.
(2001) has been developed with no requirement of system dy-
namics. Convergence of this algorithm has been analyzed via
the Lyapunov extension theorem Liu et al. (2012). On this basis,
He et al. He et al. (2012) have further proposed a new ADP
framework with an additional reference/goal network integrat-
ed into the action-critic network. What’s more, this algorithm
has witnessed extensive studies in terms of the optimal tracking
control Yang et al. (2009); Ni et al. (2013); Mu et al. (2017) as
well.

The model reference adaptive control (MRAC) aims at enforc-
ing the controlled systems to track the desired reference model
rather than a tracking trajectory. Then, the closed-loop control
system has the characteristics of the reference model. The opti-
mal MRAC is far more worth deserving investigation than those
tracking control. From the state-of-the-art developments of this
investigation, only Radac et al. (2017, 2018); Fu et al. (2017);
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Wang et al. (2018) have developed the ADP-based optimal
MRAC approach.

As existence of the reference input in MRAC, there invariably
exists a feedforward control term dependent on input dynam-
ics of the systems. The input dynamics needs to be derived
via identification. To obviate this requirement, change of the
reference input in Radac et al. (2017, 2018) is ignored during
the learning process. Fu et al. (2017); Wang et al. (2018) don’t
consider the uncertainty resulting from the identification error.
As such, it is still a challenge to investigate the ADP-based
MRAC method with robustness to such uncertainty.

On the other hand, in the beginning of training phase, this
online ADP method is easy to cause inefficiency or high failure
rate with unknown dynamics Zhao et al. (2013); Fathinezhad
et al. (2009). The inefficiency or high failure rate is an unac-
ceptable and fatal risk in the real-time control.

Motivated by above discussions, we develop an online adaptive
critic robust control method for discrete-time nonlinear systems
with unknown dynamics. This method ensures that closed-
loop control systems have robustness to uncertainty and high-
efficiency learning performance.

The main contributions of this study include the following two
aspects.

(1) In contrast to the existing online ADP methods Yang
et al. (2009); Ni et al. (2013); Mu et al. (2017), our
developed control method greatly reduces the failure rate
and improves the learning efficiency via a critic network
and a new supervised action network.

(2) Unlike Radac et al. (2017, 2018); Fu et al. (2017); Wang
et al. (2018), our developed control method well guaran-
tees robustness to the uncertainties resulting from iden-
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tification and the exterior disturbance by introducing the
compensation control into the learning process.

The outline of this paper is arranged as follows. The problem
description is stated in Section 2. In Section 3, the online adap-
tive critic robust control method is given. In Section 4 provides
the comparative simulation. In Section 5, the conclusions are
stated.

2. PROBLEM FORMULATIONS

Consider the following discrete-time nonlinear system:{
xi(t +1) = xi+1(t), i = 1,2, . . . ,n−1
xn(t +1) = f (x(t))+g(x(t))u(t)+d(t),

(1)

in which x(t) = [xT
1 (t),x

T
2 (t), . . . ,x

T
n (t)]

T ∈ Rnm denotes the s-
tate with xi(t) ∈ Rm, f : Rnm → Rm and g : Rnm → Rm×m are
unknown smooth nonlinear functions, u(t) ∈ Rm represents the
control input, and d(t)∈ Rm denotes an unknown persistent dis-
turbance. Note that, under the full-state feedback linearization,
the general nonlinear systems can be converted to the formation
(1) via the coordinate transformation.

Assumption 1: The nonlinear function g(t) is always bounded
and nonsingular for ∀x(t).
Define a reference model as{

xri(t +1) = xri+1(t), i = 1,2, . . . ,n−1
xrn(t +1) = Arxr(t)+Brur(t),

(2)

where xr(t) = [xT
r1(t),x

T
r2(t), . . . ,x

T
rn(t)]

T ∈ Rnm denotes the ref-
erence state with xri(t) ∈ Rm, Ar ∈ Rm×nm and Br ∈ Rm×m rep-
resent the constant matrices of the reference model, ur(t) is the
reference control input. Here, xr(t) and ur(t) are all assumed to
be bounded.

The objective of this paper is to enable the system (1) to
track the reference model (2) on behavior with optimum via
designing an optimal control law u(t). Subtracting (2) from (1)
yields the model reference tracking error dynamics{

ei(t +1) = ei+1(t), i = 1,2, . . . ,n−1
en(t +1) = f (t)+g(t)u(t)+d(t)−Arxr(t)−Brur(t),

(3)

where e(t) = x(t)− xr(t) denotes the model reference tracking
error with ei(t) = xi(t)− xri(t).

To realize the optimum, it is needed to minimize the perfor-
mance index function or cost function

J(t) =
∞

∑
k=t

γk−tr(k), (4)

in which γ is a discount factor, r(t) = eT (t)Qe(t)+uT (t)Ru(t)
is defined as the utility function or reward with the positive
symmetric matrices Q and R.

In accordance with Bellman’s optimality principle, the optimal
cost function J∗(t) satisfies the following Bellman equation:

J∗(t) = min
u(t)
{r(t)+ γJ∗(t +1)}. (5)

Due to unknown dynamics for (1), it is difficult to solve the
Bellman equation (5). To overcome this difficulty, the ADP-
based MRAC methods Radac et al. (2017, 2018); Fu et al.
(2017); Wang et al. (2018) have been proposed. But, Radac
et al. (2017, 2018) have no real-time control performance. In
Fu et al. (2017); Wang et al. (2018), the system uncertainty
resulting from identification is not considered. On the other
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Fig. 1. Online adaptive critic robust control structure diagram.

hand, inefficiency or the high failure rate is always existent in
the online ADP methods Yang et al. (2009); Ni et al. (2013);
Mu et al. (2017), which is an unacceptable and fatal risk in the
real-time control.

3. ADAPTIVE CRITIC ROBUST CONTROL

In this section, an online adaptive critic robust control method is
developed to achieve robustness to the uncertainty and learning
efficiency. Its control structure diagram is depicted in Fig. 1.

Define a filtered model reference tracking error as
ē(t) = en(t)+λ1en−1(t)+ · · ·+λn−1e1(t), (6)

where λ1, . . . ,λn−1 are constants such that |zn−1 + λ1zn−2 +
· · ·+λn−1| is stable. Then, the filtered model reference tracking
error dynamics can be formulated as

ē(t +1) = f (t)+g(t)u(t)+d(t)−Arxr(t)−Brur(t)
+λ1en(t)+ · · ·+λn−1e2(t). (7)

An adaptive critic robust control law is designed as
u(t) =ĝ−1(t)(us(t)+ kvē(t)+Arxr(t)+Brur(t)

−λ1en(t)−·· ·−λn−1e2(t))+ua(t), (8)
where kv ∈ Rm×m is the gain matrix, ua(t) denotes a neural
network (NN) control term, us(t) represents a compensation
control term, and ĝ(t) is the estimation of g(t). Note that, ĝ(t)
is usually obtained by the model identification method Zhao
et al. (2016); Jiang et al. (2018). According to Assumption 1
and the results of Wang et al. (2002), it is deduced that ĝ(t) is
also bounded away from singularity.

A desirable value of u(t) is given by

ud(t) =g−1(t)(us(t)+ kvē(t)− f (t)−d(t)+Arxr(t)+Brur(t)
−λ1en(t)−·· ·−λn−1e2(t)). (9)

Using (9) and substituting (8) into (7) yields
ē(t +1) =kvē(t)+g(t)(u(t)−ud(t))

=kvē(t)+ f1(t)+g(t)ua(t)+us(t)+d1(t), (10)
where f1(t) = f (t)+(kv−λ1Im)xn(t)+(kvλ1−λ2Im)xn−1(t)+
· · ·+(kvλn−2−λn−1Im)x2(t)+kvλn−1x1(t), d1(t) = g(t)(ĝ−1(t)
−g−1(t))(us(t)+Arxr(t)+Brur(t)+(λ1Im−kv)xrn(t)+(λ2Im−
kvλ1)xrn−1(t)+ · · ·+(λn−1Im−kvλn−2)xr2(t)−kvλn−1xr1(t))+
d(t), and Im ∈ Rm×m is an identity matrix. According to the
results of Fu et al. (2018), it is inferred from Assumption 1 that
d1(t) is bounded.
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For requirement of the optimal control, the critic network and
the supervised action network are constructed as follows.

Since it is intractable to acquire the analytical resolution of
J∗(t) by solving (5), NN is employed to near the cost function
J(t) as follows

J(t) = w∗Tc (t)ϕc(v∗Tc (t)zc(t))+ εc, (11)

where zc(t) = [eT (t),uT
a (t)]

T denotes the input of the critic
network with hc neurons of the hidden layer, ϕc(·) represents
the active function of the critic network, w∗c(t) ∈ Rhc×1 and
v∗c(t) ∈ R(nm+m)×hc denote the ideal weights, and εc is the critic
network approximation error.

Similarly, since w∗Tc (t) and v∗Tc (t) cannot be obtained directly,
the estimation of J(t) is constructed as

Ĵ(t) = wT
c (t)ϕc(vT

c (t)zc(t)), (12)

where wT
c (t) and vT

c (t) are the estimations of w∗Tc (t) and v∗Tc (t).

Due to unknown dynamics for (10), the supervised action
network ua(t) has an NN representation as

ua(t) = ϕa2(w∗Ta (t)ϕa1(v∗Ta (t)za(t)))+ εa, (13)
where za(t) = x(t) denotes the input of the supervised ac-
tion network with ha neurons of the hidden layer, ϕa1(·) and
ϕa2(·) represent the active functions, w∗a(t) ∈ Rha×m and v∗a(t) ∈
Rnm×ha denote the ideal weights, and εa is the supervised action
network approximation error.

Since the ideal weights w∗Ta (t) and v∗Ta (t) cannot be obtained
directly, the actual control term ua(t) is constructed as

ua(t) = ϕa2(wT
a (t)ϕa1(vT

a (t)za(t))), (14)

where wT
a (t) and vT

a (t) are the estimations of w∗Ta (t) and v∗Ta (t).
For simplicity, ϕc(t), ϕa1(t), and ϕa2(t) are used to represent
ϕc(vT

c (t)zc(t)), ϕa1(vT
a (t)za(t)), and ϕa2(wT

a (t)ϕa1(vT
a (t)za(t))),

respectively.

The prediction error of the supervised action network is repre-
sented as

ea(t) = (Ĵ(t)−Uc)Im×1 + f1(t)+g(t)ua(t), (15)

where Uc = 0 is the ultimate cost objective and Im×1 ∈ Rm×1 is
a matrix whose elements are all 1.

Remark 1: There are two targets in the supervised action
network design. one is to minimize the error between the
cost function estimation Ĵ(t) and the ultimate cost objective
Uc. Its motivation is that the cost function estimation Ĵ(t)
approximates the optimal cost function J∗(t). Another target is
to minimize the error between the output of the action network
and g−1(t) f (t), which is similar to the supervised learning or
the adaptive NN control.

Due to no prior knowledge of f (t) and g(t), by using (10), (15)
is reformulated as

ea(t) = (Ĵ(t)−Uc)Im×1 + ē(t +1)− kvē(t)−us(t). (16)

Define its objective function as

Ea(t) = 1
2 eT

a (t)ea(t). (17)
The weights of the supervised action network are updated by

∆wa(t) =−ηaϕa1(t)eT
a (t)wac(t)diag(ϕ

′
a2(t)), (18a)

∆va(t) =−ηaza(t)eT
a (t)wac(t)diag(ϕ

′
a2(t)w

T
a (t)diag(ϕ

′
a1(t)),

(18b)

where ηa is the learning rate, diag(·) is the diagonalized oper-
ator, ϕ ′a1(t) and ϕ ′a2(t) respectively represent the derivative of
ϕa1(t) and ϕa2(t), and wac(t) is defined as

wac(t) = αcIm×1wT
c (t)diag(ϕ

′
c(t))v

T
c2(t)+(1−αc)g(t), (19)

with which αc will be designed in details later, ϕ ′c(t) repre-
sents the derivative of ϕc(t), the matrix vc2(t) ∈ Rm×hc satisfies
vc(t) = [vT

c1(t),v
T
c2(t)]

T with vc1(t) ∈ Rnm×hc .

In the critic network, via the Bellman equation (5), the predic-
tion error can be represented as

ec(t) = γ Ĵ(t)− Ĵ(t−1)+ r(t). (20)

Define its objective function as
Ec(t) = αc

2 ec(t)ec(t). (21)
By using the gradient descent algorithm, the weights of the
critic network are updated by

∆wc(t) =−ηcαcγec(t)ϕc(t), (22a)

∆vc(t) =−ηcαcγec(t)zc(t)wT
c (t)diag(ϕ

′
c(t)). (22b)

Design a learning schedule factor αc as

αc =


1, if

1
Nα

t

∑
k=t−Nα+1

∥ē(t)∥< εα ,

0, if
1

Nα

t

∑
k=t−Nα+1

∥ē(t)∥ ≥ εα ,

(23)

where εα > 0 is a design constant and Nα is a positive integer.

It is worth pointing out that the traditional online action-critic
framework is easy to lead to some inefficiency for the real-
time control problem. Specifically, in the beginning of online
training phase, the state of the system (1) may be far away
from the reference state, which results in the training failure
risk. This case can be viewed as 1

Nα ∑t
k=t−Nα+1 ∥ē(t)∥ ≥ εα ,

i.e. α = 0. The supervised action network guides the sys-
tem state back to the neighbor of the reference state. Once

1
Nα ∑t

k=t−Nα+1 ∥ē(t)∥ < εα holds, the online adaptive critic
learning works to further derive the optimal control policy. It
is obvious that the high failure risk is avoided in the beginning
of the online training phase.

It can be concluded that the learning process is convergent and
e(t) is uniformly ultimately bounded (UUB) and its boundary
relies on d1(t), whose proof is omitted here for saving the space.
Then, we can deduce from the UUB property that ē(t) and
ē(t)− kvē(t− 1) are also bounded. Without loss of generality,
let

∥ē(t +1)− kvē(t)∥ ≤ δe, (24)
where δe > 0.

From (10), we have ∥ f1(t)+g(t)ua(t)+d1(t)∥ ≤ δe. Let
d2(t) = f1(t)+g(t)ua(t)+d1(t). (25)

Then, we get
ē(t +1) = kvē(t)+us(t)+d2(t). (26)

Remark 2: When the weights of the critic network or the
supervised action network are close to a convergent re-
gion, it is necessary to reduce the learning rate values Ni
et al. (2013); Mu et al. (2017). Without loss of generali-
ty, let 1

Ns
∑t

k=t−Ns+1 ∥wc(t)−wc(t−1)∥ < εs represent that the
weights are close to the convergent region. In this case, due to
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reducing the learning rates, when adding a weak compensation
control signal us(t), the system state change resulting from us(t)
has few impact on the learning process. Then, (25) still holds.
Thus, the linear system (26) with a persistent disturbance d2(t)
is always existent.

Since the specific information of d2(t) is unavailable, the dis-
turbance observer Kim et al. (2016) is designed by{

d̂2(t) = kd ē(t)− zd(t),

zd(t +1) = zd(t)+ kd((kv− Im)ē(t)+us(t)+ d̂2(t)),
(27)

in which d̂2(t) is an estimation of d2(t), kd ∈Rm×m is a diagonal
observer matrix, and zd(t) is a new state variable. From the
conclusion of Kim et al. (2016), it is known that d̂2(t) is
convergent to d2(t).

Inspired by Du et al. (2016), we design a chattering-free com-
pensation control as

us(t)=


(qs1−kv)ē(t)−qs2sigαs(ē(t))−d̂2(t), if αs = 1

and
1
Ns

t

∑
k=t−Ns+1

∥wc(t)−wc(t−1)∥< εs,

0, otherwise,

(28)

where 0 < qs1 < 1, 0 < qs2 < 1, 0 < αs < 1, sigαs(·) = sgn(·)| ·
|αs , εs > 0 is a design constant, and Ns is a positive integer.

According to the results of Du et al. (2016), we know that the
compensation control us(t) is a chattering-free signal and has
a capability of the disturbance attenuation. Then, us(t) ensures
the system’s robust to the uncertainty by compensating d2(t).
As such, our developed online adaptive critic robust control
method not only has the high-efficiency optimal control prop-
erty in real time, but also keeps robust to the uncertainty. The
procedure to realize this method is summarized as Algorithm 1.

4. SIMULATION

To verify the superiority of the theoretical results, a simulation
example on our developed method is conducted by comparing
with the traditional online ADP methods. Dynamics of a one-
link robot manipulator is considered in the following:

Gθ̈ +Dθ̇ +MgLsin(θ) = τ, (29)

where g = 9.8m/s2 is a gravitational acceleration, D = 1 repre-
sents a viscous friction coefficient, L= 1m stands for the length
of the link, M = 1kg represents the payload mass, G = 1kg ·m2

stands for the inertia moment, θ is the angle position, τ is
the torque, and τd is a disturbance. Note that, its dynamics is
unavailable for the controller design.

Discretizing (29) using Euler methods with the sampling inter-
val Ts = 0.05s yields

x1(t +1) =x2(t),

x2(t +1) = 2G−DTs
G x2(t)− G−DTs

G x1(t)

− MgLT 2
s

G sin(x1(t))+
T 2

s
G u(t)+ T 2

s
G d(t),

(30)

where d(t) = 0.08cos(1.8Tst− π
4 )sin(Tst + π

3 ).

The reference model is given by
xr1(t +1) =xr2(t),

xr2(t +1) =(2−1.5Ts)xr2(t)+(1.5Ts−2.5T 2
s −1)

× xr1(t)+T 2
s ur(t),

(31)

where ur(t) = sin(0.2Tst)cos(0.4Tst + π
2 ).

Algorithm 1:
\∗ itri: the maximal trial numbers;

tc: the cumulative time for breaking;
tt : the simulation terminal time;
ic, ia: the maximal iteration numbers in the critic network
and the supervised action network, respectively;
Ect , Eat : the objective function thresholds in the critic
network and the supervised action network, respectively;

1): set the coefficients λ1, λ2, . . . , λn−1, γ , Q, R, kv, kd , ηa,
ηc, Na, Ns, εa, εs, εe, qs1, and qs2;

2): for 1 to itri do \∗ trial
3): initialize x(0), x∗(0);
4): initialize wc(0), vc(0), wa(0), and va(0) randomly;
5): us(0) = 0 and ua(0)← (14);
6): while t ≤ tt do
7): wa(t) = wa(t − 1), va(t) = va(t − 1), wc(t) = wc(t − 1),

and vc(t) = vc(t−1);
8): calculate u(t−1)← (8);
9): x(t)← (1), x∗(t)← (2), e(t)← (3), and ē(t)← (6);
10): if t > tc and 1

tc ∑tc
k=t−tc+1 ∥ē(k)∥> εe

11): break this trial;
12): endif
13): calculate Ĵ(t)← (11), ua(t)← (14), d̂2(t)← (27), us(t)
← (28), and αc ← (23);

14): r(t) = eT (t)Qe(t)+uT (t)Ru(t);
15): calculate Ec(t) and set i = 0;
16): while ((i < ic) & (Ec(t)> Ect )) do
17): update wc(t) =wc(t−1)+∆wc(t) and vc(t) = vc(t−1)+

∆vc(t);
18): Ĵ(t)← (11);
19): if 1

Ns
∑t

k=t−Ns+1 ∥wc(t)−wc(t−1)∥< εs
20): reduce ηa and ηc;
21): else
22): reset ηa and ηc;
23): endif
24): calculate Ec(t) and set i = i+1;
25): endwhile \∗ critic network
26): calculate Ea(t) and set j = 0;
27): while (( j < ia) & (Ea(t)> Eat )) do
28): update wa(t)=wa(t−1)+∆wa(t) and va(t)= va(t−1)+

∆va(t);
29): ua(t)← (14) and u(t)← (8);
30): Ĵ(t)← (11);
31): calculate Ea(t) and set j = j+1;
32): endwhile \∗ action network
33): t = t +1;
34): endwhile
35): endfor

The matrices Q and R is chosen as diag{0.5,0.5} and 0.3,
respectively. The critic network and the supervised action net-
work are constructed by two three-layer back propagation NNs
with structures of 3-4-1 and 2-3-1, respectively. The activation
functions ϕc(·) and ϕa(·) are selected as the hyperbolic tangent
function. The initial weights for both the networks are randomly
generated from [−1,1]. In view of the result of the adaptive
critic robust control method, some parameters used in the sim-
ulation are presented in Table 1. In addition, by combining with
the results of Kim et al. (2016); Du et al. (2016), the observer
and compensation control parameters are chosen as kd = 0.3,
qs1 = 0.6, and qs2 = 0.4.

The trajectories of the system state x1(t) and the reference state
xr1(t) are presented in Fig. 2. The curve of the model reference
tracking error e1(t) is depicted in Fig. 3. It is observed that
the system (31) can exactly track the reference model (30) on
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Fig. 2. System state x1(t) and reference state xr1(t).
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Fig. 4. Control input curve.

behavior by using our developed method. The control input
curve is shown in Fig. 4.

To highlight the better learning efficiency and robustness of
our developed online adaptive critic robust control method, it

Table 1. Parameters in the example

Para. Value Para. Value Para. Value Para. Value Para. Value
λ1 0.3 γ 0.95 kv 0.1 ηa 0.001 ηc 0.004

Para. Value Para. Value Para. Value Para. Value Para. Value
ia 300 ic 200 Eat 1e-4 Ect 6e-4 Na 10

Para. Value Para. Value Para. Value Para. Value - -
Ns 10 εa 0.7 εe 1 εs 0.1 - -

S
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n
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Fig. 5. System state x1(t) and reference state xr1(t) in Ni et al.
(2013).

is necessary to conduct a comparative simulation experiment
by comparing with the previous method Ni et al. (2013). As
Ni et al. (2013) is a tracking control method, the trajectory of
the reference model needs to be obtained beforehand, and then
the tracking control is implemented. The reference network,
the critic network, and the action network are constructed by
three similar NNs with structures of 5-4-1, 6-5-1, and 4-3-1,
respectively. Let u(t) = ū(t)/ĝ(t) in (30), in which ū(t) is the
output of the action network. Some parameters of this method
selected in the simulation are presented in Table 2, in which
ηr, ir, and Ert represent the learning rate, the maximal iteration
numbers, and the objective function threshold for the reference
network, respectively. Other parameter setting and some initial
conditions are set as same as those of our developed online
adaptive critic robust control method, such as λ1, γ , kv, the
initial states, and the initial weights.

Table 2. Parameters in the example for Ni et al.
(2013)

Para. Value Para. Value Para. Value Para. Value Para. Value
ηa 0.001 ηc 0.004 ηr 0.001 ia 300 ic 200

Para. Value Para. Value Para. Value Para. Value Para. Value
ir 150 Eat 1e-4 Ect 6e-4 Ert 2e-4 - -

By using the method proposed in Ni et al. (2013), we can obtain
the trajectories of x1(t) and xr1(t), and the model reference
tracking error curve, which are shown in Figs. 5 and 6, respec-
tively. Through the comparisons between Figs. 2 and 3 and that
between Figs. 5 and 6, it can be seen that our developed method
produces the smaller model reference tracking error than the
method proposed in Ni et al. (2013) does. This means that our
developed method has the superior robustness.

Table 3. Simulation results on both the methods

Methods Number of experiments Number of trials Success rate (%)
Traditional method 100 20 53

Our method 100 20 100

In this comparative simulation study, a run consists of a max-
imum of 20 consecutive trials. It is considered successful if

1
Nα ∑t

k=t−Nα+1 ∥ē(t)∥ ≤ 0.07 for ∀t > 900 holds. Otherwise, if
the controller is unable to learn to make the system (30) track
the reference model (31) on behavior within 20 trials, then the
run is considered unsuccessful. We run 100 experiments for the
traditional method Ni et al. (2013) and our developed method,
whose simulation results are listed in Table 3. It is observed
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Fig. 6. Model reference tracking error e1(t) in Ni et al. (2013).

that, in contrast to the traditional online ADP method Ni et al.
(2013), our developed method reduces greatly the learning fail-
ure rate.

5. CONCLUSION

An online adaptive critic robust control method has been devel-
oped to handle the optimal MRAC problem for the nonlinear
systems. The online adaptive critic robust controller consists
of the critic network, the supervised action network, and the
compensation control term. Via the new defined learning sched-
ule factor, such controller not only achieves the high-efficiency
learning as well as the optimality in real time, but also has
the robustness to the uncertainty. A comparative simulation has
been provided to show the superiority of our developed method.
Further investigation and experimentation are recommended
into the stability analysis, optimization of the algorithm, and
applications to the real systems.
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