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Abstract: A typical driver spends a lot of the driving time on roads shared with pedestrians and
bicyclists. Unlike highway driving, when there are pedestrians and cyclists using the same space as
cars, controlling the car is more complicated. This is due to the fact that the behaviors of such agents
does not follow strict rules like the cars in a closed highway. Their trajectories can be expressed better
with multiple probabilistic functions than deterministic ones. We suggest a scenario-based stochastic
model predictive control (MPC) framework to handle this. We consider multiple pedestrian trajectories
with their respective probabilities according to an Interacting Multiple-Model Kalman Filter (IMM-KF).
The car dynamics and non linear constraints are considered to avoid collision. A sample-based method
is used to solve this optimization problem. The control situation was simulated using MATLAB. The
proposed controller is observed to give a very natural control behavior for shared road driving compared
to a deterministic single scenario MPC.

Keywords: Scenario-based MPC, Stochastic MPC, Vehicle-Pedestrian interaction, Intelligent
autonomous vehicle

1. INTRODUCTION

Autonomous driving in closed highways is becoming a well
addressed problem as major automotive makers set to launch
autonomous driving on highways by 2020. Great progress in
sensing, localization, detection, recognition, and control have
achieved and realized reliable the autonomous driving in simple
driving environments like highways. On the other hand, the au-
tonomous driving in downtown area needs more improvement
from the viewpoint of safety and driving comfort. Most of our
daily driving are the driving on roads in residential and shop-
ping areas. In these driving environment, road is sometimes
shared with pedestrians and bicyclists. We often find it hard
to predict the future movement of a pedestrian, especially in
the case the person is looking at his mobile phone and walking
close to the road. These cases are not as easy as the highway
driving scenario because the interactions with pedestrians must
be considered. Another fact that needs to be noted while dealing
with pedestrians is that vehicle-pedestrian crashes are more
likely to result in fatalities and severe injuries compared to
vehicle-vehicle crashes. This is evident while looking at the
recent statistics on road fatalities as summarized by Onishi et al.
(2018). 273,000 pedestrians were killed in the world in 2010
and this makes up to 22% of all the road fatalities. Adding
cyclists and motorcyclists, this number increases to 50% of the
total fatalities.

In a control perspective, the former case of highway driving can
be defined with a small set of strict rules like lane following and
obeying traffic rules. It is possible to mathematically express
them as deterministic functions or constraints based on sensor

data and vehicle state as demonstrated in Niehaus and Stengel
(1991); Falcone et al. (2007); Vanholme et al. (2012); Tran et al.
(2019). However, the latter case has to deal with the intentions
of the pedestrians and cyclists. Since their intentions are not
observable, their movement can only be expressed in terms of
probabilistic functions. This uncertainty is a big problem on
the modeling of the pedestrian behavior and to formulate the
planning and control problem with strict safety constraints.

There are various models proposed for pedestrian behaviors in
shared roads. It can be noted that the state of the art models
use probabilistic functions to represent the possible path of the
pedestrian. One popular method to predict pedestrian motion
is the Interacting Multiple-Model Kalman Filters (IMM-KF)
discussed in Farmer et al. (2002). Schneider and Gavrila (2013)
compares recursive Bayesian filters, namely an Extended KF
based on a single dynamic model and an IMM-KF that consid-
ers multiple future motion models with different probabilities
for the pedestrian. This study shows that the usage of an IMM-
KF with multiple models provides an improvement of lateral
position estimations during maneuvers.

To design controllers for autonomous vehicles while consider-
ing pedestrian behaviors, stochastic MPC approach is a promis-
ing candidate. This is due to its ability to handle system con-
straints together with stochastic uncertainties in its framework
(Cannon et al. (2007)). While the worst case scenario approach
evaluated in conventional MPC can be too conservative, the
stochastic MPC is expected to realize the ‘non-conservative’
but ‘enough safety’ driving by considering the probabilistic
constraints. Even though the pedestrian-vehicle interaction is
largely unaddressed as a stochastic MPC control problem, there
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is some literature on the vehicle-vehicle cases. Carvalho et al.
(2014) talks about an ego car trying to negotiate a leading car
represented by the IMM-KF model. The framework does not
take into account all the possible models of the leading car
when predicting its future path, but only consider the most
probable model and consider the uncertainty to be propagated
within the horizon. While dealing with a pedestrian, the variety
of modes that a pedestrian can take is much broader than a
leading car.

In this paper, we propose a scenario-based stochastic MPC
(SSMPC) approach to deal with the pedestrian-vehicle inter-
action control problem. To capture the highly dynamical be-
haviors of the pedestrian, we suggest a method based on IMM-
KF that considers multiple pedestrian models (9 models in this
study) and predicts multiple pedestrian paths along with their
probabilities in every step. We also propose a tunable probabil-
ity of collision parameter to customize the control performance
in the SSMPC framework. This parameter can change the risk
taking behavior of the controller. The SSMPC problem is for-
mulated and solved using a randomized algorithm (Vidyasagar
(2001); Okuda et al. (2018); Tran et al. (2018)). Since driving
is a safety critical task, computation in real time is manda-
tory. One expected bottleneck of the suggested method is the
computational time in-order to calculate the cost of samples
for all the modes that pedestrian can take. Our previous work
Muraleedharan et al. (2019) has proved to extend the real time
calculations limit of the randomized algorithm by making use
of a GPU instead of CPU. We try to model this MPC problem
in such a way that it is compatible with GPU computation.

The organization of the paper is as follows. Section 2 describes
the dynamics models of the vehicle and the pedestrian to make
the path prediction. Section 3 and 4 detail the safety constraints
and the formulation of the scenario-based stochastic MPC prob-
lem considering the chance-constraint. The simulation result is
presented in Section 5 followed by the conclusion in Section 6.

2. DYNAMICS MODELING AND PREDICTION OF
PEDESTRIAN AND VEHICLE

Since pedestrians can change their walking speed and direction
abruptly with possibilities of multiple future walking scenarios,
it is not possible to represent their dynamics using a single
model. Instead, we use a multiple-model approach, which com-
bines several basic models in the framework of IMM-KF. This
framework was proven to be beneficial to obtain accurate esti-
mation and prediction of the pedestrian’s dynamics as reported
by Schneider and Gavrila (2013). In this section, the dynamical
model of the pedestrian and path prediction using the IMM-KF
will be described in detail.

2.1 Problem setting

In-order to demonstrate the advantage of considering pedestrian
behavior as a stochastic model, we model a shared road driving
situation of a car driving parallel to a pedestrian in a shared
road as seen in Fig. 1. The ego car is controlled to drive straight
with a reference velocity vref. The road is 4 metres wide and
pedestrian is 1.5 metres away from the center of the car in y-
axis. The pedestrian is moving straight along the road but he
has a probability of turning to the side. The ego car has to plan

Fig. 1. Target environment which includes a vehicle and a
pedestrian.

its speed to avoid collision in case the pedestrian is expected
to walk into the road. The controller predicts the risk of the
pedestrian based on the IMM-KF and reacts accordingly.

2.2 Pedestrian model

In this research, the dynamics of the pedestrian are described
using a set of Markov jump affine systems as follows

ξ
p
k+1 = Fmk

k ξ
p
k +Gmk

k wmk
k

zp
k = Hmk

k ξ
p
k + vmk

k ,
(1)

where ξ
p
k , zp

k denote the pedestrian state and measurement at
time k, respectively. The process noise wk and measurement
noise vk are assumed to be independent and identically dis-
tributed (i.i.d.) Gaussian random variable, i.e., N (0,Qmk

k ) and
N (0,Rmk

k ), respectively. The superscript mk in (1) indicates
the model m in a set of multiple models M = {1,2, . . . ,M} at
time k. As shown in the study of Schneider and Gavrila (2013),
the IMM-KF which combines constant velocity model and a
“turn expert” one provides the best result for the pedestrian
position estimation and the future path prediction among the
tested approaches. Therefore, one constant velocity (CV) model
and eight constant turn (CT) models with different turn rates are
considered in this research (M = 9). The details of those models
are given below.

• Constant velocity

F1
k =

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , G1
k =


T 2

2 0
0 T 2

2
T 0
0 T

 .
• Constant turn

Fm
k =


1 0 sin(ωmT )

ωm
− 1−cos(ωmT )

ωm

0 1 1−cos(ωmT )
ωm

sin(ωmT )
ωm

0 0 cos(ωmT ) −sin(ωmT )
0 0 sin(ωmT ) cos(ωmT )

 , Gm
k =


T 2

2 0
0 T 2

2
T 0
0 T

 ,
m ∈ {2, . . . ,9}, ωm ∈ {±20,±50,±80,±110}(deg/s).

with the pedestrian state ξ
p
k =

[
xp

k ,y
p
k ,v

p
xk ,v

p
yk

]
containing the

pedestrian position in x-axis and y-axis and the pedestrian
velocity in x-axis and y-axis at time t, respectively. ωm is the
specified turn rate of the model m, and T is the time step
interval. The measurement is chosen as zp

k =
[
xp

k yp
k

]
.

Remark 1. The values of ωm are chosen heuristically in this
paper. In fact, it is not possible to estimate the exact turn rate of
pedestrians due to their highly dynamical behaviors. Therefore,
we chose a set of turn rates which covers both slow and fast
dynamics of pedestrians.
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Remark 2. Constant acceleration model is usually used to
model the motions of vehicles or airplanes. However, according
to Schneider and Gavrila (2013), it does not give better results
in estimating and predicting the pedestrian’s position compared
with just using CV and CT models.

The transition probability matrix (TPM) Π between models is
defined as

Π = [πi j := P(mk+1 = j|mk = i)] ,
where mk is the model at time k. In this research, we fix the
values as πi j = 0.95 for i = j and πi j =

0.05
M−1 for i 6= j. Next,

the IMM-KF algorithm is implemented. See Li et al. (2000);
Blackman and Popoli (1999) for details. By using the IMM-
KF, the estimated pedestrian state ξ̂

p
t and model probabilities

µm
t (m = 1, . . . ,M) at the current time t can be estimated.

2.3 Multiple pedestrian path prediction

It is necessary to predict the future path of the pedestrian when
designing MPC controllers. In previous studies of stochastic
MPC, i.e, Carvalho et al. (2014), the future path of a target
vehicle was obtained by propagating the current state over the
prediction horizon using the model with the highest probabil-
ity µm

t . Another approach by Schildbach and Borrelli (2015)
considered a number of i.i.d. sampled scenarios over the pre-
diction horizon. At each prediction step, scenarios propagate
by choosing an arbitrary model from the set of models. We,
however, generates M different pedestrian trajectories using all
M pedestrian models.
Remark 3. Each trajectory is generated by first fixing a pedes-
trian model and then propagating the states over the prediction
horizon using the same pedestrian model.

According to the pedestrian path prediction procedure de-
scribed above, M trajectories are not i.i.d but have different
probabilities. For simplification, we assume that each trajectory
has the same probability µm

t according to the models generated
by the IMM-KF. Based on these trajectories, the chance of
vehicle-pedestrian collision can be estimated. The details will
be given in the next section.

2.4 Longitudinal vehicle model

In the shared road scenario, the driver rarely steers the vehicle
to avoid the pedestrian due to the limited lane width. Instead,
he/she slows down the vehicle when there is an incoming risk
or accelerates and passes the pedestrian before being too close.
Therefore, only longitudinal motion of the ego car is considered
in this research. A point mass model sufficiently express the
straight line dynamics of the ego car.

Xc
k+1 = FcXc

k +Gcuk,

Fc =

[1 T 0
0 1 0
0 0 1

]
, Gc =

T 2

2
T
0

 , (2)

where Xc
k = [xc

k vc
k yc

k]
T is the vehicle state, xc

k, vc
k, uc

k represent
the position, velocity and acceleration of the car in x-axis,
respectively, at time k. The position of the car with respect to
y-axis, yc

k, is considered to be constant.

3. SAFETY CONSTRAINTS

3.1 Collision avoidance

We directly restrict the distance of the vehicle and pedestrians
to be above a certain safety value dmin to avoid the collision.
Without the loss of generality, we consider one pedestrian on
the road. As described in Section 2.3, M pedestrian trajectories
sm (m = 1, . . . ,M) are generated by using all M pedestrian
models. Therefore, the collision between the vehicle and the
pedestrian considering that the pedestrian is moving according
to model m can be represented by the constraint

dm
k −dmin ≤ 0, k = 0, . . . ,N−1, (3)

where dm
k is the distance between the vehicle and the pedestrian

at time k in the prediction horizon, N is the number of predicted
steps.
Remark 4. Even if the constraint (3) is violated for some model
m, it does not mean that the vehicle is going to collide with the
pedestrian. The model probabilities should also be considered
in such a judgement.

Note that each model of the pedestrian has its own probability,
which is calculated from the IMM-KF. Therefore, we take this
into account by formulating (3) as a chance-constraint to be
satisfied to avoid the collision. That is,

M

∑
m=1

µ
m
t Cm

t,N ≤ p, (4)

where

Cm
t,N =

{
1, if ∃k ∈ {0, . . . ,N−1}, dm

k −dmin ≤ 0
0, if ∀k ∈ {0, . . . ,N−1}, dm

k −dmin ≥ 0,

and p is a specified probability representing a risk level. Natu-
rally, a high value of p might lead to a higher collision risk. On
the other hand, a low level of p might make the behavior of the
vehicle too conservative. We study the effect of the parameter
p on the driving behavior in Section 5.

3.2 Acceleration and velocity constraints

The constraints on the velocity and acceleration of the vehicle
are considered as below

vmin ≤ vc
k ≤ vmax, amin ≤ uk ≤ amax (5)

4. SCENARIO-BASED STOCHASTIC MODEL
PREDICTIVE CONTROL FOR COLLISION AVOIDANCE

In this section, an MPC speed controller for the vehicle is
designed to operate in a shared road environment with a pedes-
trian. The designed controller takes into account the uncer-
tainties of the pedestrian behavior in the prediction horizon,
evaluates the chance of collision and calculates the optimal con-
trol input that keeps that chance of collision below a specified
probability threshold p.
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4.1 Problem formulation

The receding horizon control problem is formulated using
the models of the vehicle and the pedestrian and the safety
constraints. At each time step, a finite time horizon optimal
control problem is solved to obtain a sequence of control input
to minimizes a predefined cost function. The first element of
the control input sequence is implemented to the system and the
process is repeated at the next time step with new measurement
data. The optimization problem at each time step is formulated
as follows.

given: Xc
t , ξ

p
t , vref, µ

m
t

find: uk|t , k = 0, . . . ,N−1
which minimizes:

Jcost = Φ(Xc
N|t ,vref)+

N−1

∑
k=0

M

∑
m=1

µ
m
k|tL

m(Xc
k|t ,uk|t) (6a)

Φ(Xc
N|t ,vref) = Sc(vc

ref− vc
N|t)

2 (6b)

L m(Xc
k|t ,uk|t ,ξ

p
k|t) = Qc(vc

ref− vc
k|t)

2

+Rc(uk+1|t −uk|t)
2 +Bm(Xc

k|t ,ξ
p
k|t)

(6c)

Bm(Xc
k|t ,ξ

p
k|t) = Pc exp

(
−α

(
dm

k|t −dmin

))
(6d)

subject to:
Xc(k+1|t) = FcXc(k|t)+Gcu(k|t), k = 0, . . . ,N−1 (6e)

M

∑
m=1

µ
m
t Cm

t,N ≤ p (6f)

vmin ≤ vc
k ≤ vmax, amin ≤ uk ≤ amax (6g)

Xc
0|t = Xc

t , ξ
p
0|t = ξ

p
t , (6h)

where N = 20 is the number of steps in the prediction hori-
zon, T = 0.1 (s) is the time step interval, dmin is the safety
distance. α = 10 is a constant, Sc, Qc, Rc and Pc are weight
parameters, and dm

k is the distance between the vehicle and the
pedestrian at time k considering that the pedestrian is following
the model m. Note that each pedestrian’s predicted trajectory
has its own probability µm

t obtained from the IMM-KF. Thus,
if the distance constraint between vehicle-pedestrian is violated
according to a model m whose probability µm

t is very small,
then the chance of collision between vehicle and pedestrian is
also negligible.

4.2 Randomized approach for semi-global optimal solution

The optimization problem in hand need to consider multiple
modes for the pedestrian. Having done some previous works
on developing fast sample-based optimization with GPU, we
choose the sample-based optimization approach for this prob-
lem. In the previous work Okuda et al. (2018) have demon-
strated that the sample-based method can give accurate solu-
tions without the need of linearization or approximations. It
is also proved by Vidyasagar (2001) that having more than a
certain number of samples guarantees the solution to be close
enough to the global optimum. The steps involved in this pro-
cess is as follows.

The first step is to generate Ns number of control input series
ui

IDCT according to (7b). We also make sure that the series does
not exceed the maximum acceleration limits of the car. Then we
compute the state function values for each series following the

vehicle dynamic model (2) and predict the pedestrian path using
a pedestrian model. This step is repeated for the M number of
modes that the pedestrian may follow within the horizon. Then,
we calculate cost for each control input series in each given
models (6a). In order to find the most optimum sample, we filter
out the samples that have a higher probability of collision than
p. First element of the series with minimum cost is our semi
optimal solution. This goes as input to the ego car. These steps
are repeated in every control cycle (Algorithm 1).

Algorithm 1 Sample-based optimization
1: Generate Ns number of of control input series.
2: for Series = 1,2, . . . ,Ns do
3: for Models = 1,2, . . . ,M do
4: Calculate the predicted car position based on the

control input series and M possible pedestrian paths.
5: Calculate the cost (6a) for each series and the

chance-constraint (6f) .
6: end for
7: end for
8: Filter out the samples that have a higher probability of

collision than p.
9: Find the control input series corresponding to the minimum

cost. The first element is implemented to the system.

4.3 Random input sampling in frequency domain

Generating samples by random numbers cannot guarantee sam-
ples that are smooth enough for cases like driving a car. The
samples that we use here are instead generated from the fre-
quency domain and then converted to the time domain. This
is done using Inverse Discrete Cosine Transform (IDCT). This
method of generation leads to smoother samples and hence
smoother driving performance. The advantages in terms of con-
trol performance can be found in the author’s previous work
Okuda et al. (2018). The details of generating input series ui

IDCT
by using IDCT transform are explained below:

ui
IDCT (0|t) = u(t−1), (7a)

ui
IDCT (k|t) = ui

IDCT (k−1|t)+∆ui
IDCT (k|t)

∀k ∈ {1, . . . ,N}, (7b)

∆ui
IDCT (t)

T = γDU i
IDCT (t)

T , (7c)

U i
IDCT (l|t) =

{
∼U (0,1) if l ≤ Fc/o
= 0 other , (7d)

where the coefficients matrix of IDCT transform is D ∈ RN×N

and l is the frequency component index. One element of D is
defined as:

Di j =

√
2
N

ki cos
(
(i−1)( j−1/2)π

N

)
,

i ∈ {1,2, . . . ,N}, j ∈ {1,2, . . . ,N}, (8)
where N is the length of sampled control input series. Normal-
izing factor ki (i = 1,2, ...,N) has two values:

ki =


1√
2
, if i = 1

1, if i 6= 1.
(9)

U i
IDCT (t) is sampled from a uniform distribution U (0,1) in this

case. This indicates the magnitude of each frequency compo-
nent. γ can be used to adjust the resulting input and Fc/o is a
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threshold for cut-off frequency, it checks the higher-frequency
components. Smaller Fc/o leads to a smoother input series, the
rest of the paper assumes Fc/o to be 20.

5. SIMULATION RESULTS

Simulations are conducted using MATLAB to evaluate the ef-
fectiveness of the method. The number of samples Ns in Section
4.2 is chosen to be 500 samples. In these simulations, the pedes-
trian is assumed to be walking ahead of the vehicle. He/she
has a chance to cross the road afterward. The measurement of
the pedestrian position is corrupted by Gaussian disturbance.
Note that, we are considering the shared road driving scenario
in a narrow space. Thus, it is limited to the longitudinal motion
control problem for the car.

5.1 Test scenario 1: The pedestrian only walks on one side of
the road

In this test scenario, the vehicle is running at a reference
velocity vref = 5 (m/s) and there is a pedestrian walking on the
left-hand side of the road ahead of the vehicle at the speed of 1.2
(m/s). The lateral distance between vehicle and the pedestrian
is 1.5 (m) while the safety distance dmin is set as 1 (m).

In a deterministic case where there is no uncertainty, the vehicle
will just keep the same speed without risking of colliding
with the pedestrian. However, because of the highly dynamical
behavior of the pedestrian, the vehicle should anticipate a
sudden change in the walking direction of the vehicle and slow
down properly to keep the risk of collision below a certain level.
Fig. 2 displays 9 different predicted trajectories corresponding
to the chosen dynamic models of the pedestrian, and Fig. 3
shows the mode probabilities. It can be seen that the pedestrian
is predicted to be walking straight in the CV mode with a very
high probability.

Based on the above prediction, the vehicle anticipates the
risk of collision, even though it is small due to the small
probability of turning right of the pedestrian, and slow down
accordingly. Fig. 4 illustrates the speed profile of the vehicle at
different chance-constraint probability p. It can be seen that by
setting the chance-constraint probability to a lower value, the
behavior of the vehicle is more conservative, and the vehicle
slows down more when approaching the pedestrian. At higher
chance-constraint probability p, the vehicle only slightly reduce
the speed; therefore, the risk of collision will be high if the
pedestrian suddenly changes his/her walking direction.

5.2 Test scenario 2: The pedestrian crosses the road at a given
time with different crossing angles

In this scenario, the pedestrian who initially walks along the
road, suddenly crosses the road at a given time and with a
crossing angle β with respect to the y-axis. A record of one
test scenario, which includes the true pedestrian position, the
measurement noise and the estimated position of the pedestrian
is given in Fig. 5.

Before the pedestrian crosses the road, the prediction of pedes-
trian path is very similar to the Test scenario 1. However, when
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Fig. 2. Pedestrian is walking parallel to the vehicle without
crossing the road

Fig. 3. Model probability of the pedestrian
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Fig. 4. Speed profile of the vehicle at different risk threshold p

the pedestrian starts crossing, the prediction of pedestrian path
changes accordingly. Fig. 6 displays the predicted trajectories
of the vehicle and the pedestrian when the pedestrian is crossing
in front of the vehicle. The probability of each trajectory is illus-
trated in Fig. 7. It can be seen that the pedestrian is predicted to
walk in some trajectories with fair possibilities. By taking this
into account, the vehicle can slow down the speed appropriately
to deal with the anticipated risk of collision.

Fig. 8 shows the probability of collision of the SSMPC con-
troller in the prediction horizon which is calculated from (4)
with a probability threshold p = 0.001. It can be seen that
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Fig. 6. Predicted trajectories of the pedestrian when crossing
the road.
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the probability of collision is well kept below the specified
threshold. A deterministic MPC controller that acts as a bench-
mark is designed using the above method. This controller being
standard MPC has a single scenario. Here that scenario is the
CV model of the pedestrian, i.e., the model probability of the
CV model is 1 in the controller design process. However this is
tested for its probability of collision by taking into account all
M modes in the same scenario as the SSMPC (4). It can be seen
in Fig. 8 that the probability of collision of the deterministic
controller is very high at certain steps, which are the time when
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Fig. 8. Predicted probability of collision in the prediction hori-
zon calculated from (4). The probability threshold of the
SSMPC controller is p = 0.001.

the pedestrian crosses the road. That is because the determin-
istic MPC controller does not consider the uncertainty of the
pedestrian walking behavior. Therefore, it cannot anticipate and
react quickly when the pedestrian changes the walking direction
and crosses the road.

We used Monte Carlo method to conduct 100 simulations at
different walking conditions of the pedestrian to test the perfor-
mance of 3 controllers: a SSMPC controller with the probability
threshold of 0.001, a SSMPC controller with the probability
threshold of 0.1, and a deterministic MPC which only consid-
ers the CV model of the pedestrian. In these simulations, the
pedestrian starts crossing the road in front of the vehicle at
different time and different crossing angle β with respect to the
y-axis (β ∈ [−25,25] in degree). The collision is evaluated by
comparing the actual vehicle-pedestrian distance to the safety
distance dmin. The result is shown in Table 1. It can be seen that
the chance of collision of the SSMPC controller is below the
specified probability threshold. Restricting collision probability
with a soft constraint is not ideal considering the risk associ-
ated in case of a constraint violation. Since all predicted state
are known in RMPC algorithm, a deterministic hard constraint
can be considered strictly and naturally in this framework to
guarantee safety.

The calculation time of the SSMPC controller is about 61
(ms) using MATLAB. Note that the structure of the proposed
SSMPC controller is very suitable for parallel computing.
Therefore, a significant improvement in the calculation time of
the proposed controller can be obtained by implementing it in
GPU as discussed by Muraleedharan et al. (2019).

Table 1. Constraint violation in 100 simulations at
different conditions

Controller Constraint violation CPU time (ms)
Deterministic MPC 12% 19
SSMPC (p = 0.1) 5% 61

SSMPC (p = 0.001) 0% 61

6. CONCLUSIONS

The proposed SSMPC framework has guaranteed safe naviga-
tion with a proactive collision avoidance while driving around
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a pedestrian in a shared road situation. The controller can con-
sider a number of predicted trajectories of different probabili-
ties corresponding to different dynamic behaviors of the pedes-
trian at a same time. This enables it to anticipate the poten-
tial collision risk and react properly. The proposed framework
also allows a tunable risk acceptance that lets the car behave
less conservative and avoid deadlock situations compared to a
conventional deterministic MPC. Numerous simulation results
confirm that the automated vehicle can successfully avoid a
moving pedestrian with probabilistic behaviors in a narrow
shared road environment. An ongoing work is to implement
the SSMPC controller on a real vehicle using GPU for faster
execution. This work will be extended to consider both lateral
and longitudinal motion control of ego-car. We also plan to
consider multiple agents like pedestrians and cyclists in the
framework along with their interaction with each other.
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