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Abstract: In this paper we address the problem of distributed estimation of spatial fields
using mobile sensor networks with communication constraints. These constraints consist of a
maximum communication bandwidth which limits the amount of data that can be exchanged
between any two nodes of the network at each time instant. An algorithm to select the most
significant data to be transferred between neighboring sensor nodes is developed starting from
derived analytical error bounds. Moreover, the motion of the network nodes is controlled using
a coverage control algorithm with the objective of minimizing the estimation uncertainty of
each of the nodes. The resulting communication constrained distributed estimation algorithm is
deployed on a team of ground mobile robots in the Robotarium, and its performance is evaluated
both in terms of estimation accuracy of a simulated spatial field, and of the amount of data
transferred.
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1. INTRODUCTION

Mobile wireless sensor networks (WSNs) are widely em-
ployed in applications of environmental monitoring, which
typically involve spatial field estimation tasks (see, e. g.,
the survey in Akyildiz et al. (2002)). Generally, a mo-
bile sensor network consists of a large number of sensor
nodes which, in their basic configuration, are equipped
with computation, mobility, sensing, and communication
units. These units are responsible for performing the basic
tasks for which the sensor nodes are designed: move in
the environment and explore it, collect measurement data,
process them and communicate them either to a central
unit or to their neighboring nodes.

One of the main obstructions to achieving long-term de-
ployment of mobile wireless sensor networks is energy
management. While mobility is the main source of en-
ergy consumption, in most applications, communication
is significantly more energy-consuming than computation,
as recognized in Pottie and Kaiser (2000). Thus, in long-
term distributed estimation tasks—whereby each node is
supposed to build an estimate of an environment field by
means of local interactions with its neighbors only—the
energy employed for communication needs to be explicitly
taken into account.

? This work was supported by the Army Research Lab through ARL
DCIST CRA W911NF-17-2-0181.

An approach to reduce the amount of data transferred
between sensor nodes in a network has been presented in
Kivinen et al. (2004), where a novelty detection algorithm
is employed in an online learning framework in order to
limit the amount of data that need to be stored and
therefore transferred. A similar objective is pursued in
Shi et al. (2005), where the authors propose a way of
generating small data sets that still keep a high proportion
of the information contained in the original, large, data-
set. General guidelines for choosing the size of subsets of
data based on detailed experimental studies are reported
in Das et al. (2015). Finally, with the ultimate goal of
decreasing the computational burden of Gaussian Process
Regression (GPR) models, massively scalable Gaussian
processes are introduced in Wilson et al. (2015).

Communication constraints are not explicitly considered
in the approaches reported above, which do not aim at
reducing the amount of data that is to be exchanged
between the nodes of the sensor network. The amount
of data that a node of a mobile WSN has to transfer
significantly affects the amount of consumed energy. With
the objective of reducing this energy, Tavassolipour et al.
(2017) consider information theoretical bounds in order
to find the minimum number of bits per symbol to be
employed in the communication scheme. Similarly, limited
communication capabilities in terms of communication
range are considered in Gu and Hu (2012), introducing
a Distributed Gaussian Process Regression (DGPR) in
which each sensor node only needs to communicate with its
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neighboring nodes. A similar concept has been further ex-
plored in Chen et al. (2015), where, however, the problem
of keeping the amount of exchanged data between nodes
of WSNs bounded has not been specifically investigated.
In this paper, we address this gap through the following
two contributions:

(i) the errors introduced by the approximations adopted
in a distributed estimation framework versus a cen-
tralized one are quantified;

(ii) the results of this analysis are leveraged to develop
an algorithm to select the most significant data that
need to be transferred between neighboring sensor
nodes in a WSN.

The remainder of the paper is organized as follows. In the
next section, background material is introduced, which will
be used in Sections 3 and 4 to develop a communication
constrained DGPR algorithm. In Section 5, the proposed
distributed estimation framework is implemented on a real
multi-robot system.

2. BACKGROUND

In this paper, we use Gaussian process regression as the
framework for spatial field estimation Rasmussen and
Williams (2006). Gaussian processes are flexible and ex-
hibit good generalization properties thanks to the lack of
any underlying model of the process to estimate. In this
section, we briefly recall the Gaussian process regression
and introduce a way of rendering the estimation process
distributed, requiring each node of a WSN to transfer only
a fixed amount of data with its neighboring nodes.

2.1 Gaussian Process Regression

From the definition given in Rasmussen and Williams
(2006), a Gaussian Process (GP) is a collection of random
variables, any finite number of which have a joint Gaussian
distribution. Let D ⊆ Rd be the input space of a scalar-
valued function f : D → R. Then, f is a GP if, for any
index set J ⊂ N and x = {xi}i∈J , xi ∈ D ∀i ∈ J , one has
that f(x) = {f(xi)}i∈J are Gaussian distributed. A GP
is completely specified by its mean function, µ : D → R,
and its covariance function, also called kernel function,
k : D × D → R. The value µ(xi) is the mean of f(xi), for
xi ∈ D, whereas k(xi, xj) is the covariance between f(xi)
and f(xj) for xi, xj ∈ D. Adopting the same notation
used for multivariate Gaussian distributions, we can write
f ∼ GP(µ, k), with which we mean that, for a given x =
[x1, . . . , xn], xi ∈ D ∀i, we have f(x) ∼ N (µ(x), k(x, x)).
In order to give rise to a valid covariance matrix k(x, x),
the function k needs to be symmetric and positive definite.

Spatial field estimations using GP regression are per-
formed using GPs as a prior probability distribution over
functions describing the field that is to be estimated. Once
the measurements of f at the points x = [x1, . . . , xM ],
f(x) = [f(x1), . . . , f(xM )], have been performed, one can
calculate the mean and the covariance of the posterior
probability distribution of the value of the function f
at a test point x? ∈ D, denoted by f(x?) | f(x). This
calculation has to be performed by each node of a WSN
and is carried out by using the marginalization properties
of multivariate Gaussian distributions, resulting in the

following expression (see, e. g., Rasmussen and Williams
(2006)):

f(x?) | f(x) ∼ N
(
k(x?, x)Tk(x, x)−1f(x),

k(x?, x?)− k(x?, x)Tk(x, x)−1k(x?, x)
)
.

(1)

2.2 Compactly Supported Kernel Functions and Distributed
Gaussian Process Regression

The naive computation of the conditional probability (1)
at inference time requires O(M3) operations, where M
is the number of observations, in order to invert the co-
variance matrix k(x, x) (Rasmussen and Williams (2006)).
For this reason, in practice, the exact implementation
cannot handle problems with more than a few thousands
observations. To overcome this computational limitation
of GPR, a variety of solutions have been proposed such as
Kivinen et al. (2004); Shi et al. (2005); Das et al. (2015);
Wilson et al. (2015), as discussed in the introduction (see
Quinonero-Candela et al. (2007) for a unifying framework
for sparse approximations in Gaussian regression models).

The approximation technique we take into consideration in
this paper in the context of distributed estimation consists
in sparsifying the covariance matrix k(x, x) by making
use of compactly supported (CS) kernel functions. This
way, GPR can be performed in a distributed fashion. A
distributed approach that leverages CS kernel functions
to allow spatial estimation using mobile sensor networks is
introduced in Gu and Hu (2012). In this work, the authors
allow the sensor nodes to transfer all the measurements
they have collected to their neighbors. In the next section,
we present a way of selecting and communicating the data
that are most relevant to the neighbors of a sensor node
to improve its estimation. Before that, we give a brief
overview of CS covariance functions that are used in GPR
and introduce the specific one that is used in this paper.

In Wu (1995), the author provides sufficient conditions for
positive definiteness of radial basis functions with compact
support. Using the derived conditions, a series of positive
definite and CS radial functions, known as Wu’s polynomi-
als, can be produced. In the context of spatial estimation
for interpolating large datasets, Furrer et al. (2006) show
that tapering a covariance matrix with an appropriate
CS positive definite function can significantly reduce the
computational burden while still leading to asymptotically
optimal estimations. The benefits introduced by CS co-
variance functions in terms of computational efficiency in
spatial prediction and data interpolation are recognized
also in Gneiting (2002). A constructive way of obtaining
CS kernels using functions known as mollifiers—smooth
functions with compact support—is presented in Jamshidi
and Kirby (2006), where the objective is once again that
of significantly reducing the computational complexity in-
herent in GPR. Finally, the use of CS Radial Basis Fuc-
ntion (RBF) kernels for computational improvements and
memory reduction in function estimation is investigated in
Hamers et al. (2002).

Due to their universality—the property of approximat-
ing continuous functions on compact sets with arbitrary
accuracy (Steinwart (2001))—in this paper we employ
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CS Gaussian RBF kernels (Genton (2001)). These are
obtained by mollifying the Gaussian RBF kernel

k : (x1, x2) ∈ D ×D 7→ e−
‖x1−x2‖

2

σ2 ∈ R, (2)

where σ is a parameter of the function, by multiplying it
by the following CS kernel:

kc : (x1, x2) ∈ D×D 7→ max

{
0,

(
1− ‖x1 − x2‖

l

)ν}
∈ R.

(3)
In (3), the parameters l and ν need to satisfy the conditions
l > 0 and ν > (d + 1)/2, where d is the dimensionality of
the vectors xi, in order to ensure positive definiteness of
kc. The product of the kernels in (2) and (3),

k̂ : (x1, x2) ∈ D ×D 7→ k(x1, x2)kc(x1, x2) ∈ R, (4)

is a CS kernel function and l is a parameter known as the
effective range. The meaning of the effective range can be

understood observing that ‖xi − xj‖ ≥ l ⇒ k̂(xi, xj) =
0 ∀xi, xj ∈ D. In the context of WSNs, this implies
that two measurements taken at the points xi and xj
are uncorrelated, namely they do not influence each other.
Therefore, measurement points outside the effective range
are not required to perform inference using DGPR. Thanks
to this property, Gaussian process regression performed
using CS kernel functions lends itself to be employed in
distributed estimation applications. At the same time,
however, the lack of infinite support of the kernel function
determines an estimation error when compared to a cen-
tralized approach. Quantifying and analyzing this error,
with the objective of classifying data to be exchanged
between neighboring sensor nodes, is the subject of next
section.

3. DISTRIBUTED GAUSSIAN PROCESS
REGRESSION ERROR ANALYSIS

The sparsification of the covariance matrix of a GP ob-
tained by using CS kernel functions is exploited to formu-
late a distributed version of GPR in Gu and Hu (2012).
The algorithm proposed by the authors relies on commu-
nication between neighboring sensors in order to exchange
collected measurements. If the estimation task takes place
over long time horizons, or if the mobile sensor networks
employed to perform it have energy constraints, reduc-
ing the communication burden is an important factor for
the successful execution of the estimation task. This is
because, as discussed in the Introduction, after mobil-
ity, communication is the most energy-consuming task
in many mobile sensing applications (Pottie and Kaiser
(2000)).

With the objective of deploying mobile sensor networks
over long time horizons, in this section, a way of ranking
the data to be transferred is presented, which can be
used to select only the most significant data that will
be transferred between neighboring sensor nodes. In Sec-
tion 3.1 we obtain bounds on the error that is introduced
by approximating a kernel function using a CS version of
it, whereas in Section 3.2 the estimation difference due
to the fact that each node of the sensor network has a
different subset of the measurement data is estimated.

To this end, consider a mobile sensor network with N
sensors deployed in a 2D environment X ⊆ R2 in order

to estimate an environment field f : D → R, with
X ⊆ D ⊆ R2, such as temperature, light intensity,
and concentration of a chemical substance. We denote by
xi ∈ X the position of a sensor nodes and by yi ∈ R the
observation made by the sensor at position xi. Note that
the subscript i does not refer to a specific sensor node;
instead, xi and xj denote just two different points in X
where two measurements have been performed. Moreover,
we denote by k the Gaussian RBF kernel and by k(xi, xj)

its value computed as in (2). Similarly, k̂ indicates the CS

version of k, whose value k̂(xi, xj) is computed as in (4).

3.1 Approximation Using Compactly Supported Kernel
Functions

Let {(xm, ym)}m∈{1,...,M} be the set of measurements
collected by a mobile sensor of the WSN: {ym}m∈{1,...,M}
are the measured values at locations {xm}m∈{1,...,M}.
We want to analyze the effect of using a CS kernel
function instead of a kernel with infinite support. Given
a point x? ∈ X and letting x = [x1, . . . , xM ] and y =
[y1, . . . , yM ] = [f(x1), . . . , f(xM )], we denote by y? and
ŷ? the means of the conditional probabilities f(x?) | y
obtained using the kernel functions k and k̂, respectively.

We now aim at finding a relationship between the esti-
mation difference |y? − ŷ?| and the difference between the
kernel functions. To this end, using (1), one can write:

|y? − ŷ?| =
∣∣∣k(x?, x)Tk(x, x)−1y − k̂(x?, x)Tk̂(x, x)−1y

∣∣∣.
For sake of notational compactness, we use the fol-
lowing conventions: Kxx = k(x, x), Kx?x = k(x?, x),

K̂xx = k̂(x, x), K̂x?x = k̂(x?, x). Using the def-
initions of vector and matrix l2-norms, and the fact
that 0 < k(x1, x2) ≤ 1 ∀x1, x2 ∈ D, one can show

that |y? − ŷ?| ≤ 2
∥∥K−1

xx

∥∥∥∥∥K̂−1
xx

∥∥∥ ‖y‖M 3
2 δ, where δ =

supxi,xj∈D

∣∣∣k(xi, xj)− k̂(xi, xj)
∣∣∣.

If the measurements {(xm, ym)}m∈{1,...,M} are linearly in-
dependent, the positive definite covariance matrix k(x, x)
is non-singular (Ababou et al. (1994)), which, in this case,
is equivalent to the fact that its minimum eigenvalue
λmin(k(x, x)) is strictly positive. Hence, using properties
of symmetric and positive definite matrices, one obtains:

|y? − ŷ?| ≤ 2

λmin(Kxx)λmin(K̂xx)
‖y‖M 3

2 δ <∞. (5)

Thus |y? − ŷ?| → 0 as δ → 0. This means that the
distributed estimation performed by the mobile sensor
nodes of a WSN using CS kernel functions is close to the
centralized estimation obtained by using a kernel function
with infinite support as long as their effective range is
large. This concept is formalized in the following.

Since k and k̂ are radial basis functions, we can define the
following two functions that depend only on the quantity
r = ‖xi − xj‖ ∀xi, xj ∈ D:

K(r) = e−
r2

σ2 , K̂(r) = e−
r2

σ2 max
{

0,
(

1− r

l

)ν}
. (6)

K belongs to the space of continuous functions vanishing
at infinity C0(R) =

{
f ∈ C0(R) : limx→±∞ = 0

}
, whereas

K̂ belongs to the space of compactly supported continuous
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Cc(R) =
{
f ∈ C0(R) : f has compact support

}
. Cc(R) is

a dense proper subspace of C0(R) with respect to the
uniform norm ‖f‖u = supx∈R |f(x)|, as shown in Heil
(2010). Therefore, ∀f ∈ C0(R) and ∀ε > 0, there exists
a sequence of functions {fn}n∈N ∈ Cc(R) and N > 0
such that, ∀n > N , ‖fn − f‖u < ε. This means that any
function f ∈ C0(R) can be approximated with arbitrary
accuracy using compactly supported functions fn ∈ Cc(R).
The approximation of functions obtained by using series
of CS functions can be exploited in the context of DGPR
as explained in the following.

Taking the sequence of compactly supported functions

K̂n(r) =

{
e−

r2

σ2 max
{

0,
(

1− r

n

)ν}}
n∈N

, (7)

we have that, as n→∞, δ = ‖K̂n −K‖u → 0. Therefore,
in order to minimize the estimation error |y? − ŷ?| due
to the use of CS kernel functions, the objective of the
sensor nodes of a WSN is that of maximizing the effective
range l. Note that for a sensor node, with M collected
measurements denoted by {(xm, ym)}m∈{1,...,M}, the ef-
fective range l is bounded by maxr,s∈{1,...,M} ‖xr − xs‖.
In conclusion, for a spatial estimation task, this result
means that it is desirable to have measurement locations
that are as far apart as possible in space. This way, the
effective range, which is a parameter of the CS kernel
used for the GPR, can be increased and, consequently, the
estimation error will be reduced. The following proposition
summarizes what has been derived so far.
Proposition 1. Let GP1 be a GPR model that employs
the infinitely supported Gaussian RBF kernel function in
(2). Define GP2 as the GPR model that uses as kernel
function the compactly supported version of (2), given by
(4). Provided that the two models, GP1 and GP2, are built
using the same dataset {(xm, ym)}m=1,...,M , the estimation

difference |y? − ŷ?| at a point x? is linearly bounded by

‖K̂n − K‖u, where K and K̂n are defined as in (6) and
(7), respectively.

The following Corollary shows how DGPR which employs
CS kernels generalize to full GPR when the effective range
l of the kernel goes to infinity.
Corollary 2. Under the same conditions of Proposition 1,
the estimation difference |y? − ŷ?| → 0 as the effective
range l→∞.

These results will be employed in Section 4 to develop
an algorithm used by the nodes of the sensor network in
order to select the data that need to be transferred to
the neighboring nodes, given a maximum communication
bandwidth.

3.2 Approximation Using Different Sets of Data

The difference between a centralized and a distributed
approach for spatial field estimations can be interpreted
in terms of different sets of measurements as follows. If all
sensor nodes transferred all the data they have collected
to a central unit, the entire set of measurements would
be available to a single computational unit that would be
able to perform a full GPR. In a distributed framework,
instead, each sensor node can be seen as a computational
unit that has available only a subset of the entire set of
measurements.

Therefore, we quantify the error introduced by only hav-
ing available a subset of the measurement data. In or-
der to do that, we proceed as follows. Using the same
notation adopted in the previous subsection, we let
{(xm, ym)}m∈{1,...,M} be the measurement data available
to a sensor node. We assume that an additional mea-
surement (xM+1, yM+1) becomes available, and we define
x = [x1, . . . , xM+1], y = [y1, . . . , yM+1], x̃ = [x1, . . . , xM ]
and ỹ = [y1, . . . , yM ]. We aim at quantifying the differ-
ence |y? − ỹ?| between the estimations at a given point
x? ∈ X obtained incorporating or not, respectively, the
new measurement. More specifically, we want to find an
upper bound for |y?− ỹ?| with the objective of transferring
only those measurements that might lead to a significant
change in the estimation.

Adopting the same notational shortcuts introduced in the
previous subsection, and denoting by χ the location xM+1,
we can proceed as follows.

Formally defining K̄−1
x̃x̃ =

[
K−1
x̃x̃ 0
0 0

]
, one has that

|y? − ỹ?| ≤
∥∥KT

x?x

∥∥ ‖y‖∥∥K−1
xx − K̄−1

x̃x̃

∥∥︸ ︷︷ ︸
∆K

, (8)

where the quantity ∆K can be further simplified as
follows:∥∥K−1

xx − K̄−1
x̃x̃

∥∥ =

∥∥∥∥[ X Y
YT Z

]∥∥∥∥ ≤ max{‖X‖, ‖Z‖}+ ‖Y‖

(9)
where

X = K−1
x̃x̃Kx̃χ

(
Kχχ −KT

x̃χK
−1
x̃x̃Kx̃χ

)−1
KT
x̃χK

−1
x̃x̃

Y = −K−1
x̃x̃Kx̃χ

(
Kχχ −KT

x̃χK
−1
x̃x̃Kx̃χ

)−1

Z =
(
Kχχ −KT

x̃χK
−1
x̃x̃Kx̃χ

)−1
,

(10)

and their norms satisfy

‖X‖ ≤ ‖K−1
x̃x̃Kx̃χ‖2‖Z‖

‖Y‖ ≤ ‖K−1
x̃x̃Kx̃χ‖‖Z‖

‖Z‖ =
∣∣∣(Kχχ −KT

x̃χK
−1
x̃x̃Kx̃χ

)−1
∣∣∣ . (11)

Then, using the Woodbury and the Shermann-Morrison
formulas, the following upper bound for ‖Z‖ can be
obtained:

‖Z‖ ≤

∣∣∣ 1
Kχχ

∣∣∣+
(
‖Kx̃χ‖
Kχχ

)2

‖K−1
x̃x̃ ‖

1−
(
‖Kx̃χ‖
Kχχ

‖K−1
x̃x̃ ‖

)2 . (12)

In the next section, expression (12) will be used in order
to decide whether the datapoint (xM+1, yM+1) should be
transferred between neighboring sensor nodes or not.

The result obtained in this section is summarized by the
following proposition.
Proposition 3. Let GP1 and GP2 be two GPR models
built using the infinitely supported Gaussian RBF kernel
function (2). Let {(xm, ym)}m=1,...,M+1 be a set of mea-

surement data. Then, the estimation difference |y? − ỹ?|
at a point x?, defined in (8), is bounded by a monotone
increasing function of ‖Kx̃χ‖.

Proof. From (8), |y? − ỹ?| ≤ α∆K, α ∈ R, α > 0.
Moreover, from (9), ∆K ≤ max{‖X‖, ‖Z‖} + ‖Y‖. As
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derived above, the functions that bound their norms
are all monotone increasing functions of ‖Kx̃χ‖. Hence,
max{‖X‖, ‖Z‖} + ‖Y‖ is a monotone increasing function
of ‖Kx̃χ‖, from which the result follows.

The bound introduced in Proposition 3 allows us to esti-
mate the difference |y? − ỹ?| by using the scalar quantity
‖Kx̃χ‖, without the need of computing the estimate y?

using the entire data set x. This result, together with
the one of Proposition 1, will be leveraged in the next
section to define two algorithms required to implement
the communication constrained DGPR proposed in this
paper.

4. COMMUNICATION CONSTRAINED
DISTRIBUTED GAUSSIAN PROCESS REGRESSION

4.1 Maximization of the Effective Range

As stated in Corollary 2, in order to reduce the error due
to the use of CS kernel functions, the effective ranges of
the sensor nodes have to be increased. From now on, we
will need to differentiate between two sensor nodes in a
WSN, the receiver and the sender: we use superscripts i
and j to refer to the former and the latter, respectively.

Let {(x(i)
m , y

(i)
m )}m∈{1,...,M} be the M measurement data

points stored by the receiver node i. Because of the previ-
ous argument, when exchanging data with its neighbors,
it is desirable that a measurement data point (xM+1, yM+1)
is received and incorporated if

max
m∈{1,...,M}

‖x(i)
m − xM+1‖ > li, (13)

li being the effective range of node i.

Let j ∈ Ni, where Ni ⊂ {1, . . . , N} is the index set of the
neighbors of node i. We require that the sender node j
transfers a data point to node i only if (13) holds. There-

fore, node j has to know the locations {x(i)
m }m∈{1,...,M}

of the measurement data points of node i. In order for
node i to communicate to node j the locations of its
data points, these can be compressed by computing the
minimum volume ellipsoid that encloses all the data points

{x(i)
m }m∈{1,...,M}. This can be done efficiently as shown,

for instance, in Gärtner and Schönherr (1997). Moreover,
Gärtner and Schönherr (1997) show that scaling the mini-
mum area enclosing ellipse about its center of a factor 1/d,
d being the dimension of the measurement data points,
results in an ellipse that is completely inside the convex

hull of the data points. In R2, denoting by A
(i)
e ∈ R2×2 the

matrix encoding length and directions of the axes of the
minimum-area ellipse corresponding to the measurement

data points of sensor node i, and by c
(i)
e ∈ R2 the center

of the ellipse, we define

x̄e = max
(x−c(i)e )TA

(i)
e (x−c(i)e )=1

‖x− xM+1‖, (14)

and
x̄ = max

x∈{x(i)
m }m∈{1,...,M}

‖x− xM+1‖. (15)

Then, we can quantify the accuracy in the approximation
of the measurement data points by means of the mini-

mum area enclosing ellipse as follows (Nering and Tucker
(1992)):∣∣ ‖x̄e − xM+1‖ − ‖x̄− xM+1‖

∣∣ ≤ d−1(d− 1)

√
λmax(A

(i)
e ),

where λmax(A
(i)
e ) is the maximum eigenvalue of A

(i)
e .

After receiving A
(i)
e , c

(i)
e and li from node i, node j

can decide whether to transfer its data to node i or
not. Moreover, in case it needs to transfer data, given a
maximum amount of data that can be transferred, it can
rank the data to be transferred according to the bound
(13) on the resulting li, as described in Algorithm 1.

Algorithm 1 Selection of data to transfer — Part 1

Require: datasets Di, Dj of neighboring nodes i, j
Ensure: sorted measurement data of sensor j

procedure node i

[A
(i)
e , c

(i)
e ]← minimumAreaEnclosingEllipse(Di)

transfer [A
(i)
e , c

(i)
e ] to node j

end procedure
procedure node j

receive [A
(i)
e , c

(i)
e ] from node i

d = [ ]
for dj in Dj do

dmax ← maximumDistance
(
dj , [A

(i)
e , c

(i)
e ]
)

d← append(dmax)
end for
sort(Dj) . according to d

end procedure

4.2 Maximization of the Novelty of Measurement Data
Points

In Section 3.2 a bound for |y? − ỹ?| has been derived. In
the following, we briefly recall the notion of feature space
in the context of GPs, which will be used to formulate
an algorithm to select the measurement data that each
sensor node has to transfer to its neighbors according to
the bound (12).

In Section 2 we presented what is known as the function-
space view of a GP. In the feature-space view of a GP, the
function f to be estimated is expressed as f = φ(x)Tw,
where φ : D ⊆ Rd → D′ ⊆ Rn maps the inputs x
to an n-dimensional, n ≤ ∞, inner product space, the
feature space. The variable w denotes a vector of weights
to be estimated. In this framework, one can show that
the the covariance function can be expressed as the inner
product k(x1, x2) = 〈φ(x1), φ(x2)〉Rn in Rn (Rasmussen
and Williams (2006)). The matrix Kx̃χ = k(x̃, xM+1) in
(12) can be then expressed as Kx̃χ = 〈φ(x̃), φ(xM+1)〉Rn .
Since, according to Proposition 3 the function on the right-
hand side of (12) is a monotone increasing function of
‖Kx̃χ‖, using the Cauchy-Schwarz inequality leads to:

‖Z‖ ≤

∣∣∣ 1
Kχχ

∣∣∣+
‖K−1

x̃x̃
‖

K2
χχ
‖φ(x̃)‖2‖φ(xM+1)‖2

1−
(
‖K−1

x̃x̃
‖

Kχχ

)2

‖φ(x̃)‖2‖φ(xM+1)‖2
. (16)

Now, as in the case of different kernels described in Sec-
tion 4.1, we want the sender node j, neighbor of the
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receiver node i, to transfer only data that significantly
influence the prediction ỹ?. For this reason, node j would
have to know the data points that node i has. However,
as in the previous section, we do not want node i to
transfer all its data points to node j. In view of what
has been derived in (16), if node i transfers the values
‖K̄−1

x̃x̃ ‖, ‖φ(x̃)‖2 ∈ R, node j can evaluate what are its
measurement data points that can more significantly in-
fluence the prediction ỹ?of node i, and transfer them only.
Alternatively, as before, if there is a maximum number
of data points that can be transferred, node j can rank
its data according to the influence that they can have on
the prediction ỹ?. The ranking-based transferring strategy
described in this section is summarized in Algorithm 2.

Algorithm 2 Selection of data to transfer — Part 2

Require: datasets Di, Dj of neighboring nodes i, j
Ensure: sorted measurement data of sensor j

procedure node i
transfer

[
‖φ(x̃)‖, ‖K−1

x̃x̃ ‖
]

to node j
end procedure
procedure node j

receive ‖φ(x̃)‖, ‖K−1
x̃x̃ ‖ from node i

d = [ ]
for dj in Dj do

b← evaluateBound(dj ,‖φ(x̃)‖, ‖K−1
x̃x̃ ‖) . (8),

(9), (16)
d← append(b)

end for
sort(Dj) . according to d

end procedure

4.3 Information-Entropy-Based Sensor Motion Control

Following the approach in Gu and Hu (2012), we employ
an area coverage control algorithm to move the mobile
sensors in the environment in which they are deployed.
The approach presented by Cortes et al. (2004) lends itself
to accomplish this objective. The locational cost

Hi(xi) =

∫
X

‖xi − q‖2ϕi(q)dq (17)

defined for each sensor node i, i = 1, . . . , N , can be
minimized moving towards the weighted centroid ρi of X
(see Cortes et al. (2004)). As done in Gu and Hu (2012),
the weighting function ϕi(q) is set to

ϕi(q) = log det(k(q, q)−k(q, x(i))Tk(x(i), x(i))−1k(q, x(i))),
(18)

where x(i) is the data collected by sensor node i. Assuming
that it is possible to directly control the velocity of each
sensor node, ẋi, the decentralized motion control law

ẋi = γ(ρi − xi), i = 1, . . . , N (19)

γ > 0 being a control gain, minimizes the locational cost
(17), and lets each node visit regions of the environment
where the variance of its estimation is higher. This allows
it to collect more data in those regions, which, in turn,
has the effect of reducing the variance of its estimation.
In Gu and Hu (2012), this strategy is shown to minimize
the information entropy of the Gaussian random variable
representing the spatial field f to estimate, conditioned
on the observations taken by each sensor node in the envi-
ronment. The combination of motion and communication

Fig. 1. Surf plot of an example of environment field
simulated over the Robotarium testbed, which has to
be estimated by the network of mobile sensors.

strategies described in Sections 4.1 and 4.2 is described in
Algorithm 3, executed by each sensor node i.

Algorithm 3 Communication constrained DGPR

Require: nodes’ positions xi, datasets Di, control gain
γ > 0, maximum number of data points Nmax

Ensure: communication constrained DGPR
for i in {1, . . . , N} do

compute ρi . Cortes et al. (2004)
ẋi ← γ(ρi − xi)
move with velocity ẋi
for sensor node j neighbor of sensor node i do

Di ← sorted data . Algorithms 1 and 2
transfer first Nmax data points from Di to sensor

node j
end for

end for

Algorithms 1, 2 and 3 allow a wireless sensor network
to perform distributed estimation of a spatial field by
exchanging only a limited amount of data between each
other at each point in time. This approach lends itself to be
employed in long-term distributed estimation applications,
where communication requires a non-trivial amount of
energy.

5. EXPERIMENTAL RESULTS

The communication constrained DGPR algorithm de-
veloped in the previous section has been deployed on
a team of 16 ground mobile robots in the Robotar-
ium (Pickem et al. (2017)), a remotely accessible swarm
robotics testbed. Here, environment fields consisting in
mixtures of Gaussian surfaces (such as the one depicted in
Fig. 1) have been simulated, together with the sensor mea-
surements collected by the robots. By varying the environ-
ment field to estimate, as well as the initial positions of the
robots in the environment, several experiments have been
performed. In the following, the results in terms of root
mean square (RMS) error are compared to a centralized
estimation, in which all robots are able to communicate
all collected data to a centralized computational unit.

Figure 2 shows how the RMS error changes over time
during the course of one of the experiments performed
in the Robotarium. Setting the maximum communication
bandwidth—expressed in terms of maximum number of
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Fig. 2. Plot of RMS error over time for one of the exper-
iments performed in the Robotarium. The different
curves show how the RMS error decreases over time
as the sensor nodes exchange data between each other,
as a function of the maximum number of data points
exchanged at each point in time by any two sensor
nodes (see legend). The blue curve at the bottom rep-
resents the centralized approach where data collected
by all robots are gathered by a central computational
unit, which is able to perform full GPR. As can be
seen, the higher the communication bandwidth—in
terms of number of data points exchanged—the faster
the decrease of the RMS error towards the centralized
lower bound.

Fig. 3. Effective range li of the 16 ground mobile robots
recorded over the course of one of the experiment
conducted on the Robotarium. The sensor nodes start
communicating between each other once enough data
has been collected (around 120 iterations). The graphs
show how the selection of exchanged data according to
Algorithms 1 and 2 allows the sensor nodes to quickly
increase their effective range and correspondingly
decrease the RMS estimation error (cf. Fig. 1).

data points exchanged between any two neighboring sen-
sor nodes—6 different experiments have been performed
for the same environment field. The results show how
increasing the communication bandwidth leads to a faster
convergence of the estimation to the lower bound defined
by the centralized GPR (blue line in Fig. 2). For slowly-
varying environment fields that take place over long time
horizons, it is thus worthwhile saving energy by decreasing
the maximum number of data points that can be commu-
nicated between neighbors, at the cost of decreasing the
speed of the estimation convergence.

In Fig. 3, the effective range li is depicted for 16 ground
mobile robots employed in one of the field estimation
experiments. At iteration 120, the sensor nodes have col-
lected enough data so they can start exchanging them
with the neighboring nodes. The graphs show how Algo-
rithms 1 and 2 are effective at selecting the data points

to be exchanged in order to increase li for each robot and
consequently decrease the RMS estimation error.

Finally, Figures 4a to 4f show snapshots of the video of
one of the experiments performed in the Robotarium. The
environment field to be estimated is overlaid in blue on
the testbed, whereas the estimation of the field performed
by one of the sensor nodes is shown in orange. Following
Algorithm 3, the sensor nodes (ground mobile robots)
move in the environment and exchange data to increase
their effective range (yellow circle). As can be seen, during
the course of the experiment, the estimated field (orange)
approaches the ground truth (blue) as the node collects
and exchanges data with its neighbors. This way, an accu-
rate estimate of the environment field is obtained using a
distributed and communication constrained algorithm.

6. CONCLUSIONS

In this paper we proposed a solution to communication
constrained distributed Gaussian process regression. The
main objective is that of enabling long-term deployment of
mobile wireless sensor networks for spatial field estimation.
Since severe limitations on the battery life of sensor nodes
are due to communication, we addressed the problem of
estimating spatial fields in a distributed manner while
explicitly imposing communication constraints. The pro-
posed approach is based on the derivation of theoretical
bounds on the estimation error introduced by distributed
algorithms. Given a maximum communication bandwidth,
we proposed an algorithm to select the most significant
data to be transferred. The performance of this algorithm
are demonstrated, both in terms of estimation accuracy
and amount of data transferred, on an team of mobile
robots.
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