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Abstract: In this work, a new design framework of adaptive iterative learning control (ILC) approach
for a class of uncertain nonlinear systems is presented. By making use of the closed-loop reference
model which works as an observer, the developed adaptive ILC method is able to be adopted to deal
with the output tracking problem of nonlinear systems without requiring the measurability of system
states. In the system, the uncertainties are formed by the product of unknown parameters and state
functions that are also unknown as the system states are not available. In order to facilitate the controller
design and convergence analysis, the composite energy function (CEF) method is employed, and the
accurate tracking task can be realized successfully. The proposed approach extends CEF-based ILC
approach sucessfully to output tracking control of nonlinear systems without requiring the system states
information and complicated observer design. The effectiveness of the proposed ILC scheme is verified
through an illustrative numerical example.

Keywords: Iterative learning control (ILC), composite energy function (CEF), output tracking,
convergence analysis.

1. INTRODUCTION

As an effective approach for tracking control of repeatable
uncertain systems, iterative learning control (ILC) has been in-
tensively investigated in the past three decades, such as Bristow
et al. (2006); Moore (1999); Shen and Wang (2014). Compared
with other control methods, ILC has many distinct advantages:
1) ILC is designed to deal with repetitive systems and is able
to improve the control performance iteratively by its learning
ability. While, other control methods generate the same control
performance in different iterations as they cannot take the ad-
vantages of systems’ repetition; 2) Different with other control
approaches that aim at asymptotical convergence when the time
goes to infinity, the control objective of ILC is to achieve per-
fect tracking performance on the whole time interval; 3) ILC
is easy to be implemented as it can be viewed as a feedforward
control method in time domain. Moreover, its control algorithm
is simple.

In the past years, many efforts have been made in ILC field to
extend its application scope. In literature, there are two main
frameworks for ILC. One is the contraction-mapping (CM)-
based ILC, and another is the composite energy function (CEF)-
based ILC Arimoto et al. (1984); Xu and Tan (2003); Bu and
Hou (2016); Devasia (2017); Meng and He (2017); Liu et al.
(2017); Sebastian et al. (2019); Oh et al. (2018); de Rozario
and Oomen (2019). For CM-based ILC, the structure of the ILC
law is very simple where the current control input consist of the
previous control inputs and tracking errors as a correction term,
which is easy to be implemented in applications. However, due
to that the convergence analysis is based on contraction map-

? Sponsor and financial support acknowledgment goes here. Paper titles should
be written in uppercase and lowercase letters, not all uppercase.

ping methodology, the global Lipschitz continuous (GLC) con-
dition of control systems is required to avoid finite time escape.
In contrast, CEF-based ILC is designed based on the Lyapunov-
like theory, and thus is able to deal with control systems with
nonlinearities not satisfying the GLC condition. Here, it is
however worthwhile to point out that in the framework of CEF-
based ILC, it usually requires that the full state information is
measurable, which may not be available in practice. Therefore,
how to extend CEF-based ILC to output tracking problem for
nonlinear system with unmeasurable states is an interesting
problem to be investigated.

In literature, many efforts have been devoted to establish adap-
tive ILC schemes using only system output information to re-
lax/remove the requirement on full state measurement in CEF-
based ILC, such as Tayebi and Xu (2003); Xu and Xu (2004);
Chien and Yao (2004); Zhu et al. (2017); Wang and Chien
(2014); Bouakrif et al. (2013). Most of these works were aiming
to design the controllers via developing state observers and
then followed the design and analysis procedures for tradition-
al CEF-based ILC. However, most of the observer design in
aforementioned literature is complicated. It is well-known that:
1) the design of state observer is highly dependent on the prior
knowledge of the system dynamics, which is usually difficult
to obtained; 2) Badly controlled transient performance of state
observer would affect the resulted control performance of the
system; 3) The estimated system states may deviate from the
original system states due to the unmodelled noises or dis-
turbances existing in practice, which would also degrades the
control performance of the closed-loop system. According to
these observations, it is worthy to develop new adaptive ILC
schemes with a simple state estimation strategy to improve the
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transient and control performance when the system states are
not available or measurable.

In this paper, a novel adaptive ILC algorithm is developed for
output tracking control of a class of nonlinear systems with
unmeasurable system state. For the systems considered, the
difficulty lies in the input uncertainties formed by the prod-
uct of unknown parameters and state functions that are also
unknown because system state is unavailable. For this kind of
uncertainties, we thus cannot treat them as parametric uncer-
tainties as we usually did in traditional CEF-based ILC. To
overcome the difficulty, the ideal reference model is modified
by adding a feedback term consisting of the tracking error. The
closed-loop reference model is thus able to work as an observer,
and the proposed adaptive ILC approach can then be applied
to the output tracking problem without requiring the system
state information. The main contributions of this work can be
summarized as follows:

1) We extend CEF-based ILC to output tracking problem of
nonlinear systems with unmeasurable system states for the
first time;

2) The controller design applies only system output informa-
tion and a closed-loop reference model without designing
complicated state observer as works in literature;

3) The proposed ILC design approach is novel in ILC area
and it provides a design framework of adaptive ILC for
output tracking of uncertain nonlinear systems;

4) The method proposed in this work makes ILC applicable
to more general nonlinear uncertain systems.

This remaining part of this paper is organized as follows. The
control problem is formulated in Section 2. Section 3 focuses
on the ILC design and convergence analysis for systems with
only input uncertainties. Furthermore, an illustrative example
is given in Section 4. Section 5 draws a conclusion.

2. PROBLEM FORMULATION

In this section, the control problem will be formulated firstly,
and then a kind of closed-loop reference model will be intro-
duced to work as an observer to estimate the system states.

In the present work, we consider the following MIMO nonlin-
ear system

ẋk = Axk +B
[
uk−Θ

T F(xk, t)
]
,

yk =CT xk,
(1)

where the subscript k denotes the iteration index, xk ∈ Rn is
the system state that is unmeasurable, yk ∈ Rm is the system
output, uk ∈ Rm is the system input, Θ ∈ Rn1×m represents
the parametric uncertainty, which can be either time-invariant
or time-varying, and F(x, t) ∈ Rn1 is a known vector-value
function, which is differentiable with respect to x with ‖ ∂F

∂x ‖ ≤
f̄ and f̄ being known. However, due to that the system state xk
is not available, F(xk, t) is also unknown. A,B,C are matrices
with appropriate dimensions.

In this work, to facilitate the controller design, the following
assumptions are imposed to the system (1).
Assumption 1. The matrix CT B is of full rank.
Assumption 2. For system (1), (A,CT ) is observable.
Assumption 3. For system (1), both the parametric uncertainty
is bounded

‖Θ‖ ≤ θ̄

where θ̄ is known.

The objective is to determine a sequence of control inputs uk,
k ∈ Z+ such that the system output yk can track the reference
yd generated by

ẋd = Axd +Bud ,
yd =CT xd ,

(2)

where ud is the desired control input. In order to ensure prefect
tracking, we assume xd(0) = xk(0) = 0 which is common in
the field of ILC. Due to the fact that the system states are not
available, the reference model is modified as follows

ẋd,k = Axd,k +Bud−L(yk− yd,k),
yd,k =CT xd,k,

(3)

to act as an observer to estimate the system states and then facil-
itate the ILC design, where L is a feedback gain to be designed.
Obviously, when the system output yk converges to the desired
output yd,k, the modified reference model (3) becomes the same
with the ideal reference model (2). Therefore, in the following
(3) will be considered as the reference model to be followed.

3. ILC DESIGN

In this section, an adaptive ILC scheme is designed based on
the closed-loop reference model, and the convergence analysis
is conducted under the framework of CEF method.

Define the tracking error ek , xk−xd,k and ey,k , yk−yd,k. The
following ILC law is proposed

uk = Θ̂
T
k F(xd,k, t)+ud , (4)

Θ̂k = Θ̂k−1−ΓF(xd,k, t)eT
y,kD, (5)

where D , CT B, Γ is the learning gain matrix which are
diagonal with positive diagonal elements, Θ̂k is the estimation
of Θ with Θ̂0 = 0.

Denote Fd,k , F(xd,k, t), Fk , F(xk, t) and Θ̃k , Θ̂k−Θ. The
error dynamics is derived as follows

ėk = ẋk− ẋd

= (A+LCT )ek +BΠ
[
uk−Θ

T Fk
]
−Bud

= (A+LCT )ek +BΠ
[
Θ̃

T
k Fd,k−Θ

T (Fk−Fd,k)
]

(6)
where the control law (4) is applied. By the mean value theo-
rem, there exists a x∗k such that

Fk−Fd,k =
∂F(x∗k , t)

∂x
(xk− xd,k), Fx

k (x
∗
k , t)ek (7)

which implies that

ėk = (A+LCT )ek +BΠ
[
Θ̃

T
k Fd,k−Θ

T Fx
k ek
]

(8)
with Fx

k denoting Fx
k (x
∗
k , t) for simplicity.

Before the convergence analysis of the proposed controller, the
design of the feedback gain L is discussed first. According to
Assumption 2, namely, (A,CT ) is observable, there exists a
feedback gain Ls such that the matrix A+LsCT is Hurwitz, from
which we have that for any given positive definite matrix Q
there exists a positive definite matrix P with P = PT satisfying

(A+LsCT )T P+P(A+LsCT ) =−Q. (9)
Then, we have the following lemma.
Lemma 1. For system (1) and the matrices Ls, P, Q satisfying
(9), the matrix A+ LCT is Hurwitz with L , Ls− ρBDT and
ρ > 0 if PB =CD.
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Proof. To show the stability of A+LCT , the following calcula-
tion is conducted
(A+LCT )T P+P(A+LCT )

= (A+LsCT )T P+P(A+LsCT )−ρCDBT P−ρPBDTCT

=−Q−2ρCDDTCT (10)
where the condition PB = CD is used. Due to that Q is
positive definite and CDDTCT is positive semi-definite, Q +
2ρCDDTCT is shown to be positive definite, which thus implies
A+LCT is stable.

The first main result of this work can be summarized in Theo-
rem 1.
Theorem 1. For system (1) satisfying Assumptions 1-3, the
controller (4) with the updating law (5) together with the
feedback gain chosen as L = Ls−ρBDT in (2) ensure both the
state and output tracking if

ρ >
π̄2 f̄ 2

2λmin(Q)
(11)

with θ̄ being defined in Assumption 3, f̄ is the upper bound of
∂F
∂x and λmin(Q) (> 0) being the minimum eigenvalue of Q.

Proof. To show the convergence of the proposed controller, we
define a composite energy function (CEF) as follows

Ek(t) = eT
k Pek +

∫ t

0
Tr
(
Θ̃

T
k Γ
−1

Θ̃k
)

dτ. (12)

The convergence analysis is presented as follows, which con-
sists of three parts.

Part I: Difference of CEF. For a time instant t ∈ [0,T ], the
difference of CEF at two consecutive iterations is defined as

∆Ek(t), Ek(t)−Ek−1(t)

= eT
k Pek− eT

k−1Pek−1

+
∫ t

0
Tr
[(

Θ̃
T
k Γ
−1

Θ̃k− Θ̃
T
k−1Γ

−1
Θ̃k−1

)]
dτ. (13)

For the first term in (13), it can be written as

eT
k Pek =

∫ t

0

(
ėT

k Pek + eT
k Pėk

)
dτ

=
∫ t

0
eT

k
[
(A+LCT )T P+P(A+LCT )

]
ek

+2eT
k PB

[
Θ̃

T
k Fd,k−Θ

T Fx
k ek
]

dτ. (14)
According to (9) and Lemma 1, we have

(A+LCT )T P+P(A+LCT ) =−Q−2ρCDDTCT . (15)
Hence, (14) becomes

eT
k Pek =

∫ t

0

[
−eT

k
(
Q+2ρCDDTCT )ek

+2eT
k PB

(
Θ̃

T
k Fd,k−Θ

T Fx
k ek
)]

dτ. (16)

Regarding to the third term of (13), first we can derive that

Θ̃
T
k Γ
−1

Θ̃k− Θ̃
T
k−1Γ

−1
Θ̃k−1

=
(
Θ̂k−1− Θ̂k

)T
Γ
−1 [(

Θ̂k− Θ̂k−1
)
−2Θ̃k

]
=−

(
Θ̂k− Θ̂k−1

)T
Γ
−1 (

Θ̂k− Θ̂k−1
)

−2
(
Θ̂k−1− Θ̂k

)T
Γ
−1

Θ̃k

=−DT ey,kFT
d,kΓFd,keT

y,kD−2DT ey,kFT
d,kΘ̃k (17)

with the updating law (5) being used. Therefore, it gives that

Tr
[(

Θ̃
T
k Γ
−1

Θ̃k− Θ̃
T
k−1Γ

−1
Θ̃k−1

)]
=−2Tr(DT ey,kFT

d,kΘ̃k)−Tr
(
DT ey,kFT

d ΓFd,keT
y,kD

)
=−2eT

k CDΘ̃
T
k Fd,k−FT

d,kΓFd,k‖DT ey,k‖2 (18)
where the cyclic property of trace is applied. Finally, the third
term of (13) becomes∫ t

0
Tr
[(

Θ̃
T
k Γ
−1

Θ̃k− Θ̃
T
k−1Γ

−1
Θ̃k−1

)]
dτ

=−
∫ t

0

{
2eT

k CDΘ̃
T
k Fd,k +FT

d,kΓFd,k‖DT ey,k‖2}dτ

≤−
∫ t

0
2eT

k CDΘ̃
T
k Fd,kdτ (19)

since FT
d,kΓFd,k‖DT ey,k‖2 is positive.

By combining (16) and (19) with (13), it yields

∆Ek(t)≤−
∫ t

0

[
eT

k
(
Q+2ρCDDTCT )ek +2eT

k PBΘ
T Fx

k ek
]

dτ

− eT
k−1Pek−1

=−
∫ t

0
ξ

T
k Q̄(ρ)ξkdτ− eT

k−1Pek−1 (20)

where ξk , [ey,k,ek]
T and

Q̄(ρ),

[
2ρDDT DΘ

T (Fx
k )

T

Fx
k ΘDT Q

]
. (21)

Let QS be the Schur complement of Q in the matrix Q̄(ρ), it
gives QS = 2ρDDT −DΘT

(
Fx

k

)T Q−1Fx
k ΘDT . It is not difficult

to show that QS is positive definite if

ρ >
θ̄ 2 f̄ 2

2λmin(Q)
. (22)

By the Schur complement, the matrix Q̄(ρ) is positive definite.
Therefore, we have

∆Ek(t)≤−
∫ t

0
ξ

T
k Q̄(ρ)ξkdτ− eT

k−1Pek−1

≤−λ
ρ

min(Q̄)
∫ t

0
ξ

T
k ξkdτ−λmin(P)eT

k−1ek−1 (23)

with λ
ρ

min(Q̄)(> 0) and λmin(P)(> 0) being the minimum eigen-
values of Q̄(ρ) and P, respectively.
Remark 1. Due to the existence of 2eT

k PBΘT Fx
k ek on the right

hand side of (20), the sign of ∆Ek(t) is not determined if the
feedback gain in (2) is chosen to be Ls. Therefore, the feedback
gain L = Ls−ρBDT designed in Lemma 1 is used to contend
with the term 2eT

k PBΘT Fx
k ek.

Part II: Convergence of the Tracking errors. For a given time
instant t ∈ [0,T ], consider a finite sum of ∆Ek(t),

k

∑
i=2

∆Ei(t) =
k

∑
i=2

[Ei(t)−Ei−1(t)] = Ek(t)−E1(t) (24)

and apply the inequality (23), it gives

Ek(t) = E1(t)−
k

∑
i=2

∆Ei(t)

≤ E1(t)−λ
ρ

min(Q̄)
k

∑
i=2

∫ t

0
‖ξk‖2dτ−λmin(P)

k

∑
i=2
‖ei−1‖2.

(25)
Because of the positiveness of Ek(t), ek(t) converges to zero
in a pointwise fashion and ξk converges to zero in the sense
of L2-norm as k goes to infinity if E1 is bounded, namely,
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limk→∞ ek(t) = 0 and limk→∞

∫ t
0 ‖ξk‖2dτ = 0, which thus im-

plies that limk→∞

∫ t
0 ‖ey,k‖2dτ = 0.

Part III: Finiteness of E1(t). When k = 1, Θ̂1 = −ΓFd,keT
y,1D.

The composite energy function E1 is

E1(t) = eT
1 Pe1 +

∫ t

0
Tr
(
Θ̃

T
1 Γ
−1

Θ̃1
)

dτ. (26)

Taking the derivative of E1(t)

Ė1(t) =−eT
1 Q̃e1 +2eT

1 PBΘ̃
T
1 Fd,1−2eT

1 PBΘ
T Fx

1 e1

+Tr
(
Θ̃

T
1 Γ
−1

Θ̃1
)

(27)

with Q̃ , Q+2ρCDDTCT . Firstly, let’s expend the term

Θ̃
T
1 Γ
−1

Θ̃1 = Θ̃
T
1 Γ
−1

Θ̂1− Θ̃
T
1 Γ
−1

Θ

=−Θ̃
T
1 Fd,1e1CD+DTCT e1FT

d,1Θ+Θ
T

Γ
−1

Θ.

(28)
Hence, we have

Tr
(
Θ̃

T
1 Γ
−1
1 Θ̃1

)
=−eT

1 CDΘ̃
T
1 Fd,1 + eT

1 CDΘ
T Fd,1

+Tr
(
Θ

T
Γ
−1

Θ
)

=−2eT
1 PBΘ̃

T
1 Fd,1− eT

1 CDDTCT e1FT
d,1ΓFd,1

+Tr
(
Θ

T
Γ
−1

Θ
)

≤−2eT
1 PBΘ̃

T
1 Fd,1 +Tr

(
Θ

T
Γ
−1

Θ
)

(29)

due to the positiveness of eT
1 CDDTCT e1FT

d,1ΓFd,1. Substitute
(29) into (27), it gives

Ė1(t)≤−eT
1 Q̃e1−2eT

1 PBΘ
T Fx

1 e1 +Tr
(
Θ

T
Γ
−1

Θ
)

=−ξ
T
1 Q̄(ρ)ξ1 +Tr

(
Θ

T
Γ
−1

Θ
)

≤−λ
ρ

min(Q̄)‖ξ1‖2 +Tr
(
Θ

T
Γ
−1

Θ
)
. (30)

Consequently, once the inequality
λ

ρ

min(Q̄)‖ξ1‖2 ≥ Tr
(
Θ

T
Γ
−1

Θ
)

holds, Ė1(t) is negative. Therefore, the boundedness of E1(t)
over [0,T ] is obtained.

4. ILLUSTRATIVE EXAMPLES

Consider a circuit model Xu and Xu (2004)[
ẋ1
ẋ2

]
=

− R1L2

L1L2−M2
R2M

L1L2−M2
R1M

L1L2−M2 − R2L1

L1L2−M2

[x1
x2

]

+

 L2−M
L1L2−M2

L1−M
L1L2−M2

(u−θ
T

ξ ) (31)

where x1,x2 represent the loop currents, u is the input voltage,
Π represents the input distribution uncertainty, θ T ξ denotes the
input perturbation with θ =−[sin3(t),0.8sin2(t)]T , t ∈ [0,2π],
ξ = [3x2,3sin(x1)]

T , and the system parameters are presented
in Table 1 with R1,R2 being the resistors and L1,L2,M being
inductors. The system output is y = x1.

With simple calculations, we can obtain that

A =

[
−3.1746 0.9524
0.9524 −2.2857

]
, B =

[
2.2222
1.3333

]
, C =

[
1
0

]
. (32)

It is easy to verify that Assumptions 1,2 and 3 hold. The desired
trajectory yd is generated by system (3) with matrices presented
in (32) and L = Ls − ρBDT with Ls = [0.5397,0.4381]T and
ρ = 3.

Table 1. System Parameters

Symbol Value
R1 1Ω

R2 1Ω

L1 0.36H
L2 0.5H
M 0.15H

In order to show the effectiveness of the proposed control algo-
rithm, simulations will be conducted by applying the controller
(4) with the updating law (5) to the system (31).

Set the learning gain Γ = diag(0.1,0.05). By applying the pro-
posed controller (4) with the updating law (5), Figs. 1 and
2 present the control input and reference profiles at different
iterations. Clearly, Fig. 2 shows that the modified target trajec-
tory varies from iteration to iteration, which converges to the
ideal reference gradually as the iteration number increases. The
tracking performance of the system outputs at the 1st and 60th
iterations are shown in Fig. 3, from which we can see that the
system output at the 1st iteration deviates from the reference,
while the difference between the output profile and reference
becomes invisible at the 60th iteration. This can be further ver-
ified by the convergence of the maximum output tracking error,
|ey,k|s , supt∈[0,2∗π] |ey,k(t)|, presented in Fig. 4. The maximum
tracking error |ey,k|s is reduced by 96.22% within 40 iterations.
Therefore, the efficacy of the proposed ILC approach has been
demonstrated.
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Fig. 1. Variation of the control input profiles in the iteration domain for Case
1.
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Fig. 2. Variation of the modified reference profiles in the iteration domain for
Case 1.
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Fig. 3. Tracking performance at the 1st and 60th iterations for Case 1.

0 10 20 30 40 50 60
Iteration

0

0.5

1

1.5

2

|e
y,

k| s

Maximal tracking errors

Fig. 4. The maximum tracking error profile along the iteration axis for Case
1.

5. CONCLUSION

In this paper, a novel iterative learning control (ILC) approach
is developed for a class of uncertain nonlinear systems with
unmeasurable system states. By utilizing the closed-loop ref-
erence model as an observer, the proposed adaptive ILC ap-
proach can be adopted to deal with the output tracking prob-
lem of nonlinear systems without requiring the measurability
of system states. In the systems,two kinds of uncertainties,
namely, parametric input disturbances and uncertainties caused
by the unavailable states, are taken into account. To facilitate
the controller design and convergence analysis, the composite
energy function (CEF) is employed. This approach extends the
CEF-based ILC approach to output tracking control of nonlin-
ear systems with unmeasurable states. The numerical example

illustrated has shown the effectiveness of the proposed ILC
scheme.

REFERENCES

Arimoto, S., Kawamura, S., and Miyazaki, F. (1984). Bettering
operation of robots by learning. Journal of Robotic Systems,
1(2), 123–140.

Bouakrif, F., Boukhetala, D., and Boudjema, F. (2013). Velocity
observer-based iterative learning control for robot manipula-
tors. International Journal of Systems Science, 44(2), 214–
222.

Bristow, D.A., Tharayil, M., and Alleyne, A.G. (2006). A
survey of iterative learning control. IEEE Control Systems
Magazine, 26(3), 96–114.

Bu, X. and Hou, Z. (2016). Adaptive iterative learning control
for linear systems with binary-valued observations. IEEE
Transactions on Neural Networks and Learning Systems,
29(1), 232–237.

Chien, C.J. and Yao, C.Y. (2004). Iterative learning of model
reference adaptive controller for uncertain nonlinear systems
with only output measurement. Automatica, 40(5), 855–864.

de Rozario, R. and Oomen, T. (2019). Data-driven iterative
inversion-based control: Achieving robustness through non-
linear learning. Automatica, 107, 342–352.

Devasia, S. (2017). Iterative machine learning for output
tracking. IEEE Transactions on Control Systems Technology,
(99), 1–11.

Liu, J., Dong, X., Huang, D., and Yu, M. (2017). Composite
energy function-based spatial iterative learning control in
motion systems. IEEE Transactions on Control Systems
Technology, 26(5), 1834–1841.

Meng, T. and He, W. (2017). Iterative learning control of a
robotic arm experiment platform with input constraint. IEEE
Transactions on Industrial Electronics, 65(1), 664–672.

Moore, K.L. (1999). Iterative learning control: An expository
overview. In Applied and Computational Control, Signals,
and Circuits, 151–214. Springer.

Oh, S.K., Park, B.J., and Lee, J.M. (2018). Point-to-point
iterative learning model predictive control. Automatica, 89,
135–143.

Sebastian, G., Tan, Y., and Oetomo, D. (2019). Convergence
analysis of feedback-based iterative learning control with
input saturation. Automatica, 101, 44–52.

Shen, D. and Wang, Y. (2014). Survey on stochastic iterative
learning control. Journal of Process Control, 24(12), 64–77.

Tayebi, A. and Xu, J.X. (2003). Observer-based iterative learn-
ing control for a class of time-varying nonlinear systems.
IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 50(3), 452–455.

Wang, Y.C. and Chien, C.J. (2014). An observer-based adaptive
iterative learning control using filtered-fnn design for robotic
systems. Advances in Mechanical Engineering, 6, 471418.

Xu, J.X. and Tan, Y. (2003). Linear and nonlinear iterative
learning control, volume 291. Springer.

Xu, J.X. and Xu, J. (2004). Observer based learning control for
a class of nonlinear systems with time-varying parametric
uncertainties. IEEE Transactions on Automatic Control,
49(2), 275–281.

Zhu, S., Wang, X., and Liu, H. (2017). Observer-based iterative
and repetitive learning control for a class of nonlinear sys-
tems. IEEE/CAA Journal of Automatica Sinica, 5(5), 990–
998.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1469


