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Abstract: This paper addresses distributed achieving the least squares solution of Sylvester
equations in the form of AX + XB = C. By decomposing the parameter matrices A, B
and C, we formulate the problem of distributed solving Sylvester equations as a distributed
optimization model and propose a continuous-time algorithm from the primal-dual viewpoint.
Then, by constructing a Lyapunov function, we prove that the proposed algorithm can achieve
a least squares solution of Sylvester equations with an explicit exponential convergence rate.
Additionally, we illustrate the convergence performance by using a numerical example.
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1. INTRODUCTION

Because of their wide application in machine learning
(Wang et al., 2016), control theory (Xu and Dublje-
vic, 2017), and robot manipulator (Zhang and Zheng,
2018), Sylvester equations have received intensive atten-
tions in the fields of engineering and mathematics. In 1884,
Sylvester developed the condition of the unique solution
for the special case AX + XB = 0 (Sylvester, 1884), and
then some scholars achieved several solvable conditions
for the general case AX + XB = C (Kučera, 1974; Go-
hberg and Lerer, 1988; Wimmer, 1996; Wang et al., 2019).
Up to now, centralized algorithms have been proposed.
For instance, by formulating the coefficient matrices into
triangular form, Kleinman and Rao (1978) proposed an
iterative algorithm, while by transforming the Sylvester
equation as an optimization problem, Benner and Breiten
(2014) achieved the low rank approximate solution.

However, in some fields, such as big data and complex
systems, the dimensions of the Sylvester equation accu-
mulate explosively. Therefore, the conventional centralized
approaches are hard to rise to the challenges because of the
limited abilities of computation and communication. In
order to overcome these limitations, distributed optimiza-
tion has attracted many research attentions (Yi and Hong,
2016). Because of the convenience of analysis and being
implemented in hybrid physical systems, continuous-time
based distributed optimization algorithms have became
more and more popular (Liang et al., 2017; Kia et al., 2015;

? This work was supported by the National Key Research and Devel-
opment Program of China (2016YFB0901900), the National Natural
Science Foundation of China under Grant 61733018, the National
Postdoctoral Program for Innovative Talents (BX20180346), and
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Shi et al., 2012). In recent years, some continuous-time
algorithms have been proposed to distributedly solving
the large scale linear matrix equations. Deng et al. (2019)
proposed a continuous-time distributed algorithm to ob-
tain the exact solution of Sylvester equations. However,
this algorithm is invalid for a least squares solution. For
Stein equations in the form of X + AXB = C without
exact solutions, Chen et al. (2019) developed a continuous-
time distributed algorithm to achieve a least squares solu-
tion. However, this method is limited to the special Row-
Column-Column structure of matrices A, B and C. By
considering eight standard structures of A, B and C of
the linear matrix equations AXB = C, Zeng et al. (2018)
discussed four distributed algorithms to attain a least
squares solution. All of these algorithms in Deng et al.
(2019); Chen et al. (2019); Zeng et al. (2018) can solve
the linear matrix equations in distributed manner with an
exponential convergence, but it is hard to determine an
explicit convergence rate.

In this work, we develop a distributed algorithm to solve
AX + XB = C. By decomposing the matrices A, B
and C with any row or column sub-blocks, we transform
the problem as a universal distributed optimization model
with one variable consensus constraint. Based on this opti-
mization problem, we construct an augmented Lagrangian
function and propose a distributed continuous-time algo-
rithm. Moreover, by designing a Lyapunov function, we
establish an explicit exponential convergence rate. The
main contributions are listed as follows.

1) A universal distributed optimization model is estab-
lished to handle any type of standard decomposition
of the parameter matrices A, B and C.
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2) In comparison with Deng et al. (2019), we remove the
assumption on the existence of the exact solution and
propose a more efficient continuous-time algorithm.

3) In comparison with Deng et al. (2019); Chen et al.
(2019); Zeng et al. (2018), we prove that the proposed
algorithm achieve the least squares solution with an
explicit exponential convergence rate.

The rest of this paper is organized as follows. Section 2
gives some basic preliminaries, while Section 3 transforms
the problem as a distributed optimization problem and
designs a continuous-time algorithm. Then Section 4 shows
that the proposed algorithm exponentially converges to
the least squares solution with an explicit rate. Section 5
illustrates the proposed algorithm by showing an example
and Section 6 concludes this paper.

2. PRELIMINARIES

2.1 Matrices

The real number set, n-dimensional real column vector
set, and n×m real matrix set are denoted as R, Rn, and
Rn×m, respectively. 1n ∈ Rn (0n ∈ Rn, 0n×m ∈ Rn×m)
is a vector (vector, matrix) with all of the elements are
one (zero, zero). In ∈ Rn×n is an identity matrix. For
∀A ∈ Rn×m, A> (rank(A), ker(A)) means the transpose
(rank, kernel) of A, aij denotes the i-th row and j-th
column entry of A, Ai· (A·i) denotes the i-th row or row
sub-block (column or column sub-block) of the matrix A

with proper dimensions. ‖A‖ = (
∑n

i=1

∑m
j=1 a

2
ij)

1
2 is the

Frobenius norm of A. Similarly, for any two real matrices
A ∈ Rn×m and B ∈ Rn×m, the Frobenius inner product
can be calculated as 〈A,B〉 =

∑n
i=1

∑m
j=1 aijbij . [mi] and

[ri] are two sequences with
∑n

i=1mi = m,
∑n

i=1 ri = r,

m[i] =
∑i

j=1mj , and r[i] =
∑i

j=1 rj . Then two sub-block

matrices Ai· ∈ Rmi×m and B·i ∈ Rr×ri can be augmented
as follows{

Āi :=
[
0>m[i−1]×m, A

>
i· ,0

>
(m−m[i])×m

]>
, (1a)

B̄i :=
[
0r×r[i−1]

, B·i,0r×(r−r[i])
]
. (1b)

Lemma 1. For the Frobenius inner product, we have
∂

∂X
〈AX,B〉 = A>B,

∂

∂X
〈XA,B〉 = BA>,

∂

∂X
〈A,BX〉 = B>A,

∂

∂X
〈A,XB〉 = AB>.

(2)

Remark 1. According to Lemma 1, for a given quadratic
function H(X) = 1

2‖H̄(X)‖2 = 1
2‖AX + XB − C‖2, the

corresponding gradient on X can be expressed as

∂H(X)

∂X
= A>H̄(X) + H̄(X)B>. (3)

2.2 Graph theory

For a network with nodes set V = {1, 2, · · · , n} and edges
set E ⊆ V × V, we denote the corresponding undirected
communication graph as G = (V, E). We say node j is the
neighbor of node i if {j, i} ∈ E . A = [aij ] ∈ Rn×n is the
adjacency matrix of the graph G with aij = aji > 0 if
{j, i} ∈ E and aij = 0 otherwise. Based on the adjacency

matrix we calculate the degree matrix D and Laplacian
matrix L as D = diag{

∑n
j=1 a1j , · · · ,

∑n
j=1 anj} and L =

D−A, respectively. Specifically, if the undirected graph G
is connected, the Laplacian matrix L is symmetric positive
semi-definite, and the rank and kernel of L are n− 1 and
k1n with k ∈ R, respectively.

Assumption 1. The undirected graph G is connected.

2.3 Metric subregularity

For a map H(x) : Rn → Rn, define gphH = {(x,y) ∈ Rn×
Rn|y = H(x)} and H−1(y) = {y ∈ Rn|(x,y) ∈ gphH}.
Then we introduce a lemma on κ-metric subregularity.

Lemma 2. Ioffe (2017) If gphH is polyhedral, there exists
a positive constant κ such that

d
(
x, H−1(y∗)

)
≤ κ

∥∥H(x)− y∗
∥∥, ∀x ∈ Rn, (4)

where d(x, H−1(y∗)) = infz∈H−1(y∗)‖z− x‖.

3. PROBLEM FORMULATION AND ALGORITHM

3.1 Problem formulation

Consider the problem of solving the Sylvester equation

AX +XB = C, (5)

where A ∈ Rm×m, B ∈ Rr×r, and C ∈ Rm×r are
known matrices, X ∈ Rm×r is an unknown matrix to be
determined.

Definition 1. We call X∗ is a least squares solution to (5),
if X∗ satisfies

X∗ = argmin
X
‖AX +XB − C‖2. (6)

In the scheme of distributedly solving (5) with the aid
of multi-agent systems, the i-th agent only holds the
i-th sub-blocks parameter matrices A, B, and C and
exchanges information with their neighbors. For instance,
matrices A, B, and C are decomposed as the Row-Column-
Column structure, namely, A = [A>1·, · · · , A>n·]> ∈ Rm×m,
Ai· ∈ Rmi×m,

∑n
i=1mi = m, B = [B·1, · · · , B·n] ∈ Rr×r,

B·i ∈ Rr×ri ,
∑n

i=1 ri = r, C = [C·1, · · · , C·n] ∈ Rm×r,
C·i ∈ Rm×ri , and the i-th agent has access to Ai·, B·i, and
C·i. By referring (1a) and (1b), Ai·, B·i, and C·i can be
augmented as Āi ∈ Rm×m, B̄i ∈ Rr×r, and C̄i ∈ Rm×r,
respectively. Then (5) can be transformed into

n∑
i=1

ĀiX +X

n∑
i=1

B̄i −
n∑

i=1

C̄i = 0. (7)

Remark 2. The aforementioned Row-Column-Column str-
ucture of matricesA,B, and C is just a case to show how to
transform (5) into (7). Actually, for all of other 7 cases (in-
cluding Column(C)-Column(C)-Column(C), RRC, CRC,
RCR, CCR, RRR, and CRR) of the considered Sylvester
equation in (5) can also be transformed into (7) equiva-
lently.

By introducing an intermediate matrix M = [M>1 ,M
>
2

, · · · ,M>n ]> ∈ Rnm×r with Mi ∈ Rm×r for ∀i ∈ V, we
decouple (7) as
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 ĀiXi +XiB̄i − C̄i +

n∑
j=1

aij(Mi −Mj) = 0,

Xi = Xj ,

(8)

where the matrix [aij ] is the adjacent matrix of the
undirected graph. Combining with the definition of the
Laplacian matrix L, we rewrite (8) as{

ĀiXi +XiB̄i − C̄i + L̄i·M = 0,

L̄X = 0,
(9)

where L̄ = L ⊗ Im and L̄i· = Li· ⊗ Im. Therefore, we
transform (9) into a following distributed optimization
problem

min
X,M

1

2

n∑
i=1

‖ĀiXi +XiB̄i − C̄i + L̄i·M‖2,

s.t. L̄X = 0.

(10)

It can be verified the equivalence between an optimal
solution of (10) and a least squares solution of (5).

3.2 Algorithm design

Based on (10), we construct an augmented Lagrangian
function as

L(X,M,Λ) =
1

2

n∑
i=1

‖Gi‖2 + 〈Λ, L̄X〉+
1

2
〈X, L̄X〉, (11)

where Λ = [Λ>1 ,Λ
>
2 , · · · ,Λ>n ]> ∈ Rnm×r with Λi ∈ Rm×r,

for ∀i ∈ V
According to (11), we design a continuous-time optimiza-
tion algorithm from the primal-dual perspective, i.e., gra-
dient descend for primal variables X and M and gradient
ascent for the dual variable Λ

Ẋt
i = −∇Xt

i
L(Xt,M t,Λt),

Ṁ t
i = −∇Mt

i
L(Xt,M t,Λt),

Λ̇t
i = ∇Λt

i
L(Xt,M t,Λt),

(12)

where ∇Xt
i
L(Xt,M t,Λt), ∇Mt

i
L(Xt,M t,Λt), and ∇Λt

i
L

(Xt,M t,Λt) are the gradient of L(Xt,M t,Λt) on variables
Xt

i , M
t
i , and Λt

i, respectively. Based on the definition of
L(Xt,M t,Λt), we express the detailed update mechanism
of Xt

i , M
t
i , and Λt

i in Algorithm 1.

Algorithm 1 Continuous-time Algorithm

Initialization: For each i ∈ V
X0

i ∈ Rm×n, M0
i ∈ Rm×n, Λ0

i ∈ Rm×n.

Update flows: For each i ∈ V,

Gt
i = ĀiX

t
i +Xt

i B̄i − C̄i + L̄i·M
t, (S1)

Ẋt
i = −

[
Ā>viG

t
i +Gt

iB̄
>
i + L̄i·(Λ

t +Xt)
]
, (S2)

Ṁ t
i = −L̄i·[G

t>
1 , · · · , Gt>

n ]>, (S3)

Λ̇t
i = L̄i·X

t. (S4)

4. CONVERGENCE PERFORMANCE

In this section, we analyze the convergence performance
based on Lyapunov function. For the convenience of anal-
ysis, we formulate the algorithm in a compact form firstly.

Substituting Gt
i = ĀiX

t
i +Xt

i B̄i−C̄i+L̄i·M
t into the step

(S2) of Algorithm 1 yields

Ẋt
i = −

[
Ā>i ĀiX

t
i + Ā>i X

t
i B̄i + ĀiX

t
i B̄
>
i +Xt

i B̄iB̄
>
i

−Ā>i C̄i − C̄iB̄
>
i + Ā>i L̄i·M

t + L̄i·M
tB̄>i

+L̄i·(Λ
t +Xt)

]
.

(13)

Accumulate the column of Xt
i , M

t
i , Λt

i, and C̄i as aug-
mented column vectors xt

i ∈ Rmr, mt
i ∈ Rmr, λt

i ∈
Rmr, and cti ∈ Rmr, respectively, and define mt =
col{mt

1, · · · ,mt
n} ∈ Rnmr and λt = col{λt

1, · · · ,λt
n} ∈

Rnmr. Then we transform (13) into,

ẋt
i = −

[
(Ir ⊗ Ā>i Āi + B̄>i ⊗ Ā>i + B̄i ⊗ Āi

+B̄iB̄
>
i ⊗ Im)xt

i − (Ir ⊗ Ā>i + B̄i ⊗ Im)ci
+(Ir ⊗ Ā>i + B̄i ⊗ Im)L̂i·m

t + L̂i·(λ
t + xt)

]
,

(14)

where L̂i· = Li· ⊗ Imr ∈ Rmr×nmr. Defining Pi := Ir ⊗
Ā>i Āi + B̄>i ⊗ Ā>i + B̄i ⊗ Āi + B̄iB̄

>
i ⊗ Im ∈ Rmr×mr and

Qi := Ir ⊗ Ā>i + B̄i ⊗ Im ∈ Rmr×mr, we abbreviate (14)

ẋt
i = −

[
Pix

t
i +QiL̂i·m

t −Qici + L̂i·(λ
t + xt)

]
. (15)

With xt = col{xt
1, · · · ,xt

n} ∈ Rnmr, we rewrite (15) in a
compact form

ẋt = −
[
(P + L̂)xt −Qc +QL̂mt + L̂λt

]
, (16)

where L̂ = L⊗ Imr ∈ Rnmr×nmr, P = diag{P1, · · · , Pn} ∈
Rnmr×nmr, Q = diag{Q1, · · · , Qn} ∈ Rnmr×nmr, and
c = col{c1, · · · , cn} ∈ Rnmr.

Similarly, we rewrite steps (S2) and (S3) of Algorithm 1
as the following compact form{

ṁt = −L̂>
[
Rxt + L̂mt − c

]
,

λ̇t = L̂xt,
(17)

where R = diag{R1, · · · , Rn} ∈ Rnmr×nmr with Ri = Ir⊗
Āi + B̄>i ⊗ Im ∈ Rmr×mr.

Apparently, according to the definition of P , Q, and R, it
is not hard to verify P = R>R and Q = R>. Therefore,
we transform the dynamics of Algorithm 1 into

ẋt = −
[
R>(Rxt + L̂mt − c) + L̂(xt + λt)

]
,

ṁt = −L̂>
[
Rxt + L̂mt − c

]
,

λ̇t = L̂xt.

(18)

The equilibria of (18) satisfy
R>(Rx∗ + L̂m∗ − c) + L̂(x∗ + λ∗) = 0, (19a)

L̂>(Rx∗ + L̂m∗ − c) = 0, (19b)

L̂x∗ = 0. (19c)

Define δ2
Rm

and δLm as the largest eigenvalues of R>R

and L̂, respectively. Then, for the dynamics in (18), we
construct a Lyapunov function as
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V t = 2δLmV
t
1 + V t

2 , (20)

where

V t
1 =

1

2

(
‖x̃t‖2 + ‖m̃t‖2 + ‖λ̃t‖2

)
,

V t
2 =

1

2
‖Rxt + L̂mt − c‖2 +

1

2
〈xt, L̂xt〉

+〈λt, L̂xt〉 − 1

2
‖Rx∗ + L̂m∗ − c‖2,

(21)

with x̃t = xt − x∗, m̃t = mt −m∗, and λ̃t = λt − λ∗.

Based on the Lyapunov function, we analyze the conver-
gence performance of the proposed algorithm. Prior to
present the convergence performance, we show two lem-
mas: Lemma 3 presents the upper and lower bound of the
Lyapunov function and Lemma 4 shows that the Lyapunov
function is non-increasing.

Lemma 3. Under Assumption 1, let (Xt,M t,Λt) be gen-
erated by Algorithm 1. Then we bound V t as follows

δLmV
t
1 ≤ V t ≤ 2(δ2

Rm + 2δLm)V t
1 , (22)

where δ2
Rm

and δLm are the largest eigenvalues of matrices

R>R and L̂, respectively.

Proof. According to (19c), we modify〈xt, L̂xt〉, 〈λt, L̂xt〉,
and (19a) as

〈xt, L̂xt〉 = 〈x̃t, L̂x̃t〉, (23a)

〈λt, L̂xt〉 = 〈λt, L̂x̃t〉, (23b)

R>(Rx∗ + L̂m∗ − c) + L̂λ∗ = 0. (23c)

Based on (19b) and (23a)-(23c), we rewrite V t
2 as

V t
2 =

1

2
‖Rxt + L̂mt − c‖2 − 1

2
‖Rx∗ + L̂m∗ − c‖2

−
〈
xt − x∗, R>(Rx∗ + L̂m∗ − c) + L̂λ∗

〉
−
〈
mt −m∗, L̂>(Rx∗ + L̂m∗ − c)

〉
+

1

2

〈
x̃t, L̂x̃t〉+ 〈λt, L̂x̃t

〉
≥ 1

2

〈
x̃t, L̂x̃t

〉
+
〈
λt, L̂x̃t

〉
−
〈
xt − x∗, L̂λ∗

〉
≥
〈
λ̃t, L̂x̃t

〉
≥ −

δLm
2

(
‖x̃t‖2 + ‖m̃t‖2 + ‖λ̃t‖2

)
,

(24)

where the first inequality follows from the convexity of
function 1

2‖Rxt + L̂mt − c‖2 on xt and mt; the second
inequality follows from the semi-positive definite of matrix
L̂. Combining (20) and (24) implies

V t ≥
δLm

2

(
‖x̃t‖2 + ‖m̃t‖2 + ‖λ̃t‖2

)
= δLmV

t
1 . (25)

Reconsidering 1
2‖Rxt + L̂mt − c‖2, we have

1

2
‖Rxt + L̂mt − c‖2 − 1

2
‖Rx∗ + L̂m∗ − c‖2

=
1

2
〈Rx̃t + L̂m̃t, R(xt + x∗) + L̂(mt + m∗)− 2c〉

=
1

2
〈x̃t, R>(Rxt + L̂mt − c)〉

+
1

2
〈m̃t, L̂>(Rxt + L̂mt − c)〉.

+
1

2
〈x̃t, R>(Rx∗ + L̂m∗ − c)〉

+
1

2
〈m̃t, L̂>(Rx∗ + L̂m∗ − c)〉.

(26)

According to (19a) and (19b), L̂>c = L̂>(Rx∗+L̂m∗) and

R>c = R>(Rx∗+ L̂m∗)+ L̂λ∗ = 0 . Then we modify (26)
as

1

2
‖Rxt + L̂mt − c‖2 − 1

2
‖Rx∗ + L̂m∗ − c‖2

=
1

2
〈Rx̃t + L̂m̃t, Rx̃t + L̂m̃t〉 − 〈x̃t, L̂λ∗)〉.

(27)

Consequently, we establish the upper bound of V t
2 as

V t
2 =

1

2

〈
Rx̃t + L̂m̃t, Rx̃t + L̂m̃t

〉
+
〈
x̃t, L̂λ̃t)

〉
+

1

2

〈
x̃t, L̂x̃t

〉
≤ (δ2

Rm + δLm)‖x̃t‖2 + δ2
Lm‖m̃

t‖2 +
δLm

2
‖λ̃t‖2

≤ (δ2
Rm + δLm)

(
‖x̃t‖2 + ‖m̃t‖2 + ‖λ̃t‖2

)
.

(28)

Combining (21) and (28) yields

V t ≤ (δ2
Rm + 2δLm)

(
‖x̃t‖2 + ‖m̃t‖2 + ‖λ̃t‖2

)
= 2(δ2

Rm + 2δLm)V t
1 .

(29)

Therefore, according to (25) and (29), we achieve the
conclusion. 2

Lemma 4. Under Assumption 1, let (Xt,M t,Λt) be gen-

erated by Algorithm 1. Then V̇ t is not positive.

Proof. Note that

V̇ t
1 =

〈
ẋt,∇xtV

t
1 〉+ 〈ṁt,∇mtV t

1

〉
+
〈
λ̇t,∇λtV

t
1

〉
= −

〈
x̃t, R>(Rxt + L̂mt − c) + L̂(xt + λt)〉

−〈m̃t, L̂>(Rxt + L̂mt − c)
〉

+
〈
λ̃t, L̂xt

〉
= −

〈
x̃t, R>(Rxt + L̂mt − c)

〉
−
〈
m̃t, L̂>(Rxt + L̂mt − c)

〉
−
〈
x̃t, L̂xt + L̂λt

〉
+
〈
λ̃t, L̂xt

〉
= Ωt

1 + Ωt
2 + Ωt

3 + Ωt
4,

(30)

where Ωt
1 := −

〈
x̃t, R>(Rxt + L̂mt − c)

〉
, Ωt

2 := −
〈
m̃t,

L̂>(Rxt + L̂mt − c)
〉
, Ωt

3 := −
〈
x̃t, L̂xt + L̂λt

〉
, and

Ωt
4 :=

〈
λ̃t, L̂xt

〉
. For Ωt

1 + Ωt
2, we have
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Ωt
1 + Ωt

2 = −
〈
x̃t, R>(Rxt + L̂mt − c)

〉
−
〈
m̃t, L̂>

(
Rxt + L̂mt − c

)〉
= −

〈
x̃t, R>(Rxt + L̂mt − c)

〉
+
〈
x̃t, R>(Rx∗ + L̂mt − c)

〉
−
〈
x̃t, R>(Rx∗ + L̂mt − c)

〉
−
〈
m̃t, L̂>

(
Rxt + L̂mt − c

)〉
+
〈
m̃t, L̂>

(
Rxt + L̂m∗ − c

)〉
−
〈
m̃t, L̂>

(
Rxt + L̂m∗ − c

)〉
= −

〈
x̃t, P x̃t

〉
−
〈
m̃t, L̂>L̂m̃t

〉
−
〈
x̃t, R>(Rx∗ + L̂mt − c)

〉
−
〈
m̃t, L̂>

(
Rxt + L̂m∗ − c

)〉
.

(31)

Referring to the equilibria in (19a) and (19b), we obtain{
R>Rx∗ −R>c = −R>L̂m∗ − L̂λ∗, (32a)

L̂>(L̂m∗ − c) = −L̂>Rx∗. (32b)

Substituting (32a) and (32b) into (31) yields

Ωt
1 + Ωt

2 = −
〈
x̃t, R>Rx̃t

〉
−
〈
m̃t, L̂>L̂m̃t

〉
−
〈
x̃t, R>L̂m̃t − L̂λ∗

〉
−
〈
m̃t, L̂>Rx̃t

〉
= −

〈
Rx̃t, Rx̃t

〉
−
〈
L̂m̃t, L̂m̃t

〉
−2
〈
L̂m̃t, Rx̃t

〉
+
〈
x̃t, L̂λ∗

〉
≤
〈
x̃t, L̂λ∗

〉
.

(33)

Combining (30) and (33), we have

V̇ t
1 ≤

〈
x̃t, L̂λ∗

〉
−
〈
x̃t, L̂xt + L̂λt

〉
+
〈
λ̃t, L̂xt

〉
= −

〈
x̃t, L̂x̃t

〉
−
〈
x̃t, L̂λ̃t

〉
+
〈
λ̃t, L̂x̃t

〉
≤ −δ−1

Lm

∥∥L̂x̃t
∥∥2
,

(34)

where the equality follows from L̂xt = L̂x̃t since L̂x∗ = 0
and the last inequality follows from the fact that the
communication graph is undirected.

Furthermore, note that

V̇ t
2 =

〈
ẋt,∇xtV

t
2

〉
+
〈
ṁt,∇mtV t

2

〉
+
〈
λ̇t,∇λtV

t
2

〉
= −

∥∥R>(Rxt + L̂mt − c) + L̂(xt + λt)
∥∥2

−
∥∥L̂>(Rxt + L̂mt − c)

∥∥2
+
∥∥L̂xt

∥∥2
.

(35)

Combining (34) and (35), we obtain

V̇ t = V̇ t
1 + V̇ t

2

= −
∥∥R>(Rxt + L̂mt − c) + L̂(xt + λt)

∥∥2

−
∥∥L̂>(Rxt + L̂mt − c)

∥∥2 −
∥∥L̂xt

∥∥2

≤ 0,

(36)

which leads to the conclusion. 2

Based on Lemmas 3 and 4, we show a convergence result
of the proposed algorithm as follows.

Theorem 1. Under Assumption 1, let (Xt,M t,Λt) be gen-
erated by Algorithm 1. Then (Xt,M t,Λt) exponentially
converges to the optimal solution of (10) with the following
exponential convergence rate,

∥∥X̃t
∥∥2

+
∥∥M̃ t

∥∥2
+
∥∥Λ̃t

∥∥2 ≤ 2V 0

δLm
e
− κ

δ2
Rm

+2δ
Lm

t

, (37)

where X̃t = Xt−X∗, M̃ t = M t−M∗, Λ̃t = Λt−Λ∗, and
κ is a parameter defined hereinafter.

Proof. Considering the case of V̇ t = 0 at time t = t1 in
(36), we have

R>(Rxt1 + L̂mt1 − c) + L̂(xt1 + λt1) = 0, (38a)

L̂>(Rxt1 + L̂mt1 − c) = 0, (38b)

L̂xt1 = 0, (38c)

which means that the proposed algorithm access to the
equilibria. From this point of view, before the dynamics of
(16) and (17) arriving at the equilibria, V̇ < 0 holds.

According to the equilibria of (19a) and (19b), substituting

R>c = R>(Rx∗+L̂m∗)+L̂(x∗+λ∗) and L̂>c = L̂>(Rx∗+

L̂m∗) into (36) yields

V̇ t = −
∥∥(R>R+ L̂)x̃t +R>L̂m̃t + L̂λ̃t

∥∥2

−
∥∥L̂>(Rx̃t + L̂m̃t)

∥∥2 −
∥∥L̂x̃t

∥∥2

≤ −
∥∥(R>R+ L̂)x̃t +R>L̂m̃t + L̂λ̃t

∥∥2

≤ −κ
[
‖x̃t‖2 + ‖m̃t‖2 + ‖λ̃t‖2

]
,

(39)

where the last inequality follows from Lemma 2 and
κ is the smallest nonzero eigenvalue of diag{(R>R +

L̂)>(R>R + L̂), L̂>RR>L̂, L̂>L̂}. Substituting (25) into
(39), yields

V̇ t ≤ − κ

δ2
Rm

+ 2δLm
V t. (40)

Then for ∀t ∈ [0,∞), we have

V t ≤ V 0e
− κ

δ2
Rm

+2δ
Lm

t

. (41)

According to V t
1 in (21), V t in (22), and (41) , we obtain

the conclusion. 2

5. NUMERICAL SIMULATION

Consider the Sylvester equation with Row-Column-Column
structure, whose parameter matrices are chosen as

A1· = [2, 1, 5, 3], B·1 = [1, 2, 1, 3]>, C·1 = [3, 4, 1, 2]>,

A2· = [6, 2, 1, 3], B·2 = [2, 5, 2, 1]>, C·2 = [2, 3, 3, 1]>,

A3· = [1, 2, 1, 4], B·3 = [4, 4, 1, 3]>, C·3 = [1, 2, 1, 2]>,

A4· = [3, 3, 6, 7], B·4 = [5, 6, 2, 6]>, C·4 = [2, 1, 3, 4]>.

It is not hard to verify that there exists no exact solution
for the Sylvester equation and one of the least squares
solution can be calculated as

X∗=

 0.5535 −0.6068 1.1924 0.0602
−3.6657 2.5313 −1.0092 0.7709
−0.1440 0.6659 −0.4360 −0.0709

1.8179 −1.0551 0.1781 −0.0996

.
We solve the Sylvester equation with the aid of a multi-
agent system, where four agents are connected by an
undirected circular graph and the i-th agent has access
to sub-blocks Ai·, B·i, and C·i. We present the trajectories
of elements of Xt

i and the trajectories of least squares error
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Fig. 1. The trajectories of the estimation of X∗i·.
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Fig. 2. The trajectories of ‖A>(AX +XB − C) + (AX +
XB − C)B>‖.

‖A>(AX+XB−C)+(AX+XB−C)B>‖ in Figures 1 and
2, respectively. The simulation results illuminate that the
proposed algorithm can achieve the least squares solution
of the Sylvester equation with an exponential convergence
rate.

6. CONCLUSION

In this paper, we have formulated a distributed optimiza-
tion method to solve Sylvester equations. From the primal-
dual viewpoint, we have proposed a continuous-time dis-
tributed algorithm to achieve the least squares solution.
By constructing a Lyapunov function, we have proved the
exponential convergence of the proposed algorithm with
an explicit convergence rate.
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