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Abstract: The accuracy of micro-electro-mechanical systems (MEMS) gyroscopes is sensitive to
variations of the drive mode resonance frequency ω0. To tackle this problem, we propose an H∞
control, which explicitly depends on ω0 and guarantees, with reduced conservatism, a specified
level of performance of the drive mode. We consider the design of continuous- and discrete-time
controllers. We then propose a method based on the µ-analysis to validate the performance
of drive mode control even if the frequency ω0 is not perfectly measured. Numerical examples
confirm the effectiveness of our approach.
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1. INTRODUCTION

Micro-electro-mechanical systems (MEMS) gyroscopes are
microscopic structures composed of a proof mass attached
to a substrate by springs, creating two orthogonal resonant
modes: the drive and sense ones. The oscillating signal y(t)
is created on the drive mode, such that, in the presence of
an angular rate Ω (perpendicular to the resonant modes),
a Coriolis force appears and produces oscillations on the
sense mode ys(t). This force is proportional to the product
Ω · ẏ(t) and can be estimated by measuring the oscillations
of the sense mode. Thus, if y(t) is equal to a given reference
yr(t), Ω is computed from ys(t) and yr(t). It is important
to highlight that the gyroscope accuracy depends on how
close the actual y(t) is to yr(t). For further details, see
e.g., Saukoski (2008) and references therein. Therefore, in
this paper, we restrict our attention to the drive mode
oscillations control, which aims to keep y(t) as close as
possible to yr(t).

In general, the drive mode has high quality-factor, allowing
to obtain a high signal-to-noise ratio when the drive mode
operates close to its resonance frequency ω0 (Sun et al.,
2002). However, small drifts of ω0 cause a significant loss
of gain. So, in addition to a precise amplitude control, to
reach high performance, the drive mode has to be operated
with a frequency as close as possible to ω0 (Egretzberger
et al., 2010). The drifts of ω0 are mainly due to changes in
the sensor temperature (Xia et al., 2009), which are slow
to ω0.

In the literature, several control strategies are proposed to
fulfill the above requirements. We mention the widespread
architectures: automatic gain control (AGC) combined
with phase-locked loop (PLL) (Sun et al., 2002; Egret-
zberger et al., 2010); and self-oscillating AGC (M’Closkey
et al., 2001; Oboe et al., 2005). These solutions allow pro-
ducing oscillations with controlled amplitude at the reso-
? This work is supported by BPI France, through the NEXT4MEMS
project, which aims to develop a new generation of MEMS sensors.

nance frequency. However, the drawback of these nonlinear
strategies is the lack of formal performance guarantees.

An alternative approach is to consider a classical feedback
architecture, where a linear controller makes the output of
the drive mode track a sinusoidal reference signal with fre-
quency ω0 and the desired amplitude. In this context, for a
constant ω0, celebrated design methods , as H2 or H∞, can
be considered, giving performance guarantees (Skogestad
and Postlethwaite, 2001). Nonetheless, when ω0 changes,
the reference signal and the controller have to be adapted
for the new ω0. To this end, similarly to the plant, the
controller must be parameterized by ω0. To the best of
our knowledge, this approach is not considered for MEMS
gyroscopes. Note that ω0 can be measured, e.g., through
closed-loop identification techniques (Ljung, 1999).

The design of a parameter-dependent controller for a
parameter-dependent plant is addressed by the so-called
Linear Parameter-Varying (LPV) approaches. In our case,
these approaches lead to conservative solutions or to a
parameterization which can be too complex to be imple-
mented in real-time. The conservatism comes from the
fact that the parameter of interest is assumed to vary
arbitrarily (Packard, 1994; Scorletti and El Ghaoui, 1998),
whereas ω0 varies slowly. On the other hand, Dinh et al.
(2005) propose a nonconservative design method for con-
stant parameter-dependent controller. However, the pro-
posed controller parameterization is too complicated to
be implemented in a limited-cost embedded processor.

In this work, we present, for the particular problem
of MEMS gyroscopes (and similar ones), a parameter-
dependent H∞ controller design method. Our approach
provides performance guarantees, reduced conservatism,
and simple parameterization in the case where ω0 is mea-
sured and constant. We propose two design methods:
(i) for a continuous-time (CT) controller; and (ii) for a
discrete-time (DT) controller. The former one is suitable
for analog implementations or for digital implementations

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 7421



where the sampling period Ts is so small that the dis-
cretization effects (sampling and holding) may be ne-
glected. Furthermore, this approach also gives the insight
on the controller parameterization. The second method is
suitable for digital implementations where the discretiza-
tion effects have to be taken into consideration, which is
often the case for MEMS gyroscopes.

The design of a CT parameter-dependent controller is
based on the frequency/time normalization of the system,
yielding to a straightforward parameterization for constant
ω0. The same strategy can be applied for the design of
a DT parameter-dependent controller. However, approxi-
mations of the model have to be made. Then, it is crucial
to investigate a posteriori the stability and the perfor-
mance achieved by the DT parameter-dependent controller
on the actual system for all possible values of ω0. We
propose to address this problem by using the robustness
analysis framework (µ-analysis), where the approximation
error and the frequency ω0 are expressed as uncertainties.
This problem is not standard since the uncertain model
dependency on the uncertainties is nonrational. We then
reveal how to recast this problem as a standard problem by
using Taylor approximations. Furthermore, the proposed
µ-analysis is based on the computation of the so-called
µ upper-bound. The strong benefit is that stability and
performance are also ensured for slow-time variations of
ω0 (Chou and Tits, 1995).

This paper is organized as follows. In Section 2, we state
the problem under investigation. In Section 3, we present
a solution in CT. In Section 4, we propose a method
for designing a DT controller. In Section 5, we present
a method for validating the closed-loop performance. In
Section 6, numerical examples illustrate our approach.
Conclusions and perspectives are drawn in Section 7.

Notation: Ta→b denotes the transfer from signal a to
signal b. The ? denotes the Redheffer (star) product
(Skogestad and Postlethwaite, 2001). For a given linear
time-invariant (LTI) system F , ‖F‖∞ denotes its H∞-
norm. In is the identity matrix of Rn×n and 0n×m is the
zero matrix of Rn×m (subscripts are omitted if obvious
from context). For two matrices A, B, diag(A,B) is their
diagonal concatenation. For two vectors a, b, col(a, b) is
their column concatenation.

2. PROBLEM STATEMENT

Let the drive mode of a MEMS gyroscope be modeled as
a second-order resonator (Sun et al., 2002):

Gω0
(s) =

y(s)

u(s)
=

k

(s/ω0)
2

+ (s/ω0) /Q+ 1
, (1)

where y is the displacement of the drive mode, u is the
input force, k is the static gain, Q is the quality factor, and
ω0 is the resonance frequency 1 (in rad/s), which may vary
slowly in the range [ω0min, ω0max] during the operation of
the device. This variation is mainly caused by temperature
changes, which are indeed slow. For the control design, we
thus assume that ω0 is time invariant. Furthermore, we
assume that ω0 is measured in real time. For the sake of

1 The natural frequency and the resonance one are assumed to be
equal, since Q � 1 in MEMS gyroscopes.
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Fig. 1. H∞ criterion.

simplicity, the quality factor is assumed to be constant as
its impact is much less important than the ω0 variations.

We enumerate the control objectives:

• tracking of a sinusoidal reference signal yr of fre-
quency ω0 ∈ [ω0min, ω0max];

• minimization of the control effort u;
• robust stability.

Moreover, we aim to design a controller whose gains are
dependent on ω0.

In the H∞ synthesis (for further details, see e.g. Skogestad
and Postlethwaite (2001)), the design of the controller is
formulated as an optimization problem: let an augmented
plant Pω0

be given by the plant Gω0
and weighting

functions Wω0
; then, find a controller Kω0

, if there is
any, such that the weighted closed-loop transfer functions
are stable and meet a given performance level γ, that is,
‖Pω0

? Kω0
‖∞ < γ. Hence, the control specifications are

expressed through the choice of the weighting functions
and of the weighted closed-loop transfer functions.

For our application, we consider the criterion presented
in Fig. 1, where we include an input disturbance d, a
measurement noise n and weighting functions W x

ω0
, and

we define ε = yr−ym and ym = y+n. Please note that the
controller is composed of feedforward and feedback parts,
respectively Kω0r and Kω0y, i.e., Kω0 = [Kω0r, Kω0y]. The
H∞ problem is then: given a performance level γ > 0,
compute a controller Kω0 , if there is any, such that ‖Pω0 ?
Kω0‖∞ < γ. If this problem has a solution for γ = 1, then
the following H∞ criterion is also ensured:∥∥∥∥W ε

ω0
Tyr→εW

r
ω0

W ε
ω0
Td→εW

d
ω0

W ε
ω0
Tn→εW

n
ω0

Wu
ω0
Tyr→uW

r
ω0

Wu
ω0
Td→uW

d
ω0

Wu
ω0
Tn→uW

n
ω0

∥∥∥∥
∞
<1

with the weighting functions given by

W ε
ω0

(s) =
1

Mε

(s/ω0)
2

+ (s/ω0)αε + 1

(s/ω0)
2

+ (s/ω0)αεAε/Mε + 1
, (2)

Wu
ω0

(s) = Mu
(s/ω0)

2
+ (s/ω0)αuAu/Mu + 1

(s/ω0)
2

+ (s/ω0)αu + 1
, (3)

W r
ω0

(s) = kr, W d
ω0

(s) = kd and Wn
ω0

(s) = kn.

The choice of the parameters Aε ≤ 1, Mε ≥ 1, αε,
Au ≤ 1, Mu ≥ 1, αu, kr, kd and kn ensures the desired
specifications. Details are available in Saggin et al. (2020).
We can therefore formulate the control design problem.

Problem 1. Assume that ω0 is measured in real time.
Given the ω0-dependent augmented plant Pω0 and a per-
formance level γ > 0, find a (simple-to-implement) con-
troller Kω0 that depends on ω0, if there is any, such that,
∀ ω0 ∈ [ω0min, ω0max], ‖Pω0 ? Kω0‖∞ < γ.
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3. PARAMETER-DEPENDENT CONTROLLER IN
CONTINUOUS-TIME

In this section, we present a solution in continuous-time
(CT) for Problem 1.

Note that in (1), ω0 appears as a quotient of s. Therefore,
Gω0

admits a state-space representation in the form:

Gω0 :

{
ẋ(t) = ω0Ax(t) + ω0Bu(t)
y(t) = Cx(t) + Du(t)

, (4)

where the matrices do not depend on ω0. In this case,
if we consider a representation similar to the controllable
canonical form, we obtain

A =

[
0 1
−1 −1/Q

]
, B =

[
0
1

]
, C = [k 0] and D = 0.

The same holds for the weighting functions, see (2) and (3).
Thus, the augmented plant Pω0 admits the state-space
representation:

Pω0 :

{
ẋP (t) = ω0APxP (t) + ω0Buu(t) + ω0Bww(t)
yP (t) = CyxP (t) + Dyww(t)
z(t) = CzxP (t) + Dzuu(t) + Dzww(t)

,

where xP (t) ∈ RnP , yP (t) ∈ Rny , w(t) ∈ Rnw , z(t) ∈ Rnz

and whose matrices do not depend on ω0.

At this point, we can then define a normalized Laplace
variable sn = s/ω0 and a normalized time tn = ω0t, such
that the normalized version of Pω0 , denoted Pn, is cast as

Pn :

{
ẋPn(tn) = APxPn(tn) + Buun(tn) + Bwwn(tn)
yPn(tn) = CyxPn(tn) + Dywwn(tn)
zn(tn) = CzxPn(tn) + Dzuun(tn) + Dzwwn(tn)

(5)
with xPn(tn) = xP (tn/ω0) and similarly for the other
signals. Note that the state-space matrices of Pn do
not depend on ω0. Moreover, since Pω0

(s) = Pn(sn),
‖Pω0

‖∞ = ‖Pn‖∞. Thus, the solution of Problem 1
is the solution of the standard H∞ problem: given a
normalized augmented plant Pn of (5) (see e.g., Skogestad
and Postlethwaite (2001)) and a performance level γ > 0,
compute a normalized controller Kn, if there exists any, in
the form of

Kn :

{
ẋKn(tn) = AKxKn(tn) + BKyPn(tn)
un(tn) = CKxKn(tn) + DKyPn(tn)

, (6)

where xKn(tn) ∈ RnK , such that ‖Pn ?Kn‖∞ < γ. Hence,
the CT ω0-dependent controller Kω0 is given by

Kω0
:

{
ẋK(t) = ω0AKxK(t) + ω0BKyP (t)
u(t) = CKxK(t) + DKyP (t)

.

Please note that the new (denormalized) controller Kω0

ensures the stability and ‖Pω0 ? Kω0‖∞ < γ for all ω0 ∈
[ω0min, ω0max], i.e., solves Problem 1.

4. PARAMETER-DEPENDENT CONTROLLER IN
DISCRETE-TIME

We now discuss the design of a discrete-time (DT) con-
troller whose gains depend on ω0 and for which the dis-
cretization effects (sampling and holding) cannot be ne-
glected.

The common procedure to design a DT controller through
frequency-domain methods (as the H∞ synthesis) is illus-
trated in the upper part of Fig. 2 (with no background),

and described in the sequel (Åström and Wittenmark,
1997).

(1) Given a CT system Gω0
with a zero-order holder

(ZOH) and sampling period Ts, we compute a DT
equivalent system Gdω0

.
(2) A pseudo-continuous-time (PCT) system Gp$0

is ob-
tained through the bilinear transform. In PCT, sp is a
complex variable, which is equal to j$ when s = jω.
We denote by $ the pseudo-continuous frequency,
given by

$ = g (ω) ,
2

Ts
tan

(
ωTs

2

)
. (7)

(3) A PCT controller Kp
$0

is computed through a
continuous-time design method.

(4) Then, the bilinear transform is applied in the other
direction (from PCT to DT), and the DT controller
Kd
ω0

is obtained.

Common approach for a DT controller design

Additional steps for our proposed method

Gω0(s) (CT)

Gd
ω0
(z) (DT)

Discretization with ZOH

Gp
$0

(sp) (PCT)

Bilinear transform

Hp
$0

(sp)

Hp
n(sp/$0) (nPCT)

$0-(de)normalization

Fictitious model

Kp
n(sp/$0)

Controller synthesis

Kp
$0

(sp)
(Controller synthesis)

Kd
ω0
(z)

Fig. 2. Procedure for the design of a DT controller.

The main interest of this procedure is that the controller is
designed in the PCT space, which has the same properties
as the CT space. Thus, the choice of frequency-weighting
functions and the interpretation of frequency-responses is
more natural than in the DT space. However, note that
the controller is based on the model Gp$0

, which is different
fromGω0

. Then, before applying the approach of Section 3,
we need to check if Gp$0

can be normalized such that its
normalized version does not depend on ω0.

For the system given by (1), its model in PCT, with
Q � 1, can be given by (further details are available
in Saggin et al. (2020)):

Gp$0
(sp) =

k (1− (sp/$0)$0Ts/2) (1 + (sp/$0) / (2Q))

(sp/$0)
2

+ (sp/$0) / (Q sinc (ω0Ts)) + 1
(8)

with $0 = (2/Ts) tan (ω0Ts/2).
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Note that the structure of Gp$0
is slightly different from

that of Gω0
. Such differences prohibit Gp$0

to be normal-
ized such that it does not depend on $0 and the previous
approach is not directly applicable. Hence, we propose to
create a fictitious system Hp

$0
that represents a “worst-

case” model of Gp$0
for all ω0 ∈ [ω0min, ω0max] and which

can be normalized. To this end, let us evaluate these
modifications.

(1) The resonance frequency $0 is different from ω0 due
to the distortion caused by the bilinear transform,
see (7). So, instead of normalizing Gp$0

with respect
to ω0, it may be normalized with respect to $0.

(2) The quality factor is reduced by a factor sinc (ω0Ts)
due to the filtering effect of the ZOH. Then, from the
performance point of view, we consider as worst case
when the reduction is maximum, i.e., for ω0 = ω0max.

(3) The unstable zero that appears at sp = 2/Ts has the
inconvenient properties to: (i) reduce the phase of the
system; and (ii) impose limitations on the closed-loop
bandwidth (Freudenberg and Looze, 1985). Then, we
take as worst case when this zero is closer to the
resonance frequency, i.e., for ω0 = ω0max.

(4) The stable zero is neglected, since it is far from $0.

Based on the above discussion, we define

Hp
$0

(sp) =
k (1− (sp/$0) /zu)

(sp/$0)
2

+ (sp/$0) / (Q sinc (ω0maxTs)) + 1
(9)

with zu = (2/Ts)
2

tan (ω0maxTs/2). Now, we can design a
controller for Hp

$0
with the approach of Section 3. The DT

controller is then obtained with the bilinear transform.

To summarize this method, we complete the scheme of
Fig. 2 with the steps on a gray background, as follows.

(1) Instead of designing the controller in PCT, we define
a fictitious model, Hp

$0
of (9), from the set of Gp$0

for ω0 ∈ [ω0min, ω0max].
(2) Hp

$0
is normalized by $0, giving origin to a normal-

ized pseudo-continuous time (nPCT) model Hp
n.

(3) Then, a normalized controller Kp
n is designed by

solving a standard H∞ problem, where Pn is defined
by normalized weighting functions and Hp

n.
(4) This controller is thus denormalized by $0, generat-

ing Kp
$0

.

(5) Finally, the DT controller Kd
ω0

is obtained by the
bilinear transform of Kp

$0
.

For an nPCT controller Kp
n given by the state-space

matrices (AK , BK , CK , DK), the PCT controller Kp
$0

has
the state-space matrices ($0AK , $0BK , CK , DK). Then,
recalling that $0 = g(ω0), the DT controller Kd

ω0
has the

state-space matrices (Ad($0), Bd($0), Cd($0), Dd($0))
with

Ad ($0) = (2I/Ts +$0AK) (2I/Ts −$0AK)
−1

Bd ($0) = 4/Ts (2I/Ts −$0AK)
−1
$0BK

Cd ($0) = CK (2I/Ts −$0AK)
−1

Dd ($0) = DK + CK (2I/Ts −$0AK)
−1
$0BK .

(10)

Given that some approximations are made to obtain (8),
the fictitious system Hp

$0
of (9) and, therefore, the DT

controller, the following section presents a method to
evaluate the performance obtained in the real system.

5. DISCRETE-TIME PARAMETER-DEPENDENT
CONTROLLER VALIDATION

The previous section presents a method to design the
discrete-time parameter-dependent controller. This design
method relies on a fictitious model that approximates
the actual plant. The first objective of this section is to
evaluate if the obtained controller Kp

ω0
guarantees the

stability and the performance specifications when it is
implemented on the plant Gp$0

for the whole operating
frequency range [ω0min, ω0max]. For the sake of briefness,
we focus on the first specification: reference tracking. We
consider the problem in PCT space since stability and
performance are equivalent when we apply the bilinear
transformation to DT space system.

Moreover, the proposed design methods are based on the
assumption that ω0 is perfectly known. In practice, ω0

is measured with an error that can be modeled by the
measured frequency ω̂0 = ω0 + ωm, where ωm is the
mismatch between the actual frequency and the measured
one. This has two consequences: (i) the controller is now
parameterized by ω̂0; (ii) the reference signal oscillates
at ω̂0. The analysis problem taking into account the
approximations and the measurement error can therefore
be stated as follows:

Problem 2. Given the closed-loop system composed of
Kp
$̂0

and Gp$0
, with $0 = g(ω0) and $̂0 = g(ω̂0), test if

∀ ω0 ∈ [ω0min, ω0max] and ∀ ωm ∈ [−ωmmax , ωmmax ], the
system is stable and ensures the performance specification:

|T pyr→ε(j$̂0)| ≤ η. (11)

Note that (11) can be dramatically simplified:

|T p(yr→ε)n(j · 1)| ≤ η. (12)

where T p(yr→ε)n
denotes the system T pyr→ε with the fre-

quency $ normalized by $̂0. In the sequel, the system is
then analysed using this normalization.

Assume that ω0 and ω̂0 are time-invariant. Since a pa-
rameter belonging to an interval can be interpreted as
an uncertainty, we investigate the application of a robust
analysis approach (µ-analysis framework (Skogestad and
Postlethwaite, 2001)) to solve Problem 2. This approach
is based on a particular model representation, referred to
as Linear Fractional Representation (LFR) involving the
Redheffer product (Zhou and Doyle, 1999), which allows
isolating the uncertain part of the system from the nominal
one. The first step is then to represent the system T p(yr→ε)n

,

where ω0 and ωm are considered as uncertain parameters.
Note that T p(yr→ε)n

is the feedback interconnection of the

normalized PCT system Gpn with the controller Kp
n. Based

on the CT system Gω0
defined by (4), the normalized

PCT system Gpn can be described as the following feedback
interconnection:

p(sp/$̂0) =

[ 1
g(ω0+ωm)I 0

0 eω0ATs

]
q(sp/$̂0)[

q(sp/$̂0)

y(sp/$̂0)

]
= Mp

Gn(sp/$̂0)

[
p(sp/$̂0)
u(sp/$̂0)

] ,

that is, the following Linear Fractional Representation:
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Kp
n

Mp
Gn

1
g(ω0+ωm)I

eω0ATs

yr

+ − ε

Mµ

Fig. 3. Analysis scheme in nPCT space.

diag

(
1

g(ω0 + ωm)
I, eω0ATs

)
? Mp

Gn(sp/$̂0),

where Mp
Gn is the transfer function matrix partitioned as:[

q(sp/$̂0)
y(sp/$̂0)

]
=

[
MGqp(sp/$̂0) MGqu(sp/$̂0)
MGyp(sp/$̂0) MGyu(sp/$̂0)

] [
p(sp/$̂0)
u(sp/$̂0)

]
with q = col(qg, qe) and p = col(pg, pe).

Thanks to this LFR, T p(yr→ε)n
can be represented as in

Fig. 3. From this figure, we can obtain the LFR of T p(yr→ε)n

ε =

((
1

g(ω0 + ωm)
I, eω0ATs

)
? Mµ(sp/$̂0))

)
yr,

where Mµ is defined by

Mµ =

[
MGqp +

MGquKnyMGyp

1−MGyuKny

MGquKnr

1−MGyuKny

− MGyp

1−MGyuKny

1+MGyu(Knr−Kny)
1−MGyuKny

]
(13)

with

u(sp/$̂0) = [Knr(sp/$̂0) Kny(sp/$̂0)]

[
yr(sp/$̂0)
y(sp/$̂0)

]
.

Nevertheless, in order to apply the µ-analysis framework,
the system has to depend on the uncertainties rationally,
that is, there exist M(s) such that it is represented by the
LFR of the form

(diag(ω0I, ωmI)) ? M(s).

This is not our case since the dependency of eω0ATs and
g(ω0 + ωm) with respect to ω0 and ωm, respectively, is
nonrational. To deal with this problem, we propose to
approximate eω0ATs and g(ω0 + ωm) by rational functions
using Taylor series expansions. Let us introduce the fol-
lowing lemma.

Lemma 3. Let be a nonrational matrix function F (θ) ∈
Rnq×nq depending on a parameter θ, with θ taking values
in a finite interval [θmin, θmax] and with nominal value
θc = (θmax + θmin)/2. If F (θ) is derivable (d + 1) times,
then: ∀ θ ∈ [θmin, θmax], ∃ ∆RF ∈ Rnq×nq , ‖∆RF ‖∞ ≤
RmaxF such that F (θ) = diag(δθI(d×nq),∆RF ) ? NF with
δθ = θ − θc,

NF =

 0 . . . 0 0 Inq

I(d×nq)−1 0 0 0
0 . . . 0 0 Inq

F1 . . . Fd Inq
F0

 ,
F0 = F (θc), Fk = F (k)(θc)/k! ∀ k ∈ {1, . . . , d}, and

RmaxF =
D

(d+ 1)!
(δmaxθ)

d+1

with D ≥ ‖F (d+1)(θξ)‖∀ θξ ∈ [θmin, θmax], and δmaxθ =
(θmax − θmin)/2.

Proof. From the Taylor series approximation, we have
that F (θ) is developed as:

F (θ) = F0 +

d∑
k=1

δkθFk +RF (θ), (14)

where RF (θ) is the residual or error of the approximation
which, since it is bounded by RmaxF , can be modeled as a
block uncertainty. The rest of proof is obtained using the

fact that δkiθ =
∏ki
k=1 δθ, and rearranging the terms of (14)

into an LFR form. 2

Based on Lemma 3, we introduce the following Theorem
allowing to test the stability and performance of T pyr→ε.

Theorem 4. Let ∆ be the set defined by:

∆=

∆|

∃ δωm ∈ R, δω0 ∈ R,∆Rg ∈ R,∆Re ∈ Rnqe×nqe ,

∆ = diag(δω0
I, δωm

I,∆RgI, δω0
I,∆Re),

δω0 ∈ [ω0min, ω0max], |δωm | ≤ ωmmax,
|∆Rg

| ≤ Rmaxg, ‖∆Rg
‖∞ ≤ Rmaxe


If for all ∆ ∈ ∆, the system ∆ ? (N ?Mµ) is stable and

|∆ ? (N ?Mµ(j × 1))| ≤ η (15)

where Mµ is defined by (13) and N = diag(Ng, Ne) with

Ng=

 0 . . . 0 0 . . . 0 0 Inqg

I(d×nqg)−1 0 I(d×nqg)−1 0 0 0
0 . . . 0 0 . . . 0 0 Inqg

g1Inqg
. . . gdInqg

g1Inqg
. . . gdInqg

Inqg
g0Inqg



Ne=

 0 . . . 0 0 Inqe

I(d×nqe)−1 0 0 0
0 . . . 0 0 Inqe

E1 . . . Ed Inqe
E0

 ,
Then ∀ ω0 ∈ [ω0min, ω0max] and ∀ ωm ∈ [−ωmmax

, ωmmax
],

T pyr→ε is stable and is such that (11) and (12) are satisfied.

Proof. When we apply Lemma 3 to eω0ATs , we obtain a
rational function represented by the LFR diag(δω0

I,∆Re)?
Ne. Similarly for g(ω̂0) but, since ω̂0 = ω0 + ωm, then
δω̂0

is split into δω0
and δωm

. Thus, applying Lemma 3 to
diag(g(ω̂0)I, eω0ATs) we obtain the LFR

diag(δω0I, δωmI,∆RgI, δω0I,∆Re)︸ ︷︷ ︸
∆

? diag(Ng, Ne)︸ ︷︷ ︸
N

. (16)

2

Remark 5. The conditions of Theorem 4 can be efficiently
tested by computing the so-called µ upper bound based
on the D−G scalings using convex optimization involving
Linear Matrix Inequalities (LMI) constraints (Scorletti
et al., 2007; Ferber et al., 2015).

Remark 6. It is important to emphasize that the use
of the so-called µ upper-bounds ensures stability and
performance even if the uncertain parameters are slowly
time-varying (Chou and Tits, 1995). The conditions of
Theorem 4 then ensure stability and performance of the
closed-loop system when the parameters ω0 and ωm are
slowly time-varying, which is the case in our application.

6. NUMERICAL EXAMPLE

In this section, we illustrate the synthesis and analysis
of a discrete-time parameter-dependent H∞ controller for
the drive mode of a MEMS gyroscope, as presented in
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Fig. 4. Bode diagram of the feedback part of Kd
ω̂0

for
ω̂0 ∈ [ω̂0min, ω̂0max].
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Fig. 5. Bode diagram of Gdω0
for ω0 ∈ [ω0min, ω0max].

Sections 4 and 5. Its continuous-time model is given by
(1) with k = 0.05, Q = 2000 and ω0 ∈ [2π · 11 · 103, 2π ·
12 ·103] rad s−1. We consider the sampling period Ts = 16 ·
10−6s and the following control specifications:

(1) track a reference signal yr(t) = Yr sin (ω̂0t) with an
error ε(t) = yr(t)− ym(t) such that |ε(t)| < 10−4 · Yr
in steady-state;

(2) the control signal amplitude is less than 0.02 · Yr in
steady-state;

(3) the closed-loop system is stable and present a modu-
lus margin M > 1/2.

6.1 Synthesis of a Discrete-Time Controller

Based on the control specifications above, we consider
the H∞ criterion presented in Section 2 with Mε = 2,
αε = 0.2, Aε = 5·10−5, Mu = 400, αu = 1632, Au = 0.004,
kr = 1, kd = 0.05 and kn = 1 (see Saggin et al. (2020) for
details on this choice).

Thus, following the method proposed in Section 4, we
obtain, with γ = 1.01, a normalized controllerKp

n (see (6)).
From its state-space matrices, the ω0-dependent DT con-
troller Kd

ω̂0
is computed, see (10) and (7).

We recall that the controller is composed of feedforward
and feedback parts, i.e., Kd

ω̂0
= [Kd

ω̂0r
, Kd

ω̂0y
]. However,

for the sake of simplicity, we focus our discussion on its
feedback part, Kd

ω̂0y
.

The Bode diagram of Kd
ω̂0y

is presented in Fig. 4. Similarly,

the Bode diagram of Gdω0
is given in Fig. 5. Observe

that Kd
ω̂0

presents a resonance peak at ω̂0, ensuring a
precise reference tracking at this (varying) frequency,
which coincides with the resonance peak of Gdω0

if ω̂0 = ω0.

We simulate Gdω0
controlled by Kd

ω̂0
with Yr = 1 and the

frequencies ω0 and ω̂0 given in Fig. 6.

Fig. 6. Evolution of ω0 and ω̂0 over time.

Fig. 7. Simulation results.

Table 1. Steady-state amplitude values

Time t (s) 0− 0.25 0.25− 0.5 0.5− 0.75 0.75− 1

Error 6.5·10−5 6.5·10−5 4.6·10−4 6.5·10−5

Control signal 0.01 0.01 0.35 0.01

The simulation results are presented in Fig. 7 and in
Table 1. For t < 0.5 s, we keep ω̂0(t) = ω0(t). In
this interval, the specifications are verified, even when
the frequencies change at t = 0.25 s. For the interval
0.5 < t < 0.75 s, ω0 changes, but ω̂0 is kept constant.
In this case, the mismatch between ω0 and ω̂0 causes a
performance degradation and the initial specifications are
not verified (steady-state amplitude error bigger than 10−4

and control signal amplitude bigger than 0.02). Finally,
when ω̂0 catches back ω0 (t > 0.75 s), the desired control
specifications are verified again.

6.2 Performance Analysis

The first step for performance analysis is to obtain the
adequate representation. To do so, we apply Lemma 3
to eω0ATs and 1/g(ω̂0). We choose a Taylor trunca-
tion order d = 2 for both functions, in this case
the maximal errors are obtained when the uncertainty
is maximal, that is Rmaxe(ω0max) = 2.226 · 10−5 and
Rmaxg(ωmmax

) = 2.640 · 10−8. By applying Theorem 4
and putting together the repeated uncertainties, we intro-
duce a set ∆ = {∆ |∆ = δω0

I8,∆RgI2, δωm
I4,∆RF ), ∆RF ∈

R2×2}. There is clearly a trade-off between the number of
introduced uncertainties by the truncation order d of the
Taylor series, and the size of the maximal approximation
error, which can be translated as a trade-off between the
computation time and the conservatism of the result.

We first compute the upper bound of µ to evaluate the
stability of the system (16) for all ∆ ∈ ∆ considering a very
large ωmmax = 2π 500 rad s−1. We obtain a µmax of 0.1923,
guaranteeing then robust stability of the system (16) even
in the presence of a considerable mismatch. Then, we
investigate the impact of different maximal measure mis-
matches ωmmax on the tracking performance specification
defined in (12), for all ωm ∈ [−ωmmax , ωmmax ] and for
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Fig. 8. Degradation of performance with respect to ωm.

all ω0 ∈ [ω0min, ω0max]. We measure the performance
by obtaining η through the LMI optimization problem
associated to condition (15) of Theorem 4 (see Remark 5),
then computing the performance ratio η̃ = η/εmax where
εmax is the maximal desired tracking error. Thus, the
indicator is lower than one if the performance specification
is respected and greater than one if not. The obtained
results are presented in Fig. 8. If we observe the particular
case of ωmmax

= 0, we are considering a perfect measure
of the resonance frequency ω̂0 = ω0, which answers to the
first question of Section 5. In such case, we obtain a value
of η̃ = 0.6219 , which shows that the controller ensures
performance for all ω0 ∈ [ω0min, ω0max] when there is no
error on the frequency measure. We also observe that η̃
increases approximately 205% for a maximal mismatch
frequency of 2π50 rad s−1, which demonstrates how perfor-
mance is degraded when the measure of the resonance fre-
quency is less accurate. Observing the maximal mismatch
frequency ωmmax

, for which η̃ = 1, we conclude that the
designed discrete-time controller ensures the tracking per-
formance specification for all ω0 ∈ [ω0min, ω0max] and for
all ωm ∈ [−ωmmax

, ωmmax
], tolerating a maximal measure

error ωmmax
of 2π15.763 rad s−1.

7. CONCLUSIONS AND PERSPECTIVES

In this work, we present an H∞-based control design
method allowing to obtain a controller whose gains de-
pend on the MEMS gyroscope resonance frequency. The
strength of our approach relies on the fact that the reso-
nance frequency can be measured or identified. Hence, we
may obtain a controller with a simple parameterization
with low conservatism.

When considering a CT controller, the parameterization
is straightforward. However, for the design of a DT con-
troller, this parameterization becomes complicated (non-
rational functions of ω0 appear). Then, approximations are
performed and a simple parameterization for the DT con-
troller is revealed. The effects of these approximations are
evaluated through a method based on Taylor development
and µ-analysis, ensuring the performance of the system.
Furthermore, examples illustrate the use and confirm the
effectiveness of our proposed methods. Even if in the real
application the resonance frequency varies, the computa-
tion of the µ upper-bound allows to apply our methods in
the case of slow variations of ω0.

Some perspectives may be considered: (i) implementation
of the parameter-dependent controllers and integration
with identification techniques; (ii) extension of the con-
troller design for drive and sense modes in a multivariable

framework; (iii) performance analysis taking into account
other uncertainties, e.g., the quality factor.
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